

i

UNIVERSIDADE DO ESTADO DE SANTA CATARINA – UDESC
CENTRO DE CIÊNCIAS TECNOLÓGICAS – CCT

DEPARTAMENTO DE ENGENHARIA ELÉTRICA – DEE
PROGRAMA DE PÓS-GRADUAÇÃO EM

ENGENHARIA ELÉTRICA - PPGEEL

Formação: Mestrado em Engenharia Elétrica

DISSERTAÇÃO DE MESTRADO OBTIDA POR

Jeferson Luiz Curzel

SÍNTESE E IMPLEMENTAÇÃO DE CONTROLE SUPERVISÓRIO
EM UMA CÉLULA FLEXÍVEL DE MANUFATURA DIDÁTICA

Apresentada em 06/06/2008 Perante a Banca Examinadora:

 Dr. André Bittencourt Leal – Presidente (CCT/UDESC)

 Dr. Eduardo Alves Portela Santos (PUC/PR)

 Dra. Tatiana Renata Garcia (IST/SOCIESC)

 Dr. Marcelo Teixeira dos Santos (BRASILMATICS)

 Dr. Marcelo da Silva Hounsell (CCT/UDESC)

ii

UNIVERSIDADE DO ESTADO DE SANTA CATARINA – UDESC

CENTRO DE CIÊNCIAS TECNOLÓGICAS – CCT

DEPARTAMENTO DE ENGENHARIA ELÉTRICA – DEE

PROGRAMA DE PÓS-GRADUAÇÃO EM
ENGENHARIA ELÉTRICA - PPGEEL

DISSERTAÇÃO DE MESTRADO

Mestrando: JEFERSON LUIZ CURZEL – Engenheiro Eletr icista

Or ientador : Prof. Dr . ANDRÉ BITTENCOURT LEAL

CCT/UDESC - JOINVILLE

SÍNTESE E IMPLEMENTAÇÃO DE CONTROLE SUPERVISÓRIO

EM UMA CÉLULA FLEXÍVEL DE MANUFATURA DIDÁTICA

 DISSERTAÇÃO APRESENTADA PARA
OBTENÇÃO DO TÍTULO DE MESTRE
EM ENGENHARIA ELÉTRICA DA
UNIVERSIDADE DO ESTADO DE SANTA
CATARINA, CENTRO DE CIÊNCIAS
TECNOLÓGICAS – CCT, ORIENTADA
PELO PROF. DR. ANDRÉ BITTENCOURT
LEAL.

Joinville

2008

iii

JEFERSON LUIZ CURZEL

SÍNTESE E IMPLEMENTAÇÃO DE CONTROLE SUPERVISÓRIO

EM UMA CÉLULA FLEXÍVEL DE MANUFATURA DIDÁTICA

‘Esta dissertação foi julgada adequada para obtenção do Título de Mestre em

Engenharia Elétrica – Automação Industrial e aprovada em sua forma final pelo Programa de

Pós-Graduação em Engenharia Elétrica da Universidade do Estado de Santa Catarina’ .

Banca Examinadora:

Orientador:
 __
 Prof. Dr. André Bittencourt Leal
 Universidade do Estado de Santa Catarina – UDESC

Membros:

 __
 Prof. Dr. Eduardo Alves Portela Santos
 Pontifícia Universidade Católica do Paraná – PUCPR

__
 Profa. Dra. Tatiana Renata Garcia
 IST - SOCIESC

__
 Prof. Dr. Marcelo Teixeira dos Santos
 Empresa Brasilmatics – Joinville - SC

 __
 Prof. Dr. Marcelo da Silva Hounsell
 Universidade do Estado de Santa Catarina – UDESC

Joinville, SC, Junho de 2008

iv

FICHA CATALOGRÁFICA

NOME: CURZEL, Jeferson Luiz

DATA DEFESA: 06/06/2008

LOCAL: Joinville, CCT/UDESC

NÍVEL : Mestrado Número de ordem: 05 – CCT/UDESC

FORMAÇÃO: Engenharia Elétrica

ÁREA DE CONCENTRAÇÃO: Automação de Sistemas

TÍTULO: “ Síntese e Implementação de Controle Supervisório em uma Célula Flexível de
Manufatura Didática”

PALAVRAS – CHAVE: Sistemas a Eventos Discretos, Célula Flexível de Manufatura
Didática, Controlador Lógico Programável.

NÚMERO DE PÁGINAS: xiv, 106p.

CENTRO/UNIVERSIDADE: Centro de Ciências Tecnológicas da UDESC

PROGRAMA: Pós-graduação em Engenhar ia Elétr ica – PPGEEL

No CAPES: 41002016012P-0

ORIENTADOR: Dr. André Bittencourt Leal

PRESIDENTE DA BANCA: Dr. André Bittencourt Leal

MEMBROS DA BANCA: Dr. Eduardo Alves Portela Santos, Dra. Tatiana Renata Garcia,
Dr. Marcelo Teixeira dos Santos, Dr. Marcelo da Silva Hounsell.

v

 À minha família.

vi

AGRADECIMENTOS

Agradeço a Deus pelo dom da vida, pela saúde e por ter me guiado por mais esta

etapa da minha vida.

À minha Esposa, Janaine, pelo amor e carinho incondicionais.

Ao meu Orientador, Prof. André Bittencourt Leal, pela atenção, dedicação e

amizade.

Ao Prof. Silas do Amaral, por ter permitido o uso do Laboratório de Robótica para a

integração dos equipamentos.

Ao Prof. Márcio Rubens Baumer, por ter cedido o Controlador Lógico Programável

para a implementação prática.

Aos colegas Fabiano e Jean, bolsistas do PET, pelo auxílio no desenvolvimento do

software.

Aos colegas do CEFET – Centro Federal de Educação Tecnológica – Unidade

Joinville, pelo apoio e compreensão dispensados sempre que solicitados.

A todos os amigos, por abdicarem de tão importante tempo da nossa amizade para a

realização deste sonho.

vii

RESUMO

Este trabalho apresenta a integração dos equipamentos existentes no Laboratório de
Robótica da UDESC/CCT, de forma a compor uma célula flexível de manufatura didática
para a qual foi resolvido um problema de controle aplicando-se a Teoria de Controle
Supervisório (TCS). A utilização deste formalismo (TCS) para o desenvolvimento do projeto
de controladores visa sistematizar o processo, de forma a disseminar o uso da metodologia
junto às indústrias. A partir da TCS foram desenvolvidos os modelos dos equipamentos da
célula utilizando-se a representação por autômatos e após a síntese de projeto obteve-se um
supervisor monolítico minimamente restritivo, o qual define o comportamento do sistema
(planta) de acordo com um conjunto de especificações impostas pelo projetista. Uma extensão
à teoria clássica, denominada controle modular local, também é aplicada de forma a explorar
a modularidade da planta, onde são obtidos os supervisores locais cuja atuação conjunta
coordena o sistema global. O controle da célula é feito por um Controlador Lógico
Programável (CLP), o qual coordena o funcionamento dos equipamentos com base nas rotinas
de supervisão monolítica e modular local. Os supervisores foram implementados no CLP em
linguagem LADDER e a programação foi estruturada em blocos, visando uma melhor
organização do programa. Para agilizar a implementação do supervisor monolítico no CLP foi
criado um software de geração automática de código, o qual converte o código do supervisor
monolítico diretamente para a linguagem LADDER do CLP.

Palavras-chave: Teoria de Controle Supervisório, Sistemas a Eventos Discretos,
Célula Flexível de Manufatura Didática, Controlador Lógico Programável.

viii

ABSTRACT

This work presents the integration of existing equipment in the Laboratory of
Robotics of the UDESC/CCT, to compose a didactic flexible manufacturing cell for which it
was resolved a problem of control by applying the Theory of Supervisory Control. The use of
this formalism for the development of the project aims to systematize the process controllers
in order to spread the use of the methodology in the industries. From the Theory of
Supervisory Control were developed models of the equipment of the cell using the
representation by automata and after the synthesis of project returned to a supervisor
monolithic minimally restrictive, which defines the system (plant) in accordance with a set of
specifications imposed by the designer. An extension to the classic theory, called local
modular control is also applied in order to exploit the modularity of the plant, where they
obtained the local supervisors whose joint action coordinates the global system. The control
of the cell is made by a Programmable Logic Controller (PLC), which coordinates the
operation of equipment based on the routines of supervision monolithic and local modular.
The supervisors were implemented in the PLC in LADDER language and the programming
has been structured in blocks, better organization of the program. To improve the
implementation of monolithic supervisor in the PLC was developed a software for automatic
generation of code, which converts the code of monolithic supervisor directly to the
LADDER language of the PLC.

Keywords: Theory of Supervisory Control, Discrete Events Systems, Flexible
Manufacturing Cell Didactic, Programmable Logic Controller.

ix

SUMÁRIO

1 INTRODUÇÃO ..1

1.1 Justificativa...2

1.2 Objetivos...2

1.3 Organização do trabalho...3

2 TEORIA DE CONTROLE SUPERVISÓRIO ..5

2.1 Sistemas a Eventos Discretos...5

2.2 Formalismos para representação de SEDs ...6

2.2.1 Linguagens ...6

2.2.2 Representação de SEDs por linguagens...8

2.2.3 Autômatos para representação de SEDs...9

2.2.4 Composição de autômatos..12

2.3 Controle Supervisório de SEDs..14

2.4 Abordagem Monolítica...15

2.5 Abordagem Modular Local ..17

2.6 Conclusões..20

3 A INTEGRAÇÃO DOS EQUIPAMENTOS DA CÉLULA FLEXÍVEL DE

MANUFATURA DIDÁTICA..21

3.1 Descrição dos equipamentos..21

3.2 Módulo de interface e Integração dos equipamentos...25

3.3 Programação das Rotinas dos Robôs..28

3.4 Conclusões..31

4 SÍNTESE DE SUPERVISORES PARA A CÉLULA DE MANUFATURA

DIDÁTICA ..32

x

4.1 Um Problema Motivador..32

4.2 Modelos dos dispositivos da planta..34

4.3 Modelo das restrições físicas da planta..36

4.4 Modelo das especificações...38

4.5 Síntese do Supervisor Monolítico ..40

4.6 Síntese dos Supervisores Modulares Locais...41

4.7 Conclusões..47

5 IMPLEMENTAÇÃO DOS SUPERVISORES NO CLP..48

5.1 Implementação do Supervisor Monolítico ...48

5.1.1 Programação do bloco OB1..49

5.1.2 Programação do bloco FC1- Supervisor...49

5.1.3 Programação do bloco FC3- Saídas ...50

5.1.4 Programação do bloco FC2- Eventos...51

5.2 Ferramenta para geração de código monolítico (GPACLP).................................54

5.3 Implementação dos Supervisores Modulares Locais..65

5.3.1 Programação do bloco OB1..66

5.3.2 Programação dos blocos FCs - Supervisores locais.................................67

5.3.3 Programação do blocos FCs - Subsistemas...69

5.3.4 Programação do bloco de Desabilitações (FC20)70

5.4 Conclusões..72

6 CONCLUSÕES...73

6.1 Contribuições..75

6.2 Trabalhos Futuros...76

REFERÊNCIAS ...77

APÊNDICE A – Tutor ial do Gerador de Código para o CLP...81

xi

LISTA DE FIGURAS

Figura 2.1 – Autômato de estados finitos...10

Figura 2.2 – Autômato não bloqueante..11

Figura 2.3 – Autômato bloqueante...12

Figura 2.4 – Autômatos G1 e G2..13

Figura 2.5 – Composição síncrona G1||G2...13

Figura 2.6 – Controle de SED em malha fechada..15

Figura 2.7 – Ilustração da metodologia para obtenção dos Supervisores Locais.....................18

Figura 2.8 – Estrutura de controle modular local ...18

Figura 3.1 - Equipamentos que compõem a célula flexível de manufatura.21

Figura 3.2 – Robô e seu controlador ..22

Figura 3.3 – Mesa Giratória..23

Figura 3.4 – Esteira e Sensor..23

Figura 3.5 – Mesa de Experimentos...23

Figura 3.6 – Sensor de teste..24

Figura 3.7 – CLP Siemens S7-300 ...24

Figura 3.8 – Interface de sinais...25

Figura 3.9 - Interface CLP – Entradas e Saídas da Célula ...26

Figura 3.10 - Acionamento do controlador do robô pelo CLP...26

Figura 3.11 - Acionamento do motor da esteira pelo CLP...26

Figura 3.12 - Ligação da saída do controlador do robô com o CLP ..27

Figura 3.13 - Esquema de ligações da interface de sinais..27

Figura 3.14 - Fluxograma da rotina do robô 1..29

Figura 3.15 - Fluxograma da rotina do robô 2..31

Figura 4.1 - Planta baixa da célula. ..33

Figura 4.2 - Autômato para a esteira. ...34

xii

Figura 4.3 - Autômato para o sensor. ...34

Figura 4.4 - Autômato para o Robô 1...35

Figura 4.5 - Autômato para a mesa giratória..35

Figura 4.6 - Autômato para a estação de teste..35

Figura 4.7 - Autômato para o Robô 2...36

Figura 4.8 - Autômato para a restrição R1. ..36

Figura 4.9 - Autômato para a restrição R2. ..37

Figura 4.10 - Autômato para a restrição R3 ...37

Figura 4.11 - Autômato para a restrição R4. ..37

Figura 4.12 - Autômato para a Especificação 1..38

Figura 4.13 - Autômato para a Especificação 2..38

Figura 4.14 - Autômato para a Especificação 3..38

Figura 4.15 - Autômato para a Especificação 4..39

Figura 4.16 - Autômato para a Especificação 5..39

Figura 4.17 - Autômato para a Especificação 6..39

Figura 4.18 - Autômato para a Especificação 7..39

Figura 4.19 - Autômato para a Especificação 8..40

Figura 4.20 - Autômato para a Especificação 9..40

Figura 4.21 – Supervisor Monolítico de 73 estados e 158 transições......................................41

Figura 4.22 – Eventos comuns aos autômatos..42

Figura 4.23 – Supervisores Modulares...46

Figura 5.1 - Programação do bloco OB1 em LADDER...49

Figura 5.2 - Parte inicial do supervisor obtido. ..49

Figura 5.3 - Programação do bloco FC1 em LADDER. ..50

Figura 5.4 - Programação do bloco FC3 em LADDER. ..51

Figura 5.5 - Programação do bloco FC2 em LADDER. ..52

Figura 5.6 - Disparo simultâneo de eventos controláveis...52

Figura 5.7 - Disparo simultâneo de eventos no bloco FC3. ...53

Figura 5.8 - Disparo simultâneo de eventos no bloco FC1. ...53

Figura 5.9 - Programação de eventos não controláveis (bloco FC1)..54

Figura 5.10 – Geração automática de código para o CLP..55

Figura 5.11 – Autômato do Supervisor e seu arquivo texto...55

Figura 5.12 – Configuração dos Eventos Controláveis..56

Figura 5.13 – Configuração dos Eventos não controláveis..57

xiii

Figura 5.14 – Geração dos Blocos de Programa..57

Figura 5.15 – Pasta de armazenamento dos blocos de programa...58

Figura 5.16 – Geração da tabela de símbolos...58

Figura 5.17 – Pasta de armazenamento da tabela de símbolos...59

Figura 5.18 – Arquivos gerados pelo software GPACLP..59

Figura 5.19 – Tabela de símbolos gerada...60

Figura 5.20 – Tabela de símbolos importada para o Simatic Manager60

Figura 5.21 – Geração dos arquivos fonte..61

Figura 5.22 – Pasta de armazenamento do GPACLP...61

Figura 5.23 – Arquivo fonte FC1 importado da Pasta do GPACLP..62

Figura 5.24 – Arquivos fonte..62

Figura 5.25 – Compilando o bloco FC1...63

Figura 5.26 – Blocos após a compilação..63

Figura 5.27 – Alteração do modo de visualização de STL para LAD......................................64

Figura 5.28 – Blocos FC1, FC2 e FC3 em LADDER..64

Figura 5.29 – Modelo de implementação adaptado de Queiroz et al. (2001)...........................65

Figura 5.30 - Programação do bloco OB1 em LADDER...67

Figura 5.31 - Supervisor local 1 – SL1...68

Figura 5.32 - Programação do SL1 em LADDER..69

Figura 5.33 – Subsistema G1 – Esteira ..69

Figura 5.34 - Programação do bloco FC7 em LADDER. ..70

Figura 5.35 - Programação do bloco FC20 em LADDER. ..71

Figura 5.36 – Programação do Bloco FC8 em LADDER..71

xiv

L ISTA DE TABELAS

Tabela 4-1 - Eventos dos dispositivos da célula...33

Tabela 4-2 – Eventos comuns entre modelos e especificações..43

1 INTRODUÇÃO

O aumento na complexidade dos sistemas automatizados em função da globalização

tem exigido uma evolução constante dos dispositivos de controle, objetivando uma maior

qualidade e custos reduzidos de produção. Com isso, funcionalidades têm sido agregadas aos

dispositivos de controle, tais como, maior capacidade de processamento, mais memória para o

armazenamento de informações e possibilidade de conexão a outros dispositivos. Contudo,

esta evolução não é notada na utilização de ferramentas formais para o desenvolvimento do

projeto do controle destes sistemas automatizados, principalmente em ambientes industriais.

A utilização de procedimentos sistemáticos para o desenvolvimento de modelos

formais para análise, projeto (síntese) e implementação de sistemas de controle é abordada

por Cassandras e Lafortune (1999), dentre os quais se destacam: Redes de Petri, Cadeias de

Markov, Teoria das Filas, Simulação, Álgebra de Processos e Max-Plus, Lógica Temporal,

Autômatos e Linguagens.

Enquanto a maior parte destes modelos baseia-se na inspiração e experiência do

projetista, limitando-se à análise de soluções de controle propostas por estes, a Teoria de

Controle Supervisório proposta por Ramadge e Wonham (1989) é uma das mais adequadas

para o desenvolvimento dos modelos formais de sistemas de controle, pois é dotada de

procedimentos de síntese de controladores. No modelo de Ramadge e Wonham (1989) é

realizado um processo automático de síntese do controle, ao invés dos procedimentos

tradicionais (empíricos).

Conforme Hellgren et al. apud Vieira (2007, p. 5), “apesar da grande aceitação da

Teoria de Controle Supervisório pelo meio acadêmico, havendo diversas extensões à mesma e

um número muito grande de publicações com foco em aspectos teóricos, são raras as

aplicações industriais. A razão principal para isto é o problema da implementação física” .

Segundo os autores há poucas referências de como implementar os supervisores obtidos

através da aplicação desta teoria e, no caso da implementação em Controladores Lógico

Programáveis (CLPs), a distância entre o mundo dos autômatos baseados em eventos e o

mundo do CLP baseado em sinais tem que ser superada. Vieira (2007) cita ainda diversas

abordagens desenvolvidas no intuito de superar a distância entre os dois mundos, dentre as

quais algumas foram utilizadas como referências também para este trabalho, destacando-se:

(Fabian e Helgren, 1998), (Dias, 2005), (Costa, 2005), (Moraes e Leal, 2006), (Teixeira et al.,

2006), (Carvalho, 2007), (Queiroz, 2004), (Queiroz e Cury, 2002b), dentre outras obras,

(Vieira, 2001), (Bouzon et al., 2004), (Santos et al., 2006).

2

Neste trabalho serão apresentados os resultados relativos ao estudo e aplicação da

Teoria de Controle Supervisório, conforme apresentados e discutidos previamente em (Curzel

e Leal, 2006) e (Curzel et al., 2006).

1.1 Justificativa

A Teoria de Controle Supervisório (TCS) (Ramadge e Wonham, 1989) possibilita

que problemas de controle sejam solucionados de forma sistemática, garantindo assim que o

supervisor obtido atenderá as especificações impostas pelo projetista. Além disto, o seu uso

facilita alterações no programa do controlador lógico programável (CLP), alterações estas que

são necessárias sempre que é feita alguma modificação (inclusão/exclusão de equipamentos

ou alteração no layout) na célula flexível de manufatura. Entretanto, a teoria supracitada não é

conhecida e dominada no âmbito industrial, de forma que, em geral, a resolução de problemas

de controle supervisório nas indústrias é feita sem a utilização de um procedimento formal.

Desta forma, tendo em vista a necessidade de um laboratório para a realização de

testes práticos relativos à síntese e implementação da TCS na resolução de problemas e a

disponibilidade de equipamentos existentes no laboratório de robótica da UDESC/CCT,

vislumbrou-se a possibilidade de integração destes equipamentos para compor uma célula

flexível de manufatura didática. Esta célula possibilitará que os resultados do estudo e

aplicação da TCS nas disciplinas de graduação e pós-graduação do curso de engenharia

elétrica possam ser implementados na prática. Com isso, além de estimular os alunos ao

trabalho em equipe, será possível contribuir para a difusão da TCS entre os alunos,

diminuindo a distância entre a teoria vista em sala de aula com a prática realizada em

laboratório, proporcionando aos estudantes a solução de problemas que, em escala reduzida,

são fiéis à realidade encontrada nas indústrias.

1.2 Objetivos

Os objetivos deste trabalho são:

• Integrar os equipamentos do Laboratório de Robótica da UDESC/CCT para

compor uma célula flexível de manufatura didática;

• Aplicar a Teoria de Controle Supervisório para a resolução de um problema

motivador sob a ótica de duas abordagens distintas, a abordagem monolítica e

a abordagem modular local, introduzindo um procedimento formal para a

solução de problemas de controle supervisório para a célula em questão;

3

• Fazer a implementação em CLP dos supervisores obtidos nas duas

abordagens utilizando-se a linguagem LADDER (IEC, 2003), por ser esta

uma linguagem mais difundida no meio industrial.

• Desenvolver um software de conversão de código, com a função de converter

o código do supervisor monolítico diretamente para a linguagem do CLP.

Com isto objetiva-se agilizar o processo de programação do CLP, tornando

mais rápidas as alterações no programa do CLP sempre que houver alguma

alteração no projeto do supervisor.

1.3 Organização do trabalho

Esta dissertação está estruturada da seguinte forma: no Capítulo 2 é apresentada uma

revisão sobre a Teoria de Controle Supervisório proposta por Ramadge e Wonham (1989).

Inicialmente são apresentados os conceitos de Sistemas a Eventos Discretos (SEDs) e os

formalismos de Linguagens e Autômatos utilizados para a representação de SEDs. Na

seqüência, são apresentadas as abordagens Monolítica e Modular Local para o Controle

Supervisório de SEDs.

No Capítulo 3 é apresentada a célula flexível de manufatura que foi integrada e

utilizada na realização deste trabalho. São descritos os equipamentos que fazem parte da

célula e como é feita a integração dos sinais elétricos destes com o CLP, através de um

módulo de interface desenvolvido para essa finalidade. Ainda neste capítulo são descritas as

rotinas de programação dos robôs didáticos utilizados na célula.

No Capítulo 4 é mostrada a síntese de supervisores da célula de manufatura utilizada,

através da modelagem por autômatos, e apresentada a resolução de um problema-exemplo,

utilizando-se as abordagens monolítica e modular local vistas no Capítulo 2.

No Capítulo 5 é apresentada primeiramente a proposta de implementação do

supervisor monolítico em CLP Siemens Step7-300, em linguagem LADDER, utilizando-se

uma estrutura dividida em blocos de programa, bem como o software desenvolvido para a

geração automática de código para o CLP utilizado. Na seqüência do Capítulo 5 é mostrada a

implementação dos supervisores modulares locais para o mesmo CLP, utilizando-se também

uma estrutura dividida em blocos de programa, o que torna em ambos os casos, mais fácil o

entendimento e alterações no programa.

No último capítulo são comentados os resultados das duas técnicas de

implementação do controle supervisório em CLP utilizadas, são apresentadas as contribuições

4

do trabalho e as propostas para futuros trabalhos, tendo-se como base a célula flexível de

manufatura concebida.

Demais informações relativas à utilização do software desenvolvido para a geração

automática de código para o CLP encontram-se no APÊNDICE A.

5

2 TEORIA DE CONTROLE SUPERVISÓRIO

Com o crescente avanço da tecnologia e aumento da complexidade dos sistemas

automatizados, estes passaram a necessitar de um formalismo específico para a otimização do

seu controle. Exemplos de aplicações onde estes sistemas estão presentes são: a automação da

manufatura, a robótica, a supervisão de tráfego, a logística, redes de comunicação e de

computadores, sistemas operacionais, concepção de software, gerenciamento de base de

dados, otimização de processos distribuídos, entre outros.

A semelhança entre estes sistemas é dada em função da natureza da ocorrência de

mudanças no ambiente a sua volta, o que se percebe pela recepção de estímulos instantâneos e

discretos no tempo, os quais são denominados eventos. Aos sistemas com estas características

dá-se a denominação de Sistemas a Eventos Discretos, ou simplesmente, SEDs.

A modelagem e controle de SEDs é uma área de pesquisa de grande interesse nas

universidades e no meio industrial, sendo estimulada pela diversidade de aplicações, como é o

caso dos modernos sistemas de manufatura. Destaca-se ainda a aplicabilidade da teoria de

controle de sistemas a eventos discretos proposta por Ramadge e Wonham (1989) pelo seu

potencial para desenvolvimento de ferramentas teóricas (Cury, 2001).

O presente capítulo tem como objetivo apresentar os fundamentos da teoria de

controle supervisório, introduzida por Ramadge e Wonham (1989). Primeiramente é abordada

a classe de sistemas do qual trata este trabalho, denominada Sistemas a Eventos Discretos

(SEDs). Em seguida, são apresentados os formalismos para a representação de SEDs, a

abordagem proposta por Ramadge e Wonham (1989) e uma extensão desta teoria,

especificamente a abordagem proposta por Queiroz e Cury (2000). A partir da Seção 2.2 deste

capítulo são apresentados os formalismos utilizados nas abordagens mencionadas.

2.1 Sistemas a Eventos Discretos

Um sistema a eventos discretos (SED) é um sistema de estados discretos, dirigido a

eventos, isto é, sua evolução de estado depende da ocorrência de eventos discretos

assíncronos no tempo (Cassandras e Lafortune, 1999).

Segundo Cury apud Attié (1998, p. 54),

Quando o espaço de estados de um sistema é naturalmente descrito por um
conjunto discreto, e as transições de estado são observadas somente em pontos
discretos do tempo, associam-se estas transições a eventos. O conceito de evento é
um desses conceitos primitivos, cuja compreensão deve ser deixada à intuição,
mais do que a uma exata definição. Não se pode, porém, deixar de enfatizar que

6

um evento deve ser pensado como de ocorrência instantânea e como causador de
uma transição no valor (discreto) do estado do sistema.

Desta definição são extraídas duas propriedades principais dos SEDs:

• O espaço de estados é discreto;

• A transição de estados é dirigida por eventos.

Um evento pode ser identificado como uma ação específica, como por exemplo, o

acionamento de um botão, a parada de uma máquina, ou pode ainda, ser o resultado de várias

condições que ocorrem em um dado instante. O mesmo evento pode ter efeitos diferentes

(pode levar a estados distintos), dependendo do estado em que ocorre. Ramadge e Wonham

(1989) classificam ainda os eventos em dois tipos: os eventos controláveis, cuja ocorrência

pode ser desabilitada pela ação de controle, como por exemplo, o início de uma atividade ou a

parada de uma esteira, e os eventos não controláveis, cuja ocorrência não pode ser

desabilitada pela ação de controle, como por exemplo, a ativação de um sensor. Esta

classificação é importante para a modelagem dos subsistemas físicos que serão apresentados

no Capítulo 4.

2.2 Formalismos para representação de SEDs

Nesta seção serão apresentados os conceitos básicos da teoria de linguagens e

autômatos utilizados como formalismos para a representação de SEDs. Para um maior

detalhamento dos assuntos apresentados poderão ser consultadas as seguintes referências:

(Cassandras e Lafortune, 1999), (Cury, 2001) e (Wonham, 2004).

2.2.1 Linguagens
O comportamento lógico de um SED pode ser modelado a partir de linguagens, que

pode ser visto como um modelo comportamental externo do sistema, pois se baseia na

descrição de uma seqüência de eventos. A palavra linguagem vem do fato que se pode pensar

em um conjunto de eventos como um alfabeto e seqüências de eventos como palavras

(Cassandras e Lafortune, 1999).

Define-se que uma linguagem L definida sobre um alfabeto Σ, é um conjunto de

cadeias ou palavras formadas por símbolos pertencentes a esse alfabeto Σ. Define-se ainda Σ*

como o conjunto de todas as cadeias finitas de elementos do conjunto Σ, incluindo a cadeia

vazia ε (Cury, 2001).

Algumas operações podem ser executadas sobre linguagens, tais como as operações

sobre conjuntos.

7

Deve-se considerar para as operações sobre linguagens que se tuv = s, com t, u, v ∈

Σ* , então:

• t é chamado prefixo de s

• u é chamada uma subcadeia de s

• v é chamado sufixo de s

São três as operações consideradas sobre linguagens:

1. Concatenação:

Considerando as linguagens L1 e L2 definidas como L1,L2 ⊆ Σ* , a concatenação de

uma cadeia de L1 com uma cadeia de L2, denotada por L1L2, é definida por:

 L1L2 = {s ∈ Σ* : (s = s1s2) , (s1 ∈ L1) e (s2 ∈ L2)} (2.1)

Desta forma, uma cadeia está em L1L2 se ela pode ser escrita como a concatenação

de uma cadeia de L1 com uma cadeia de L2.

2. Prefixo-Fechamento:

Seja uma linguagem L ∈ Σ* , então o prefixo-fechamento de L, denotado por L , é

definido por:

 L = {s ∈ Σ* : ∃ t ∈ Σ* (st ∈ L)} (2.2)

Uma linguagem L é prefixo-fechada se qualquer prefixo de qualquer cadeia de L é

também cadeia de L.

3. Fechamento-Kleene:

Seja uma linguagem L ⊆ Σ* , o fechamento-Kleene de L, denotado por L* é definido

por:

 L* = {ε} ∪ L ∪ LL ∪ LLL ∪ (2.3)

Uma cadeia de L* é formada pela concatenação de um número finito de cadeias de

L, incluindo a cadeia vazia ε.

Como exemplo para as operações mostradas acima, considera-se o alfabeto Σ = { a, b,

c} , e as linguagens L1 = { ε, a, abb} e L2 = { c} definidas sobre Σ. L1 e L2 não são prefixo-

fechadas, pois nota-se que ab ∉ L1 e que ε ∉ L2. Assim:

• { }abbcaccLL ,,21 =

• { }abbabaL ,,,1 ε=

• { }cL ,2 ε=

8

• { },...,,,2* ccccccL ε=

2.2.2 Representação de SEDs por linguagens
O comportamento de um sistema a eventos discretos pode ser descrito através de um

par de linguagens. A evolução seqüencial do SED, ou seu comportamento lógico, pode ser

modelado através de D = (L, Lm).

No modelo D, L ⊆ Σ* é a linguagem prefixo fechada que descreve o comportamento

gerado pelo sistema, ou seja, o conjunto de todas as cadeias de eventos fisicamente possíveis

de ocorrerem no sistema. Após partir do estado inicial e percorrer uma determinada trajetória

em seu espaço de estados, um SED poderá completar uma ou mais tarefas. As seqüências de

eventos que levam às tarefas completas formam também uma linguagem. Assim, no modelo

D, Lm ⊆ L é a linguagem que descreve o comportamento marcado do sistema, ou seja, o

conjunto de cadeias em L que correspondem a tarefas completas que o sistema pode realizar.

Duas propriedades das linguagens L e Lm são sintetizadas para representar um SED:

1. L ⊇ Lm, ou seja, o comportamento gerado contém o comportamento marcado

de um SED;

2. L = L , ou seja, o comportamento gerado de um SED é prefixo-fechado.

Como exemplo, podemos considerar um sistema representado por uma esteira, onde

o conjunto de eventos associado é representado por Σ = { a,b} , onde ‘a’ representa o início de

operação da esteira e ‘b’ representa o fim de operação da mesma. Neste caso, a linguagem L

que corresponde ao comportamento gerado pela esteira consiste de todas as seqüências de

eventos que iniciam com ‘a’ e terminam com ‘b’ . É importante observar que um evento ‘b’

não ocorre se não houver acontecido um evento ‘a’ anteriormente e que ε ∈ L corresponde à

situação da esteira no seu estado inicial, onde nenhum evento ocorreu ainda. Assim,

consideram-se tarefas completadas da esteira todas as cadeias que levam ao estado de fim de

operação ou repouso. Desta forma, pode-se afirmar que Lm consiste de todas as cadeias L que

terminam com ‘b’ e também a cadeia ε. Assim:

 L = {ε, a, ab, abab, ababa, ababab, ...} (2.4)

e

 Lm = {ε, ab, abab, ababab, ...} (2.5)

9

Uma linguagem pode ser uma das maneiras formais de descrição comportamental

para um SED, podendo representar todas as possíveis seqüências de eventos (L) ou as tarefas

que o sistema pode completar (Lm).

Contudo, a descrição de uma linguagem natural como vista anteriormente pode ser

uma tarefa pouco prática, pois pode especificar todas as possíveis seqüências de eventos que

um SED pode gerar. Uma alternativa é a utilização de expressões regulares e autômatos para

o formalismo de SEDs.

As expressões regulares fornecem um meio de descrição de linguagens, obtidas pela

aplicação de um conjunto de regras de composição. Assim, para um dado alfabeto Σ, define-

se recursivamente uma expressão regular da seguinte forma:

a) ∅ é uma expressão regular que representa a linguagem vazia;

b) ε é uma expressão regular que denota a linguagem { ε} ;

c) σ é uma expressão regular representando { σ} ∀σ ∈Σ; (para todo σ ⊂ Σ)

d) Se r e s são expressões regulares então rs, r* , s* , (r+s)* são expressões regulares;

e) Toda expressão regular é obtida pela aplicação das regras acima um número

finito de vezes.

Retornado ao exemplo da esteira visto anteriormente, L e Lm podem ser escritos da

seguinte forma:

 L = (ab)* (ε+a) (2.6)

e

 Lm = (ab)* (2.7)

Entretanto, embora a teoria de linguagens seja atrativa para apresentar aspectos da

modelagem e para discutir propriedades de SEDs, ela não é conveniente para realizar a

verificação de propriedades ou a síntese do controlador (Cassandras e Lafortune, 1999). Além

disso, a representação através de linguagens e expressões regulares é limitada

computacionalmente. Para resolver este problema utiliza-se a representação de SEDs através

de autômatos.

2.2.3 Autômatos para representação de SEDs
Nesta seção serão apresentados os principais conceitos relacionados aos autômatos

de estados finitos e as relações entre os autômatos e as linguagens. Também será apresentada

a representação de um SED utilizando-se autômatos.

Um autômato determinístico de estados finitos é uma quíntupla G = (X, Σ, f, xo, Xm),

onde:

10

• X é o conjunto finito de estados do autômato;

• Σ é o conjunto de eventos que definem o alfabeto;

• f : X x Σ → X é a função de transição de estados e em geral é parcial;

• xo é o estado inicial do autômato;

• Xm é o conjunto de estados finais (marcados) onde Xm ⊆ X.

Um autômato pode ser representado graficamente como um grafo dirigido, onde os

círculos representam os estados e os arcos entre os estados indicam as transições ou eventos.

O estado inicial é identificado através de uma seta apontando para ele e os estados finais

(marcados) são representados com círculos duplos. Arcos seccionados por uma pequena linha

transversal indicam que o evento é controlável (Cury, 2001).

Na Figura 2.1 é mostrado um autômato determinístico, chamado de G, cuja descrição

formal é dada da seguinte forma:

• X = { A, B, C}

• Σ = { x, y, z}

• A função parcial de transição de estados é: f(A,x) = A, f(A,z) = C, f(B,y) = B,

f(B,x) = A, f(C,y) = C, f(C,x) = f(C,z) = B

• xo = { A}

• Xm = { A,B}

Figura 2.1 – Autômato de estados finitos

O autômato G da Figura 2.1 pode ser interpretado como um dispositivo que inicia a

partir do estado inicial xo e permanece nesse estado até a ocorrência de um evento z e este

processo continua baseado nas transições definidas em f. Este autômato está associado a duas

linguagens, a linguagem gerada L(G) que representa todas as cadeias que podem ser seguidas

no autômato, a partir do estado inicial, e a linguagem marcada Lm(G), que considera todas as

11

cadeias que partindo do estado inicial chegam a um estado marcado, incluindo, neste caso, o

próprio estado inicial que é marcado.

Assim, um SED pode ser modelado por um autômato G, onde L(G) é o

comportamento gerado pelo sistema e Lm(G) é o conjunto de tarefas completas do sistema

(CURY, 2001).

De forma geral, um autômato de estados finitos pode ter estados inacessíveis, que

jamais podem ser alcançados a partir do estado inicial. Formalmente, um estado x ∈ X é dito

ser acessível se x = f (xo, u) para algum u ∈ Σ* . G é dito ser acessível se x é acessível para

todo x ∈ X. A componente acessível Gac de um autômato G é obtida pela eliminação de seus

estados não acessíveis e das transições associadas a tais estados.

De outra forma, G é dito ser co-acessível ou não bloqueante, se cada cadeia u ∈ L(G)

pode ser completada por algum w ∈ Σ* tal que uw ∈ Lm(G), ou seja, se cada cadeia u ∈ L(G)

for um prefixo de uma cadeia em Lm(G). Em palavras, um autômato é co-acessível se a partir

de qualquer de seus estados, existir ao menos um caminho que leve a um estado marcado.

É possível descrever a condição de co-acessibilidade de um autômato pela equação:

)()(GLmGL = (2.8)

A equação 2.1 permite definir a idéia de ausência de bloqueio em um SED. Um SED

é dito não bloqueante se, e somente se, satisfaz as condições da equação apresentada. Caso

contrário, o SED é dito bloqueante (Cury, 2001). A condição de bloqueio corresponde a

cadeias de eventos geradas pelo sistema a partir das quais não se pode completar alguma

tarefa.

O autômato apresentado na Figura 2.2 é co-acessível (não bloqueante), pois o estado

B representa uma tarefa completada do sistema, o que caracteriza o não bloqueio.

Figura 2.2 – Autômato não bloqueante

12

Já na Figura 2.3 é mostrado um autômato onde ocorre o bloqueio do sistema no

estado C, ainda que seja possível a ocorrência do evento y.

Figura 2.3 – Autômato bloqueante

2.2.4 Composição de autômatos
Um SED pode ser visto como a composição de subsistemas sendo regidos por um

controlador que restringe o comportamento do sistema de acordo com as especificações

impostas no projeto. Assim, a composição dos subsistemas é uma operação que permite a

representação de um autômato com todas as seqüências possíveis e tarefas que podem ser

completadas pelo sistema. Cabe ressaltar que para sistemas de grande porte a composição dos

subsistemas pode ser de grande complexidade, e que qualquer inclusão ou alteração destes no

projeto acarreta na reconstrução do modelo como um todo. Cury (2001) define essa

metodologia de modelagem como sendo uma abordagem global.

Para a composição de autômatos, é utilizada a composição paralela, freqüentemente

chamada de composição síncrona (Cury, 2001). Assim, dados dois autômatos G1 = (X1, Σ1,

f1, xo1, Xm1) e G2 = (X2, Σ2, f2, xo2, Xm2), a composição síncrona G1||G2 é definida por:

 G1||G2 = Ac(X1 × X2, Σ1∪Σ2, f1||2, (xo1,xo2), Xm1 x Xm2) (2.9)

onde Ac é a componente acessível e

 f1||2 : (X1 × X2) × (Σ1∪Σ2) → (X1 × X2) (2.10)

ou seja:

�
�

�

�
�

�

�

�
�

�

�
�

�

�

�
∈

�
∉

�
∈

�
∈

�
∉

�
∈

�
∩

�
∈

�
∩

�
∈

=

contráriocasoindefinida

xeesexfx

xeesexxf

xxesexfxf

xxf
)2(212)),2(2,1(

)1(121)2),,1(1(

)2(2)1(121)),2(2),,1(1(

)),2,1((2||1 σσσσ
σσσσ

σσσσ

σ (2.11)

13

A seguir apresenta-se um exemplo no intuito de ilustrar a operação de composição

síncrona. Sejam os autômatos G1 e G2 mostrados na Figura 2.4.

Figura 2.4 – Autômatos G1 e G2

Assim, de acordo com o exposto por Cury (2001), um evento comum a Σ1 e Σ2 só

pode ser executado sincronamente nos dois autômatos. Os demais eventos ocorrem

assincronamente, ou seja, de modo independente em cada autômato. Assim, pode-se

interpretar G1||G2 como a ação coordenada dos dois autômatos. O autômato resultante desta

sincronização é mostrado na Figura 2.5.

Figura 2.5 – Composição síncrona G1||G2

Como já ressaltado anteriormente, a composição síncrona pode ser uma tarefa difícil,

mas existem ferramentas computacionais desenvolvidas para estas atividades. Neste trabalho

utilizou-se o software Grail (Reiser et al., 2006) e informações relativas a sua aplicação são

14

encontradas em (Cury, 2001) e (Garcia, 2006). O software CTCT (Wonham, 2004) também é

utilizado como ferramenta para autômatos, porém com menor ênfase neste trabalho.

Concluída a apresentação dos formalismos utilizados para a representação de SEDs,

apresenta-se a seguir as metodologias utilizadas para a síntese do controle de SEDs.

2.3 Controle Supervisór io de SEDs

A Teoria de Controle Supervisório proposta por Ramadge e Wonham (1989) é uma

das mais adequadas para o desenvolvimento dos modelos formais de sistemas de controle,

pois é dotada de procedimentos de síntese automática de controladores para SEDs. Nesta

teoria é feita uma distinção entre o sistema a ser controlado (planta), que corresponde, em

geral, a um conjunto de equipamentos (subsistemas), e o controle do sistema, que é chamado

de supervisor. O papel do supervisor é exercer uma ação de controle minimamente restritiva

sobre os subsistemas, de modo que se comportem de acordo com um conjunto de

especificações, coordenando assim o funcionamento do sistema como um todo. A função de

uma especificação é, então, limitar o comportamento do sistema em termos de seqüências de

eventos indesejados, ou seja, certos estados do sistema que não são desejados devem ser

evitados. Estes estados podem ser causadores de bloqueio ou então são fisicamente

inadmissíveis, como por exemplo, a colisão de um robô com um veículo auto guiado ou a

tentativa de colocar uma peça em um armazém cheio (Cury, 2001). As especificações, assim

como os subsistemas, também são representadas por autômatos de estados finitos.

A abordagem de Ramadge e Wonham para o controle supervisório de SEDs é

também denominada Abordagem Monolítica, pois tem como objetivo projetar um único

controlador para o sistema. Porém, como já exposto na Seção 2.2.4, esta tarefa pode acarretar

em problemas como um elevado número de estados da planta e/ou do supervisor (explosão de

estados) e o consumo de uma memória muito grande por parte do dispositivo de controle, por

exemplo, um CLP.

Como alternativa, foi desenvolvida uma extensão à abordagem monolítica, chamada

de Controle Modular Local (Queiroz e Cury, 2000), na qual é explorada a modularidade das

especificações de controle e a própria modularidade da planta. Assim, são definidos os

supervisores locais, onde a atuação conjunta dos supervisores coordena o comportamento do

sistema como um todo.

Nas próximas seções apresentam-se as duas abordagens utilizadas como base

conceitual para o desenvolvimento do Capítulo 4.

15

2.4 Abordagem Monolítica

Nesta abordagem, a composição dos comportamentos de cada subsistema isolado é

modelado por um autômato de estados finitos, que pode ser chamado de planta. Este

autômato é denominado G, sendo representado por uma linguagem gerada L(G) e por uma

linguagem marcada Lm(G). Assim, por representar todas as possibilidades para a planta, G

pode conter cadeias de eventos indesejáveis. O autômato G, portanto, modela o

comportamento do SED sem nenhuma ação de controle.

Para a realização do controle monolítico, é necessário introduzir um agente de

controle no sistema, que atue de acordo com um conjunto de restrições. Estas restrições são

chamadas de especificações de controle e têm uma natureza permissiva em relação à ação de

controle, ou seja, de acordo com as especificações impostas pelo projetista do SED, somente

aquelas ações que levam a um estado proibido ou a uma seqüência de eventos indesejada são

proibidas.

A ação de controle tem, então, o objetivo de habilitar e desabilitar certos eventos,

conforme a seqüência de eventos observados na planta. A essa ação de controle dá-se o nome

de supervisor, denominado S.

Desta forma, o supervisor S interage com a planta G observando os eventos

ocorridos e define, de acordo com o estado atual da planta, quais eventos fisicamente

possíveis são habilitados. A Figura 2.6 ilustra a estrutura de controle em malha fechada de

uma planta G sob ação do supervisor S.

Figura 2.6 – Controle de SED em malha fechada

Tomando-se a planta G, inicialmente deve-se particionar o conjunto de eventos Σ em

eventos controláveis Σc, cuja ocorrência pode ser desabilitada pela ação de controle, e eventos

não controláveis Σu, cuja ocorrência não pode ser desabilitada pela ação de controle. Sobre

estes eventos particionados, define-se, para uma entrada de controle γ ∈ Γ, uma estrutura de

controle Γ para G, tal que:

 Γ = {γ ∈ 2Σ : γ ⊇ Σu} (2.12)

16

onde a condição γ ⊇ Σu indica que os eventos não controláveis não podem ser desabilitados.

 Formalmente, um supervisor S é um mapeamento S: L → Γ que especifica um

conjunto de eventos habilitados para cada cadeia possível de eventos gerados w ∈ L. O

funcionamento do sistema controlado pode ser descrito pelo autômato resultante da

composição síncrona S||G. Assim, somente as transições permitidas tanto no sistema

controlado G, como no supervisor S são permitidas.

O comportamento do sistema em malha fechada é então dado por:

 L(S/G) = L(S||G) e Lm(S/G) = Lm(S||G) (2.13)

Diz-se que um supervisor S é não bloqueante para G se garantir o não bloqueio do

sistema em malha fechada, isto é, se)/()/(GSLmGSL = .

Assim, pode-se representar um supervisor por um autômato S, definido sobre o

mesmo alfabeto Σ da planta G, cujas mudanças de estado são regidas pela ocorrência de

eventos na planta G. A ação de controle de S definida para cada estado do autômato, consiste

em desabilitar em G os eventos que não possam ocorrer em S após uma cadeia de eventos

observada.

Cury (2001) ressalta ainda que o conceito de controlabilidade de linguagens é

essencial para a solução do controle supervisório. Assim, dada uma planta G, com

comportamento (L(G) e Lm(G)) e estrutura de controle Γ, definidos sobre o conjunto de

eventos Σ e a linguagem K ⊆ L(G), K é dita ser controlável se:

 KGLuK ⊆∩Σ)((2.14)

No caso em que a linguagem K que especifica o comportamento desejado não é

controlável, é possível projetar uma aproximação de K, que é chamada de máxima linguagem

controlável contida em K, denotada por supC(K). O supervisor que implementa esta

linguagem é chamado supervisor não bloqueante e minimamente restritivo ou supervisor

ótimo, tal que Lm(S/G) = supC(K), (Ramadge e Wonham, 1989).

Considerando o exposto, as etapas de desenvolvimento do projeto são as seguintes:

1. Identificação do conjunto de subsistemas envolvidos no problema;

2. Construção de modelos de autômatos que representem os subsistemas

envolvidos;

3. Mapeamento dos eventos controláveis e não controláveis dos subsistemas;

4. Construção de modelos de autômatos que representem as especificações de

controle para cada subsistema envolvido;

17

5. Obtenção do modelo da planta G, fazendo-se a composição síncrona dos

autômatos dos subsistemas;

6. Obtenção do modelo da especificação E, fazendo-se a composição síncrona

dos autômatos das especificações individuais;

7. Cálculo da linguagem K, ou seja, a linguagem da planta que satisfaz a

especificação, através da composição síncrona de G e E;

8. Cálculo da máxima linguagem controlável (supC) contida na linguagem K;

No capítulo 4 será apresentado a síntese para o supervisor e estas etapas serão

utilizadas para o desenvolvimento de um caso prático. No entanto, quando um grande

número de subsistemas compõe a planta G e há igualmente um grande número de

especificações, ocorre um crescimento exponencial no número de estados do autômato final

devido à composição síncrona da planta G e da especificação E. Neste caso, a abordagem

monolítica pode ter um desempenho computacional desfavorável, acarretando na explosão de

estados (Queiroz, 2004).

Na seqüência será apresentada a abordagem modular local.

2.5 Abordagem Modular Local

Em (Queiroz, 2000) e (Queiroz e Cury, 2000a, 2000b, 2000c e 2002a) é apresentada

uma extensão à teoria proposta por Ramadge e Wonham (1989), que permite explorar a

modularidade das especificações e da planta, de forma a diminuir a complexidade

computacional da síntese de supervisores. Esta extensão à teoria clássica foi denominada

abordagem de controle modular local (Queiroz, 2004).

Segundo os autores, o sistema físico deve ser decomposto em subsistemas. Estes

subsistemas devem ser modelados por autômatos que representem seu comportamento, por

exemplo, o autômato deve possuir informação de início de operação e fim de operação do

subsistema.

Assim, de acordo com cada especificação imposta pelo projetista, teremos uma

planta local, que consiste na composição síncrona dos subsistemas cujos eventos são comuns

a uma dada especificação (ou a mais de uma).

Nesta abordagem, o diferencial está no tratamento das especificações, onde se tem a

chamada especificação local, que consiste no sincronismo de uma especificação com a sua

planta local, ou seja, os subsistemas que têm eventos comuns com a especificação. Na Figura

2.7 é mostrada uma ilustração da metodologia usada para obtenção dos supervisores locais:

18

Figura 2.7 – I lustração da metodologia para obtenção dos Supervisores Locais

A ação de controle nesta abordagem é distribuída entre vários supervisores, aqui

chamados de supervisores locais, onde cada um deles representa a máxima linguagem

controlável para cada planta local. Desta forma, cada supervisor local coordena uma parte do

sistema global. A Figura 2.8 ilustra a estrutura de controle dos supervisores modulares locais.

Figura 2.8 – Estrutura de controle modular local

Conforme exposto, cada subsistema será representado por um autômato de estrutura

Gi = (Xi, Σi, fi, xoi, Xmi), onde i ∈ I = { 1,....,n} , e n é o número de subsistemas.

Cada especificação é representada por um autômato Ei e definida, respectivamente,

em subconjuntos de eventos Σi ⊆ Σ para i ∈ I = { 1,....,m} , onde m é o número de

especificações.

Desta forma, a composição síncrona dos subsistemas cujo comportamento é

restringido por uma determinada especificação resulta em uma planta chamada de planta

local, denotada por Glocalj, e j = 1...m. Assim, o comportamento desejado pode ser expresso

19

por uma linguagem alvo denotado por K localj = Ei||Lm(Glocalj). A partir disso, calculam-se as

máximas linguagens controláveis locais SupC(K localj, Glocalj), e j = 1...m. Com este

procedimento é possível realizar a síntese de um supervisor local para cada uma das

especificações definidas no projeto. A representação destes supervisores locais é dada por SLi,

onde i ∈ I = { 1,....,m} e m é o número de supervisores locais.

Conforme demonstrado por Queiroz e Cury (2000a, 2000b) em seu Teorema 1, se o

conjunto { }mjGKSupC jlocaljlocal1),,(,, = for localmente modular, então,

)G ,SupC(K|| G) ,SupC(K jloc,jlocal,
m

1jglobal == , ou seja, caso seja verificada a modularidade local

do conjunto de supervisores locais, é assegurado que a ação conjunta de todos os supervisores

é não bloqueante e que este procedimento não resulta em perda de desempenho em relação ao

controle monolítico.

De acordo com Queiroz (2000), a sistematização da aplicação do controle modular

local é implementada nas seguintes etapas:

1. Identificação do conjunto de subsistemas envolvidos no problema;

2. Construção de autômatos que representem os subsistemas envolvidos;

3. Obtenção da composição síncrona dos subsistemas que apresentem eventos

comuns;

4. Construção do modelo de cada especificação isoladamente, considerando apenas

os eventos relevantes;

5. Obtenção da planta local para cada especificação compondo-se os subsistemas que

possuem eventos em comum com a especificação em questão;

6. Cálculo da linguagem alvo para cada planta local, através do produto síncrono da

planta local com sua respectiva especificação;

7. Cálculo da máxima linguagem controlável contida em cada linguagem alvo;

8. Verificar a modularidade local (não conflito) das linguagens resultantes;

9. Se forem modulares, implementar um supervisor local para cada linguagem

controlável;

10. Se não forem modulares, resolver o conflito. Algumas alternativas de solução são

propostas detalhadamente por (Queiroz, 2004).

O teste da modularidade (não conflito) pode ser feito através da composição síncrona

de todos os autômatos que representam as máximas linguagens controláveis (supervisores

modulares locais) obtidas no passo 7. Caso o autômato resultante desta composição síncrona

20

seja Trim1, os supervisores são modulares entre si. Porém, conforme destacado por Queiroz

(2000), a complexidade do teste da modularidade local, por exigir a composição de todos os

supervisores locais, acaba crescendo exponencialmente com o número de especificações e

subsistemas envolvidos, visto que o problema de conflito é um problema global que ocorre

pela interação de todos os supervisores com toda a planta. O autor ainda aponta para a

necessidade do desenvolvimento de métodos mais eficientes para o teste, tais como a

verificação de condições da estrutura da planta que garantam a modularidade.

2.6 Conclusões

Neste capítulo foram apresentados os formalismos matemáticos necessários para o

entendimento da TCS, abordando a classe de Sistemas a Eventos Discretos e suas formas de

representação por linguagens e autômatos. Foram apresentadas as duas abordagens utilizadas

neste trabalho, a abordagem Monolítica proposta por Ramadge e Wonham (1989) e a

extensão desta teoria, a abordagem Modular Local, proposta por Queiroz e Cury (2000).

Também foram vistas as etapas para o cálculo do supervisor monolítico e modular local.

No Capítulo 4 as etapas descritas anteriormente serão utilizadas para realização da

síntese monolítica e modular local de supervisores para uma célula flexível de manufatura

didática, a qual será descrita no Capítulo 3.

1 O autômato é dito Trim quando tem somente componentes acessíveis e co-acessíveis.

21

3 A INTEGRAÇÃO DOS EQUIPAMENTOS DA CÉLULA
FLEXÍVEL DE MANUFATURA DIDÁTICA

O presente capítulo tem por objetivo apresentar os equipamentos utilizados para a

integração da célula flexível de manufatura didática apresentada neste trabalho. São descritos

os equipamentos que fazem parte da célula, suas características técnicas e como é feita a

adequação dos sinais elétricos dos controladores dos robôs com o CLP, através de um módulo

de interface desenvolvido especificamente para essa finalidade. Neste capítulo são descritas

também as rotinas de programação dos robôs didáticos utilizados na célula, destinados a fazer

o transporte das peças entre os dispositivos que compõem a célula de manufatura didática.

3.1 Descr ição dos equipamentos

A célula flexível de manufatura didática apresentada neste trabalho é composta pelos

seguintes equipamentos (ver Figura 3.1):

• 2 Robôs Eshed Robotech Scorbot ER4PC;

• 1 Mesa giratória Intelitek (Rotary Table);

• 1 Esteira Intelitek (Conveyor ASSV);

• 1 Mesa de experimentos Intelitek (Experiment Table);

• 1 Estação de teste (Sensor fotoelétrico Sense tipo Dark on / Dark light).

Figura 3.1 - Equipamentos que compõem a célula flexível de manufatura.

A seguir apresenta-se uma descrição dos dispositivos utilizados e das adaptações

feitas para a sua integração na célula a ser controlada através de um Controlador Lógico

Programável (CLP). Maiores informações sobre o hardware e a programação do CLP podem

22

ser obtidas consultando-se (Castrucci e Moraes, 2007), (Silveira e Santos, 1998) e (Siemens,

2001, 2002a, 2002b, 2002c).

Os Robôs Scorbot ER4pc são robôs didáticos de 5 graus de liberdade (Robotec,

1982a). São robôs desenvolvidos com as mesmas características de um robô industrial, porém

sua estrutura permite a observação das engrenagens e mecanismos de movimentação. O

controle de cada robô é feito por um controlador dedicado e sua programação é feita

utilizando-se instruções padronizadas na linguagem de programação do equipamento. Cada

controlador Scorbot ER4pc possui 8 entradas digitais e 4 entradas analógicas em tensão de 0

a 10V e resolução de 8 bits. O controlador possui também 8 saídas digitais, sendo 4 saídas a

relés, 4 saídas transistorizadas e mais duas saídas analógicas em tensão de 0 a 10V e

resolução de 8 bits. Na Figura 3.2 tem-se o Robô e seu controlador.

Figura 3.2 – Robô e seu controlador

A mesa giratória Intelitek (Figura 3.3) tem a capacidade de girar nos sentidos horário

e anti-horário e o motor que provoca seu giro tem alimentação de 24 V. Assim, a velocidade

do giro é controlada pelo valor da tensão aplicada ao motor e o sentido de giro pela polaridade

da tensão aplicada. Muito embora originalmente o ângulo de giro da mesa fosse controlado

por intermédio do controlador do robô com auxílio de um encoder, optou-se por fazer o seu

controle através do CLP. Assim, no intuito de definir um ângulo de giro para a mesa, fixaram-

se quatro marcadores de metal (arruelas) sob a sua base de forma a indicar as quatro posições

nas quais a mesa deve parar o giro. Um sensor indutivo (alcance de 5mm) conectado a uma

entrada do CLP é usado para detectar (sem contato direto) a passagem dos marcadores.

23

Figura 3.3 – Mesa Giratór ia

De forma semelhante, a velocidade e o sentido de giro da esteira Intelitek

(alimentação de 10 a 30 V) pode ser modificada de acordo com o valor e a polaridade da

tensão aplicada ao motor responsável pelo seu funcionamento. Um sensor fotoelétrico fixado

na lateral da esteira é conectado ao CLP para indicar a presença de peça sobre a mesma,

conforme a Figura 3.4.

Figura 3.4 – Esteira e Sensor

A mesa de experimentos Intelitek (Figura 3.5) possui 4 posições nas quais existem

chaves tipo fim de curso que indicam a presença de peças. Assim, esta mesa pode ser usada

como um armazém de peças, por exemplo. A lâmpada e a sirene podem ser utilizadas como

elementos de sinalização.

Figura 3.5 – Mesa de Exper imentos

A estação de teste (Figura 3.6) consiste em um sensor fotoelétrico tipo Dark on /

Dark light, que pode identificar a presença (ou ausência) de luz. Este sensor é utilizado para

simular o teste de qualidade das peças, conforme explicado mais adiante.

24

Figura 3.6 – Sensor de teste

Como elemento de controle da célula é utilizado um CLP Siemens da família S7-

300, CPU modelo 312 IFM, cujas características básicas são: memória de trabalho de 6kB, 10

entradas digitais e 6 saídas digitais integradas e comunicação com o computador via

conversor RS232/RS485 padrão MPI (protocolo de comunicação Siemens). Maiores detalhes

sobre este equipamento e suas características técnicas encontram-se no manual do fabricante

(Siemens, 2001, 2002b). Na Figura 3.7 é mostrado o CLP utilizado no trabalho.

Figura 3.7 – CLP Siemens S7-300

Além dos equipamentos descritos anteriormente, os seguintes dispositivos foram

utilizados na célula: uma interface para adequação dos sinais dos controladores dos robôs e do

CLP, que será detalhada na Seção 3.2, 2 computadores Pentium II com 32MB de memória

RAM, que são usados para realizar a execução do software de programação dos controladores

dos robôs, além do software Simatic S7 para a programação do CLP. Maiores detalhes sobre o

software de programação deste CLP encontram-se no manual do fabricante (Siemens, 2002a,

2002c).

25

3.2 Módulo de inter face e Integração dos equipamentos

Os sinais dos sensores e atuadores dos equipamentos da célula são interligados,

respectivamente, ao módulo de entradas e saídas digitais do CLP, por meio do qual é feito o

controle da seqüência de operação de cada dispositivo. Entretanto, as rotinas de execução das

tarefas dos robôs são executadas em controladores individuais, dedicados para cada robô.

Assim, para que os robôs sejam efetivamente integrados à célula de manufatura, é desejável

que se possa comandá-los através do elemento de controle da célula, ou seja, através do CLP.

Desta forma, através do CLP é possível comandar (disparar) a execução de tarefas pré-

programadas dos robôs, mas o controle efetivo de cada junta do robô fica a cargo do

controlador dedicado.

Uma vez que os controladores dos robôs trabalham com lógica negativa (NPN) e o

CLP trabalha com lógica positiva (PNP), foi necessário desenvolver uma interface para

realizar a conexão dos controladores dos robôs com o CLP. A interface confeccionada em

placa de circuito impresso e é composta de 6 relés (24Vcc / contato reversível de 1A) e uma

fonte DC 12V/2A (Figura 3.8).

Figura 3.8 – Inter face de sinais

 O diagrama de blocos apresentado na Figura 3.9 ilustra o uso da interface entre o

CLP e os controladores dos robôs. Na Figura 3.10 detalha-se a interligação do CLP com o

controlador do robô. Três sinais de saída do CLP (24V) são interligados a relés da interface de

sinais. O contato normalmente aberto desses relés realimenta a referência de sinal (0V) dos

controladores dos robôs, ativando assim a rotina correspondente na programação de cada

robô.

Uma vez que a saída do CLP tem uma capacidade de corrente de apenas 500mA,

utilizou-se uma fonte auxiliar de 12V (cuja corrente de saída é de 2A) para realizar o

acionamento dos motores da esteira e da mesa giratória.

26

Figura 3.9 - Inter face CLP – Entradas e Saídas da Célula

Figura 3.10 - Acionamento do controlador do robô pelo CLP

Desta forma, conforme mostrado na Figura 3.11, o sinal de saída do CLP (24V)

responsável pela ativação do motor da esteira é interligado ao relé na interface de sinais, cujo

contato normalmente aberto alimenta o motor da esteira com a tensão da fonte auxiliar

(12V/2A).

Figura 3.11 - Acionamento do motor da esteira pelo CLP

27

No intuito de possibilitar que o CLP receba a sinalização de final de operação dos

robôs, foi necessário ainda interligar os sinais de saída dos controladores dos robôs ao CLP.

Para isso, a alimentação do CLP (24V) foi ligada diretamente ao contato do relé de saída do

controlador do robô, conforme a Figura 3.12.

Figura 3.12 - Ligação da saída do controlador do robô com o CLP

No total foram utilizados seis relés na interface de sinais, dois para os acionamentos

do motor da esteira e da mesa giratória, e quatro para a conexão dos sinais de saída do CLP às

entradas dos controladores. Na Figura 3.13 mostra-se a interface completa e todas as

conexões.

Figura 3.13 - Esquema de ligações da inter face de sinais

28

3.3 Programação das Rotinas dos Robôs

A programação dos robôs é feita no software SCORBASEpro (Robotec, 1982b),

através do qual são definidas as rotinas de execução de movimentos de acordo com o

modelamento feito no projeto. Na Seção 4.1 será detalhada toda a seqüência de

funcionamento dos robôs na célula. Assim, cada robô terá tarefas a executar, como por

exemplo, o transporte de uma peça da esteira de entrada até a mesa giratória. Para que essa

rotina de transporte de peça tenha início, é necessário um comando do controlador (CLP), que

ativa a rotina de execução. Além da programação da trajetória do robô, é preciso que o

mesmo envie um sinal para o controlador informando que finalizou a tarefa (retorno para a

posição inicial). Estes comandos e definição de movimentos serão explicados utilizando-se os

programa desenvolvidos para os Robôs 1 e 2 da célula, onde cada comando está comentado

com duas barras, por exemplo, “ // Início da rotina” . Assim, conforme a seqüência de

programação do Robô 1, quando o controlador recebe um sinal do CLP, esse processamento é

feito na linha 2 do programa:

1: START: // Início da rotina

2: I f I nput 1 on j ump t o ESTEI RA // Se I1=1, executa rotina ESTEIRA

3: Jump t o START // Se I1=0, retorna para rotina START

4: ESTEI RA: // Seqüência de movimentação

5: Go t o Posi t i on 2 f ast // Vai para Posição 2

6: Open Gr i pper // Abre a garra

7: Go t o Posi t i on 3 f ast // Vai para Posição 3

8: Cl ose Gr i pper // Fecha a garra

9: Go t o Posi t i on 2 f ast // Vai para Posição 3

10: Go t o Posi t i on 1 f ast // Vai para Posição 1

11: Go t o Posi t i on 5 f ast // Vai para Posição 5

12: Go t o Posi t i on 6 f ast // Vai para Posição 6

13: Open Gr i pper // Abre a garra

14: Go t o Posi t i on 5 f ast // Vai para Posição 5

15: Cl ose Gr i pper // Fecha a garra

16: Go t o Posi t i on 1 speed 7 // Vai para Posição 1

17: Tur n on out put 1 // Ativa a saída 1 do controlador

18: Wai t 10 (10 t hs of seconds) // Aguarda 1 segundo

19: Tur n of f out put 1 // Desliga a saída 1 do controlador

20: Jump t o START // Retorna para a linha 1 do programa

29

Na linha 17 do programa é possível observar como o controlador do robô se

comunica com o CLP ao final da rotina de execução, desta forma, um sinal é enviado ao CLP

através do acionamento da saída 1 do controlador do robô, informando que a tarefa foi

concluída.

Na linha 20 do programa ocorre o retorno do programa para a linha 1, onde é feita

novamente a verificação do sinal de entrada do controlador para que a rotina seja executada se

um novo sinal do CLP for recebido pelo controlador.

O fluxograma que mostra a seqüência de funcionamento da rotina do robô 1 pode ser

visto na Figura 3.14:

Figura 3.14 - Fluxograma da rotina do robô 1

Este fluxograma indica que a partir da posição inicial do robô, também chamada

home, é possível a seqüência de movimentos, desde que a entrada 1 (I1) seja ativada.

Conforme já descrito, o CLP é responsável pela ativação desta entrada. Ao final da seqüência

programada o robô retorna para a posição home e envia um sinal para o CLP.

Já para a programação do Robô 2 foi preciso definir duas rotinas de movimentação,

chamadas de REJEITO e SAÍDA. Estas duas rotinas são responsáveis por transportar a peça

para uma área de retrabalho ou para uma área de retirada da peça da célula.

A programação do Robô 2 é apresentada na seqüência. Observa-se que para este robô

são definidas duas entradas, cada uma responsável por iniciar uma das rotinas programadas:

30

1: START: // Início da rotina

2: I f I nput 1 on j ump t o REJEI TO // Se I1=1, executa rotina REJEITO

3: I f I nput 2 on j ump t o SAÍ DA // Se I2=1, executa rotina SAÍDA

4: Jump t o START // Senão, retorna para rotina START

5: REJEI TO: // Seqüência de REJEITO

6: Go t o Posi t i on 1 f ast

7: Go t o Posi t i on 2 f ast

8: Open Gr i pper

9: Go t o Posi t i on 3 f ast

10: Cl ose Gr i pper

11: Go t o Posi t i on 2 f ast

12: Go t o Posi t i on 1 f ast

13: Go t o Posi t i on 7 f ast

14: Go t o Posi t i on 8 f ast

15: Open Gr i pper

16: Go t o Posi t i on 7 f ast

17: Cl ose Gr i pper

18: Go t o Posi t i on 1 f ast

19: Tur n on out put 1

20: Wai T 10 (10 t hs of seconds)

21: Tur n of f out put 1

22: Jump t o START

23: SAÍ DA: // Seqüência de SAÍDA

24: Go t o Posi t i on 1 f ast

25: Go t o Posi t i on 2 f ast

26: Open Gr i pper

27: Go t o Posi t i on 3 f ast

28: Cl ose Gr i pper

29: Go t o Posi t i on 2 f ast

30: Go t o Posi t i on 1 f ast

31: Go t o Posi t i on 9 f ast

32: Go t o Posi t i on 10 f ast

33: Open Gr i pper

34: Go t o Posi t i on 9 f ast

35: Cl ose Gr i pper

36: Go t o Posi t i on 1 f ast

37: Tur n on out put 1

38: Wai T 10 (10 t hs of seconds)

39: Tur n of f out put 1

40: Jump t o START // Retorna para a linha 1 do programa

31

O fluxograma que mostra a seqüência de funcionamento da rotina do robô 1 pode ser

visto na Figura 3.15 - Fluxograma da rotina do robô Figura 3.15

Figura 3.15 - Fluxograma da rotina do robô 2

Este fluxograma indica que a partir da posição inicial do robô 2 (home), é possível a

seqüência de movimentos REJEITO ou SAÍDA, desde que as entradas I1 ou I2 sejam

ativadas. Fisicamente não é possível ativar as duas entradas ao mesmo tempo, e conforme já

descrito, o CLP é responsável pela ativação destas entradas. Desta forma, o robô 2 precisa

finalizar uma rotina para iniciar a outra, se for o caso. Ao final de qualquer uma das

seqüências programadas, o robô retorna para a posição home e envia um sinal para o CLP.

Este sinal independe de qual rotina foi executada, pois a posição home é a mesma para

qualquer uma das seqüências programadas.

3.4 Conclusões

Neste capítulo foram apresentados os equipamentos utilizados para a integração da

célula flexível de manufatura didática utilizada neste trabalho e suas características técnicas.

Foi visto ainda como é feita a adequação dos sinais elétricos do CLP com os controladores

dos robôs, utilizando-se o módulo de interface. Neste capítulo são descritas também as rotinas

de programação dos robôs didáticos utilizados na célula.

No capítulo seguinte será visto como realizar a síntese monolítica e modular local de

supervisores para a célula flexível de manufatura didática apresentada anteriormente.

32

4 SÍNTESE DE SUPERVISORES PARA A CÉLULA DE
MANUFATURA DIDÁTICA

A modelagem da célula e a resolução de problemas de controle são feitos seguindo a

Teoria de Controle Supervisório de Sistemas a Eventos Discretos (Ramadge e Wonham,

1989). Nesta abordagem o controle é feito por um autômato denominado de supervisor, o qual

restringe o comportamento do sistema físico, satisfazendo a um conjunto de especificações. O

alfabeto de eventos que compõe os modelos individuais de cada dispositivo é dividido em

dois tipos de eventos: os eventos controláveis, cuja ocorrência pode ser modificada pela ação

de controle, como por exemplo, o início de uma atividade ou a parada de uma esteira, e os

eventos não controláveis, cuja ocorrência não pode ser desabilitada pela ação de controle,

como por exemplo, a ativação de um sensor (Cury, 2001). A metodologia básica para a

síntese de um supervisor ótimo (não bloqueante e minimamente restritivo) que resolve o

problema foi inicialmente proposta por Ramadge e Wonham (1989), e se baseia em três

passos principais. Estes passos serão desenvolvidos na seqüência deste capítulo, com base nos

conceitos apresentados no Capítulo 2. São eles:

1. Modelagem da planta;

2. Modelagem das especificações;

3. Síntese do(s) supervisor(es).

Cabe ressaltar que na obtenção do modelo para a planta foram introduzidas algumas

restrições físicas, conforme proposto por Moraes e Leal (2006), que foram modeladas devido

aos modelos individuais não possuírem informações importantes do sistema global. Estas

restrições serão detalhadas na Seção 4.3.

Neste capítulo (Seção 4.6) é apresentada ainda uma extensão à Teoria de Controle

Supervisório, chamada de Abordagem Modular Local (Queiroz e Cury, 2000), na qual o

problema de modelagem e controle é abordado de forma modular, ou seja, a planta é

‘dividida’ em função da modularidade das especificações de controle.

4.1 Um Problema Motivador

Como simplificação para a resolução do problema proposto neste trabalho, adota-se

apenas duas posições para a mesa giratória, onde na primeira posição tem-se a entrada da

peça, e na segunda posição tem-se o teste e a retirada da peça da mesa giratória. Conforme a

Figura 4.1, a seqüência de funcionamento consiste em:

33

• Transporte de peça pela esteira;

• Parada da peça em frente ao sensor (no final da esteira)

• Robô 1 transporta a peça para a posição P1 da mesa giratória;

• A peça é movimentada para a posição P2 na mesa giratória;

• O sensor realiza o teste (T);

• Robô 2 retira a peça de acordo com o resultado do teste:

• Peça boa é retirada para ‘área de depósito de peças prontas’ ;

• Peça ruim é retirada para a mesa de rejeito;

Figura 4.1 - Planta baixa da célula.

 A Tabela 4-1 indica o evento associado a cada dispositivo da célula, o endereço

físico do sinal no CLP (entradas e saídas) e a descrição do evento. Desta forma, os eventos

controláveis são associados às saídas do CLP, que serão ativadas ou desativadas conforme a

seqüência definida pelo supervisor (ação de controle). Já os eventos não controláveis são

associados às entradas do CLP, uma vez que dependem unicamente do estado dos dispositivos

da célula, não podendo ser impedidos de ocorrer pelo supervisor.

Tabela 4-1 - Eventos dos dispositivos da célula.

DISPOSITIVO EVENTO TIPO DE SINAL DESCRIÇÃO

E_liga Saída Q124.0 Início de operação da esteira. Esteira

E_desl Saída Q124.0 Fim de operação da esteira.

S_liga Entrada I124.0 Chegada de peça no final da esteira. Sensor da esteira

S_desl Entrada I124.0 Retirada de peça no final da esteira.

I_giro Saída Q124.1 Início de operação da mesa giratória. Mesa giratória

F_giro Entrada I 124.2 Fim de operação da mesa giratória.

34

T_M Saída Q124.2 Início de operação do robô 1. Robô 1

F_rb1 Entrada I125.0 Fim de operação do robô 1.

I_teste Saída Q124.4 Início de operação da estação de teste.

T_OK Entrada I124.4 Resultado do teste para peça boa.

Estação de teste

T_NOK Entrada I124.4 Resultado do teste para peça ruim.

T_R Saída Q124.3 Início de operação do robô 2, transporte de peça ruim.

T_S Saída Q124.5 Início de operação do robô 2, transporte de peça boa.

Robô 2

F_rb2 Entrada I125.1 Fim de operação do robô 2.

4.2 Modelos dos dispositivos da planta

Para a nomenclatura dos eventos na modelagem dos autômatos de cada dispositivo

da célula, foi utilizada a Tabela 4-1 como referência para os eventos controláveis e não

controláveis. Nos modelos dos autômatos apresentados, os círculos representam os estados do

dispositivo e os círculos duplos representam estados onde a tarefa é completada. Os arcos

entre os estados indicam as transições ou eventos. Arcos seccionados por uma pequena linha

transversal indicam que o evento é controlável (Cury, 2001).

O funcionamento da esteira pode ser modelado pelo autômato G1, mostrado na

Figura 4.2, onde o estado inicial “0” representa a esteira desligada e o estado “1” representa a

esteira ligada. Nota-se aqui que os eventos E_liga e E_desl são eventos controláveis, ou seja,

são gerados pela ação de controle do supervisor.

Figura 4.2 - Autômato para a esteira.

A Figura 4.3 ilustra o autômato G2, que modela o sensor colocado no final da esteira.

Os eventos S_liga e S_desl correspondem a ativação e desativação do sensor provocados pela

presença e ausência de peça respectivamente. Sendo assim, estes eventos não são controlados

pelo supervisor.

Figura 4.3 - Autômato para o sensor .

35

O comportamento do robô 1 é modelado pelo autômato G3 da Figura 4.4. O evento

T_M inicia a rotina programada no controlador do robô que faz o transporte da peça da esteira

para a posição P1 da mesa giratória. O evento F_rb1 é gerado quando o CLP recebe a

informação de que o robô 1 finalizou a tarefa e está na posição inicial novamente.

Figura 4.4 - Autômato para o Robô 1.

A Figura 4.5 ilustra o autômato G4, que modela o funcionamento da mesa giratória.

O evento I_giro é gerado pela ação de controle, iniciando o movimento da mesa giratória, que

movimenta a peça da posição P1 para a posição P2. O evento F_giro corresponde a leitura do

sensor ativado pelos marcadores de metal posicionados na mesa giratória.

Figura 4.5 - Autômato para a mesa giratór ia.

O funcionamento da estação de teste pode ser modelado pelo autômato G5 da Figura

4.6, onde o evento I_teste habilita a estação de teste (neste caso, um sensor fotoelétrico) para

realizar o teste da peça. Os eventos T_OK e T_NOK indicam, respectivamente, se a peça foi

aprovada ou não, através da ativação ou não da saída deste sensor.

Figura 4.6 - Autômato para a estação de teste.

A Figura 4.7 ilustra o autômato G6, que modela o comportamento do robô 2. Os

eventos T_R e T_S são gerados em função do resultado do teste. Assim, T_R corresponde ao

transporte da peça pelo robô 2 para a estação de rejeito (no caso do T_NOK) e T_S

corresponde ao transporte da peça para a área de saída (no caso do T_OK). O evento F_rb2 é

36

gerado quando o CLP recebe a informação de que o robô 2 finalizou a tarefa e está na posição

inicial novamente.

Figura 4.7 - Autômato para o Robô 2.

4.3 Modelo das restr ições físicas da planta

Conforme já exposto no início deste capítulo, Moraes e Leal (2006) propõem a

modelagem de restrições físicas que aproximam o modelo da seqüência real, pois, ainda que

os modelos individuais descrevam o comportamento preciso de cada subsistema, estes

modelos não possuem algumas informações importantes sobre o aspecto construtivo do

sistema global. Por exemplo, se a esteira não estiver acionada, não ocorrerá o acionamento do

sensor posicionado ao final desta, não havendo desta forma a geração do evento

correspondente. É importante garantir que não haverá interferências do ser humano, tais como

passar a mão em frente ao sensor ou colocar/retirar uma peça manualmente. Assim, a restrição

física R1 mostrada na Figura 4.8, indica que o sensor da esteira só pode ser ativado quando a

esteira está ligada.

Figura 4.8 - Autômato para a restr ição R1.

A restrição física R2, na Figura 4.9, informa que uma vez ativado o sensor da esteira,

existe tempo hábil para (e é desejado) que a esteira seja desligada antes do sensor ser

desativado, caso contrário, a peça não pararia na frente do sensor.

37

Figura 4.9 - Autômato para a restr ição R2.

A restrição R3 (Figura 4.10) considera o fato de que a esteira será desligada na

ativação do sensor (R2) e de que assim a desativação deste sensor depende da ação do robô 1.

Desta forma, a desativação de tal sensor se dará após o início e antes do final de operação do

robô 1.

Figura 4.10 - Autômato para a restr ição R3

A restrição física R4 (Figura 4.11) informa que o sensor da esteira não pode ser

desativado se a esteira estiver desligada e o robô 1 estiver parado.

Figura 4.11 - Autômato para a restr ição R4.

38

4.4 Modelo das especificações

A Teoria proposta por Ramadge e Wonham (1989) prevê que a partir de uma

especificação que traduza a condição desejada para a operação do sistema, se possa chegar ao

supervisor para controlar o seu funcionamento, de acordo com a seqüência de eventos

desejada. Nesta seção são apresentadas as especificações que determinam como deve ser a

operação coordenada dos dispositivos para o problema proposto no início deste capítulo.

O autômato mostrado na Figura 4.12 representa a especificação 1 e indica que a

esteira pode ser ligada somente quando o sensor está desativado e pode ser desligada apenas

quando o sensor está ativado.

Figura 4.12 - Autômato para a Especificação 1.

O autômato mostrado na Figura 4.13 representa a especificação 2 e indica que o robô

2 executa o transporte da peça para o rejeito ou para a saída em função do resultado da

estação de teste.

Figura 4.13 - Autômato para a Especificação 2.

O autômato mostrado na Figura 4.14 representa a especificação 3 e impõe que a

mesa giratória inicie seu giro somente após o fim de operação do robô 1.

Figura 4.14 - Autômato para a Especificação 3

39

O autômato mostrado na Figura 4.15 representa a especificação 4 e indica que o robô

2 deve iniciar sua operação somente após o fim de giro da mesa. Além disso, a mesa só pode

girar novamente após o fim de operação do robô 2.

Figura 4.15 - Autômato para a Especificação 4.

O autômato mostrado na Figura 4.16 representa a especificação 5 e indica que o robô

1 só pode finalizar sua operação com a mesa em repouso. Esta especificação garante que o

robô 1 só colocará peças sobre a mesa quando esta estiver parada.

Figura 4.16 - Autômato para a Especificação 5.

O autômato mostrado na Figura 4.17 representa a especificação 6 e indica que a

estação de teste deve iniciar sua operação somente após o fim de giro da mesa. Além disso,

um novo giro na mesa não deve ser iniciado enquanto o teste não for finalizado.

Figura 4.17 - Autômato para a Especificação 6.

O autômato mostrado na Figura 4.18 representa a especificação 7 e indica que a

operação do robô 1 deve ser iniciada somente quando o sensor estiver ativado (quando houver

peça na frente do sensor).

Figura 4.18 - Autômato para a Especificação 7.

40

O autômato mostrado na Figura 4.19 representa a especificação 8 e indica que o robô

1 só deve iniciar sua operação se a esteira estiver desligada.

Figura 4.19 - Autômato para a Especificação 8.

O autômato mostrado na Figura 4.20 representa a especificação 9 e prioriza o início

de teste em detrimento ao início de transporte do robô 1.

Figura 4.20 - Autômato para a Especificação 9.

4.5 Síntese do Supervisor Monolítico

Concluídos os modelos dos dispositivos que compõem a planta, das restrições físicas

e das especificações de funcionamento, é preciso fazer a composição síncrona de todos estes

modelos (Cury, 2001). Para isso, foi utilizado o software Grail (Reiser et al., 2006). A

obtenção de um autômato que modela o comportamento global da planta livre é feita através

da composição síncrona dos autômatos dos dispositivos e das restrições físicas do sistema, ou

seja, G = G1 G6 R1 R4. Este autômato possui 128 estados e 728 transições e

representa o comportamento da planta em malha aberta (sem ação de controle). A

especificação global E é obtida fazendo-se a composição síncrona das especificações

individuais Ei, isto é, E = E1 E9. Determinou-se então, a linguagem alvo K, que é obtida

a partir da sincronização de G e E, fazendo-se K = G E. Por fim, calculou-se a máxima

linguagem controlável, denotada SupC(G,K). Assim, o autômato que reconhece SupC(G,K)

possui 73 estados e 158 transições e consiste no supervisor não bloqueante e minimamente

restritivo a ser implementado no CLP de forma a garantir o cumprimento das especificações

de controle. Na Figura 4.21 é mostrado o autômato do supervisor monolítico de 73 estados e

158 transições. Na Seção 5.1 é apresentada a implementação deste supervisor monolítico.

41

Figura 4.21 – Supervisor Monolítico de 73 estados e 158 transições

4.6 Síntese dos Supervisores Modulares Locais

Conforme apresentado no Capítulo 2, nesta abordagem a ação de controle é

distribuída entre vários autômatos denominados supervisores locais, onde cada um deles

42

representa a máxima linguagem controlável para cada planta local. Desta forma, cada

supervisor local coordena uma parte do sistema global.

De acordo com o exposto, na abordagem monolítica o sistema é analisado como um

todo e procura-se um autômato que represente todas as possíveis seqüências de eventos que

ele pode gerar e tarefas que pode completar. Como conseqüência, qualquer alteração/inclusão

de dispositivos ou especificação de controle requer que o supervisor seja gerado novamente.

Na extensão à TCS proposta por Queiroz e Cury (2000), o problema de modelagem e

controle é abordado de forma modular, ou seja, a planta é ‘dividida’ em função da

modularidade das especificações de controle. Esta abordagem permite que alterações somente

exigirão mudanças no modelo específico correspondente, e não no sistema como um todo.

A partir dos modelos dos dispositivos que compõem a planta e das especificações de

funcionamento vistos nas Seções 4.2 e 4.4, é preciso fazer a composição síncrona entre estes

modelos, conforme Queiroz e Cury (2000). Primeiramente, a composição síncrona foi feita

entre os autômatos dos dispositivos, de forma a se obter as plantas locais. Para a obtenção das

plantas locais, observou-se a ocorrência de eventos com o mesmo nome nos modelos

individuais dos dispositivos, que ocorressem também em alguma especificação. Conforme a

Figura 4.22, é possível observar que os eventos da especificação E1 aparecem nos

subsistemas G1 (Esteira) e G2 (Sensor). Desta forma, é realizada a composição síncrona entre

os autômatos dos subsistemas, dando origem à planta local GL1 e posteriormente é feita a

composição síncrona entre a planta local GL1 e a especificação E1, dando origem à

especificação local EL1. Este procedimento é feito para cada especificação do projeto que

tenha eventos comuns com os subsistemas correspondentes.

Figura 4.22 – Eventos comuns aos autômatos

43

Na Tabela 4-2 são apresentados todos os eventos comuns entre as especificações e os

subsistemas. Pode-se observar que as especificações E3 e E5 têm eventos comuns aos

autômatos G3 e G4, por esta razão, é feita primeiramente a composição síncrona entre as duas

especificações (E3||E5), chegando-se à especificação E35 e posteriormente é feita a

composição síncrona entre os subsistemas (G3||G4), o que resulta na planta local GL3. Este

fato é observado também para as especificações 7 e 8, que têm eventos comuns aos modelos

G1, G2 e G3. Assim, é feita também a composição síncrona entre as especificações (E7||E8),

que resulta na especificação E78 e entre os subsistemas (G1||G2||G3), chegando-se a planta

local GL6.

Tabela 4-2 – Eventos comuns entre modelos e especificações

G1 G2 G3 G4 G5 G6 GL

E_liga S_liga S_liga E_desl T_M F_rb1 I_giro F_giro I_teste T_OK T_NOK T_R T_S F_rb2

E1 X X X X GL1

E2 X X X X GL2

E3 X X GL3

E5 X X X GL3

E4 X X X X X GL4

E6 X X X X X GL5

E7 X X X GL6

E8 X X X GL6

E9 X X X GL7

As composições síncronas foram realizadas utilizado o software Grail (Reiser et al.,

2006), da seguinte forma:

GL1 = G1 G2
GL2 = G5 G6

GL3 = G3 G4

GL4 = G4 G6

GL5 = G4 G5

GL6 = G1 G2 G3

GL7 = G3 G4 G5

Na seqüência foi feita a composição síncrona das plantas locais com as

especificações da planta que continham eventos comuns, gerando as especificações locais, da

seguinte forma:

44

EL1 = GL1 E1

EL2 = GL2 E2

EL3 = GL3 E35 onde E35 = E3 || E5
EL4 = GL4 E4

EL6 = GL5 E6

EL7 = GL6 E78 onde E78 = E7 || E8

EL9 = GL7 E9

Por fim, calculou-se a máxima linguagem controlável para cada supervisor, denotada

SupC(GLi,ELi). Assim, chega-se aos supervisores locais não reduzidos que serão

implementados no CLP de forma a garantir o cumprimento das especificações de controle.

Cabe ressaltar que para o cálculo dos supervisores modulares locais não foram

utilizadas as restrições físicas, devido ao fato de que estas agregam eventos de vários

subsistemas físicos, o que acaba forçando a composição de praticamente todos os subsistemas

e comprometendo a modularidade da planta, inviabilizando, desta forma, o uso da abordagem

modular local.

Na Figura 4.23 são mostrados os supervisores modulares locais. Os números

indicados entre parêntesis são, respectivamente, os números de estados e de transições de cada

supervisor. Assim, SL1 (4,6), SL2 (8,12), SL35 (4,4), SL4 (4,5), SL6 (4,5), SL78 (8,21) e SL9

(12,32).

SL1: ESTEIRA e SENSOR

SL2: ROBÔ 2 e TESTE

45

SL35: ROBÔ 1 e MESA

SL4: MESA E ROBÔ 2

SL6: MESA e TESTE

SL78: ESTEIRA e SENSOR e ROBÔ 1

46

SL9: MESA e TESTE E ROBÔ 1

Figura 4.23 – Supervisores Modulares

Na seção 5.3 é apresentada a implementação dos supervisores modulares locais não

reduzidos para o problema apresentado no início deste capítulo.

Porém, antes da implementação, é necessário assegurar a modularidade local do

conjunto de supervisores locais, garantindo que a ação conjunta de todos os supervisores é

não bloqueante, conforme demonstrado em (Queiroz e Cury, 2000). A verificação da

modularidade local consiste em realizar a composição síncrona de todos os supervisores

locais da seguinte forma:

S = SL1||SL2||SL35||SL4||SL6||SL78||SL9

Após a composição síncrona verificou-se que o autômato resultante desta

composição é Trim, isto é, não tem estados bloqueantes. Assim, pode-se afirmar que os

supervisores locais são modulares entre si.

47

4.7 Conclusões

Neste capítulo foi apresentada a síntese de supervisores tendo por base um problema

motivador para a célula flexível de manufatura didática objeto deste trabalho. No processo de

síntese, foram seguidos os passos propostos por Ramadge e Wonham (1989). Foi adotada uma

seqüência de funcionamento e foram definidos os eventos que fazem parte do problema e sua

classe (controláveis e não controláveis). Na seqüência foi feito o modelamento dos

dispositivos, das especificações e das restrições físicas utilizando-se a teoria de autômatos.

Na etapa de síntese foram aplicadas as duas abordagens apresentadas no Capítulo 2.

Como resultado da síntese a partir da abordagem monolítica, obteve-se um supervisor não

bloqueante e minimamente restritivo, o qual coordena o sistema todo. A partir da aplicação da

abordagem modular local chegou-se a seis supervisores modulares locais, onde cada um

coordena uma parte do sistema. Para esta segunda abordagem, é necessário verificar se a ação

coordenada de todos os supervisores não gera bloqueio no sistema, para isso é feito o teste da

modularidade.

No capítulo seguinte é apresentada a implementação em CLP para o supervisor

monolítico e para os supervisores modulares locais obtidos anteriormente.

48

5 IMPLEMENTAÇÃO DOS SUPERVISORES NO CLP

Neste capítulo é apresentada primeiramente a proposta de implementação do

supervisor monolítico no CLP Siemens Step7-300, em linguagem LADDER, utilizando-se

uma estrutura dividida em blocos de programa. É mostrado também o software desenvolvido

para a geração automática de código do supervisor monolítico para o CLP utilizado. Na

seqüência do capítulo é apresentada a implementação dos supervisores modulares locais para

o mesmo CLP, utilizando-se também uma estrutura dividida em blocos de programa, o que

facilita, em ambos os casos, a programação, o entendimento e eventuais alterações no

programa do CLP.

5.1 Implementação do Supervisor Monolítico

A partir do processo de síntese do supervisor monolítico, apresentado na Seção 4.5, é

realizada a implementação em CLP. O CLP utilizado para a programação foi o Siemens da

família Step7_300, e a CPU 312IFM. Esta CPU possui 10 entradas e 06 saídas digitais, as

quais são interligadas à planta para a monitoração dos estados dos sensores e acionamento dos

dispositivos. A linguagem utilizada na programação do CLP foi a Diagrama de Contatos

(LADDER), por ser mais conhecida no meio industrial e de fácil edição e entendimento. Na

implementação aqui apresentada, quando da ocorrência de eventos não controláveis, variáveis

internas do CLP (flags) armazenam as informações até que elas sejam processadas. Desta

forma é assegurado que a informação não será perdida sem que tenha sido processada pelo

supervisor. A metodologia aqui utilizada difere daquela proposta por Fabian e Hellgren

(1998), pois estes utilizam a implementação com base na detecção de flancos positivos para

os eventos não controláveis. No trabalho de Queiroz et al. (2001), a implementação também

difere, pois naquele é utilizada a implementação modular local, onde existe a habilitação de

desabilitação de eventos em cada supervisor local.

Neste trabalho, propõe-se que a implementação do supervisor seja feita em quatro

blocos de programa, de forma a facilitar a organização:

• bloco de gerenciamento (OB1)
• bloco do supervisor (FC1)
• bloco dos eventos (FC2)
• bloco das saídas (FC3)

49

5.1.1 Programação do bloco OB1
O bloco OB1 é necessário no CLP utilizado, pois ele gerencia o ciclo do programa.

Em sua rotina de programação são definidos quais blocos de função (FC) serão executados,

conforme a Figura 5.1.

Figura 5.1 - Programação do bloco OB1 em LADDER.

5.1.2 Programação do bloco FC1- Supervisor
Na programação do bloco FC1 foi feita a implementação do supervisor monolítico.

Desta forma, cada estado do supervisor corresponde a uma memória interna do CLP, que é

ativada ou desativada de acordo com a seqüência de eventos que ocorre na planta e que é

reconhecida pelo supervisor. O supervisor é mostrado em parte na Figura 5.2, onde cada

estado foi nomeado no bloco de programação com o sufixo “S” . Assim, o estado “0” do

supervisor passou a ser simbolizado por “S0” na programação do CLP. Para que o supervisor

transite no autômato de “S0” para “S1” , é necessário a ocorrência do evento “E_liga” . Da

mesma forma, para transitar de “S1” para “S2” , é necessário a ocorrência do evento “S_liga” .

Figura 5.2 - Par te inicial do supervisor obtido.

Para uma melhor estruturação do programa do CLP, a geração de eventos

controláveis e não controláveis é feita no bloco FC2 e o acionamento das saídas é feito no

bloco FC3. Na seqüência descreve-se como deve ser realizada a programação do bloco FC1

em função do tipo dos eventos.

Conforme ilustrado na Figura 5.3, a partir do comando “ INÍCIO”, o supervisor ativa

o estado “S0” (Network 1). Neste estado, o supervisor fica aguardando a ocorrência do evento

50

E_liga (Network 2), que por ser um evento controlável, deve ser disparado pelo próprio

programa do CLP. Para tanto, é necessário que o motor da esteira tenha sido efetivamente

ligado, o que é feito no bloco FC3 (Figura 5.4 – Network 1). Assim, após a ativação da saída

do CLP que corresponde ao motor da esteira, a geração do evento “E_liga” é feita no bloco

FC2 (Figura 5.5 – Network 1). Desta forma, com a geração do evento “E_liga” , o supervisor

transita no autômato para o estado “S1” e fica aguardando a ocorrência do próximo evento da

seqüência definida pela lógica de controle.

Figura 5.3 - Programação do bloco FC1 em LADDER.

5.1.3 Programação do bloco FC3- Saídas
Neste bloco são definidas as ações do supervisor, de acordo com o estado definido no

bloco FC1. Assim, conforme visto, quando o supervisor estiver no estado “S0” , a saída que

ativa o motor da esteira será acionada, conforme a Figura 5.4 (Network 1). Este comando

envia um sinal para a saída física do CLP, conforme a Tabela 4-1, vista anteriormente.

51

 Figura 5.4 - Programação do bloco FC3 em LADDER.

5.1.4 Programação do bloco FC2- Eventos
Neste bloco são ativados ou desativados os eventos de acordo com sinais de entrada

e saída do CLP. Desta forma, ao ser ligado o motor da esteira, o evento E_liga será ativado,

indicando para o supervisor (bloco FC1) que o motor da esteira foi ativado. Ao mesmo tempo,

o evento que informava ao supervisor que o motor da esteira estava desligado é desativado,

conforme a Figura 5.5.

Uma particularização na implementação deste problema foi adotada quando da

ocorrência de dois eventos controláveis em um estado qualquer do supervisor. Na Figura 5.6

representamos uma seqüência iniciada no estado 6, que transita direto para o estado 11, pois

os dois eventos (E_liga e I_giro) são disparados. A programação do CLP quando da

ocorrência dos dois eventos controláveis a partir do estado 6 é feita conforme vemos na

Figura 5.7 e na Figura 5.8.

52

Figura 5.5 - Programação do bloco FC2 em LADDER.

Figura 5.6 - Disparo simultâneo de eventos controláveis.

53

Figura 5.7 - Disparo simultâneo de eventos no bloco FC3.

Figura 5.8 - Disparo simultâneo de eventos no bloco FC1.

Generalizando, caso ocorram dois ou mais eventos controláveis simultâneos em um

estado qualquer, o autômato transita direto para o estado no qual tais eventos convergem.

Nos estados do supervisor em que existem eventos controláveis e não controláveis,

dá-se prioridade no tratamento dos não controláveis, pois estes são espontaneamente gerados

em função da dinâmica da planta e devem ser tratados imediatamente após a sua ocorrência.

Na programação do CLP, essa prioridade é dada de acordo com a disposição das linhas do

programa, ou seja, como a execução do programa é cíclica, os eventos não controláveis são

executados nas linhas anteriores aos eventos controláveis. Por exemplo, no estado 29, os

eventos não controláveis T_OK e T_NOK têm prioridade de execução em relação ao evento

controlável T_M (Figura 5.9).

54

Figura 5.9 - Programação de eventos não controláveis (bloco FC1).

5.2 Ferramenta para geração de código monolítico (GPACLP)

Com o intuito de auxiliar na tarefa de transcrição do autômato obtido para o

supervisor no código de programação do CLP, foi desenvolvida uma ferramenta de geração

automática de código para o CLP. Esta ferramenta foi desenvolvida com o auxílio de dois

bolsistas do Programa de Educação Tutorial – PET Engenharia Elétrica.

O GPACLP é um programa (ou tradutor) no qual, a partir de um arquivo de formato

conhecido da Teoria de Controle Supervisório oriundo dos softwares Grail ou TCT, é possível

gerar o programa em STL (Statement List) para ser implementado diretamente em CLPs das

famílias S7-300/S7-400 da Siemens.

O programa gerado para o CLP é formado por um bloco de organização (OB1), três

blocos de função: Supervisor (FC1), Saídas (FC3), Eventos (FC2), conforme já descrito na

seção 5.1. Além disso, é gerada uma tabela de símbolos na qual são associados

automaticamente os nomes dos eventos às entradas/saídas do CLP e os estados do supervisor

às memórias internas. Na Figura 5.10 é apresentado um diagrama que elucida como é o

procedimento para a geração automática de código para o CLP.

55

Figura 5.10 – Geração automática de código para o CLP

Na seqüência apresenta-se um exemplo do uso do programa GPACLP para uma

parte do supervisor monolítico da célula em questão, que envolve apenas o sensor e a esteira

de entrada. Na Figura 5.11 é mostrado o autômato que representa o supervisor gerado a partir

do software Grail e a seu arquivo texto correspondente.

Figura 5.11 – Autômato do Supervisor e seu arquivo texto

A descrição do uso do GPACLP é feita com maiores detalhes no APÊNDICE A, o

qual consiste em um tutorial de utilização deste software.

56

O primeiro passo consiste em abrir o arquivo referente ao supervisor (arquivo no

formato do Grail ou do TCT). Ao abrir este arquivo a ferramenta mostra a listagem de todos

os eventos do supervisor no campo “Eventos” . Deve-se então selecionar o evento desejado e

configurá-lo de acordo com a sua natureza. Assim, na Figura 5.12 o evento ‘E_liga’ é

configurado como um evento controlável (ver Tabela 4-1) e no campo Evento no CLP é

informado qual será o símbolo gerado na tabela de símbolos do programa do CLP. No

exemplo, o símbolo ‘Q_Est’ será associado automaticamente à primeira saída do CLP, nesse

caso, a saída Q124.0. Além disso, o evento ‘E-liga’ refere-se a ligar a esteira e, portanto,

deve-se marcar o campo SET2 (instrução SET do CLP).

Ainda na Figura 5.12, o evento ‘E_desl’ é configurado também como um evento

controlável (ver Tabela 4-1) e no campo “Evento no CLP” é informado o mesmo símbolo

‘Q_Est’ . Porém, o evento ‘E-desl’ refere-se a desligar a esteira, portanto, deve-se marcar o

campo RESET3 (instrução RESET do CLP).

 Após essa configuração, é necessário ‘Salvar’ as alterações.

Figura 5.12 – Configuração dos Eventos Controláveis

O mesmo procedimento é adotado para os eventos não controláveis, porém, o

símbolo informado no campo “Evento no CLP” será associado a uma entrada do CLP. Para

2 A instrução SET ativa a saída correspondente do CLP.
3 A instrução RESET desativa a saída correspondente do CLP.

57

estes eventos (Figura 5.13) também é informado, de acordo com a Tabela 4-1, se o evento

será ativado (SET) ou desativado (RESET).

Figura 5.13 – Configuração dos Eventos não controláveis

Após terem sido configurados os eventos, é iniciado o procedimento para a geração

do programa do CLP. Deve-se selecionar então o “modelo do CLP” e qual o bloco a ser

gerado (ver Figura 5.14). Esta opção permite que no caso de haver alguma alteração das

especificações do projeto, apenas o bloco do supervisor seja gerado novamente, agilizando o

processo.

Figura 5.14 – Geração dos Blocos de Programa

58

Na Figura 5.15 são mostrados os blocos gerados e gravados na pasta correspondente

ao projeto. É importante que essa pasta seja criada para facilitar a importação desses arquivos

pelo software Simatic Manager, que é usado para a programação do CLP.

Figura 5.15 – Pasta de armazenamento dos blocos de programa

Por fim é gerada a tabela de símbolos do programa (Figura 5.16), a qual deverá ser

editada posteriormente para ajustar as entradas e saídas de acordo com os equipamentos

ligados ao CLP, pois o programa gera os endereços das entradas e saídas automaticamente a

partir a entrada I124.0 e da saída Q124.0. Como referência para esta edição usa-se a Tabela

4-1.

Figura 5.16 – Geração da tabela de símbolos

59

Na Figura 5.17 é mostrada a tabela de símbolos gerada e gravada na pasta

correspondente ao projeto.

Figura 5.17 – Pasta de armazenamento da tabela de símbolos

Após estes procedimentos, os arquivos gerados estão prontos para serem compilados

pelo programa do CLP. Na Figura 5.18 são mostrados os blocos gerados (Arquivos AWL) e a

tabela de símbolos (Arquivo SEQ). AWL é a extensão da linguagem do CLP e SEQ é a

extensão dos arquivos contendo os símbolos.

Figura 5.18 – Arquivos gerados pelo software GPACLP

Na seqüência, deve-se abrir o Simatic Manager (Siemens 2002a, 2002c) e importar

primeiramente a tabela de símbolos gerada (Figura 5.19):

60

Figura 5.19 – Tabela de símbolos gerada

Na Figura 5.20 é mostrada a tabela de símbolos importada para o Simatic Manager.

É importante lembrar que é necessário ajustar as entradas e saídas de acordo com os

equipamentos da planta (vide Tabela 4-1), ou seja, é preciso verificar se fisicamente a saída

Q124.0 do CLP está ligada ao motor da esteira e também se na entrada I124.0 está conectado

o sinal do sensor da esteira. Conforme já mencionado, o software atribui automaticamente as

entradas e saídas a partir do primeiro endereço e os ajustes têm que ser feitos posteriormente.

Figura 5.20 – Tabela de símbolos impor tada para o Simatic Manager

61

Após a importação dos símbolos, procede-se à criação dos blocos de programa, o que

é feito em duas etapas. Primeiramente são importados do programa de conversão os arquivos

gravados na pasta do projeto. Estes arquivos são gravados como ‘arquivos fonte’ no Simatic

Manager. Em uma segunda etapa, é necessário compilar estas informações dos arquivos fonte

para que o programa do CLP interprete o código gerado para a linguagem de programação

STL. Como a linguagem de implementação adotada neste trabalho foi o LADDER, após a

compilação deve-se proceder à mudança na representação de STL para LADDER, o que será

explicado mais adiante.

O procedimento para a criação do arquivo fonte a partir da pasta onde foram

armazenadas as informações do software de conversão GPACLP é ilustrado através das

figuras 5.21 e 5.22.

Figura 5.21 – Geração dos arquivos fonte

Figura 5.22 – Pasta de armazenamento do GPACLP

62

Na Figura 5.23 é mostrado o arquivo fonte FC1 após sua importação do programa

GPACLP.

Figura 5.23 – Arquivo fonte FC1 importado da Pasta do GPACLP

Deve-se repetir o processo para todos os blocos. Na Figura 5.24 são mostrados todos

os arquivos fonte importados. Estes arquivos fonte devem ser agora abertos e compilados.

Figura 5.24 – Arquivos fonte

Para o procedimento de compilação, deve-se abrir cada bloco e clicar no ícone

indicado pela seta da Figura 5.25. Como exemplo é mostrada a compilação do bloco FC1.

63

Figura 5.25 – Compilando o bloco FC1

Deve-se repetir o processo para os outros blocos e o último bloco a ser compilado

deverá ser o OB1, caso contrário ocorrerá erros em função da chamada dos outros blocos. Na

Figura 5.26 são mostrados os quatro blocos compilados.

Figura 5.26 – Blocos após a compilação

64

Para a visualização do programa que será implementado no CLP, é necessário abrir

cada bloco e alterar o modo de visualização de STL para LADDER (LAD). Conforme

indicado na Figura 5.27, deve-se selecionar a opção LAD no menu View.

Figura 5.27 – Alteração do modo de visualização de STL para LAD

O mesmo procedimento deve ser adotado para os outros blocos. Na Figura 5.28 são

mostrados os FC1, FC2 e FC3 em LADDER.

Figura 5.28 – Blocos FC1, FC2 e FC3 em LADDER

65

Por fim, o programa pode ser transferido para o CLP e testado o seu funcionamento

na célula. Para isso é necessário fazer o download dos blocos do programa (Siemens, 2002a,

2002c).

5.3 Implementação dos Supervisores Modulares Locais

A partir do processo de síntese dos supervisores modulares locais, apresentado na

seção 4.6, é realizada a implementação em CLP.

A metodologia aqui empregada é proposta no trabalho de Queiroz et al. (2001), onde

é abordada a implementação modular local. Porém, na proposta original os autores

implementam os supervisores modulares reduzidos, razão pela qual existe o bloco chamado

Sistema Produto, conforme ilustrado na Figura 5.29. Na implementação aqui proposta, não

foi utilizado o Sistema Produto, pois foram implementados os supervisores modulares não

reduzidos, não sendo necessário o bloco de Sistema Produto. A linha tracejada da Figura 5.29

mostra os blocos em questão.

Figura 5.29 – Modelo de implementação adaptado de Queiroz et al. (2001)

O CLP utilizado para a programação foi o mesmo descrito na seção 5.1 e a

linguagem de programação do CLP também foi a Diagrama de Contatos (LADDER). Para a

implementação, foram criados blocos de programa de forma a facilitar a organização:

• bloco de gerenciamento
• blocos dos supervisores locais
• blocos dos subsistemas físicos
• bloco das desabilitações

66

Esta estrutura de programação, dividida em blocos, é também conhecida como

programação estruturada (Siemens, 2002a, 2002c). O bloco de gerenciamento, chamado de

OB (Organization Block) é responsável pela execução dos blocos de função. Os blocos de

função, chamados de FC (Function), são responsáveis pela execução das rotinas de

programação. Na seqüência será explicada em detalhes a programação de cada bloco.

5.3.1 Programação do bloco OB1

O bloco OB1 é necessário no CLP utilizado, pois ele gerencia o ciclo do programa.

Em sua rotina de programação são definidos quais blocos de função (FCs) serão executados,

conforme a Figura 5.30. A ordem de execução destes blocos não afeta a coordenação do

sistema devido ao ciclo de varredura do CLP.

Observa-se na Network 1 da Figura 5.30 um comando chamado FIRST CHECK, cuja

função é inicializar todos os supervisores locais e os subsistemas no estado inicial, garantido

assim a sincronização da planta com os supervisores. Este comando é gerado a partir da

detecção de um flanco positivo da memória M127.7. Ao inicializar o CLP esta memória está

desligada e sua associação a um contato fechado na linha de programa (lógica inversora),

provoca uma borda de subida na memória M127.6 durante o primeiro ciclo de varredura do

CLP. A instrução (P) é responsável por detectar a mudança de estado da memória

M127.7.

67

Figura 5.30 - Programação do bloco OB1 em LADDER.

5.3.2 Programação dos blocos FCs - Supervisores locais
Na programação dos blocos dos supervisores modulares locais, cada estado do

supervisor corresponde a uma memória interna do CLP, que é ativada ou desativada de acordo

com a seqüência de eventos. Para o supervisor local 1, SL1, mostrado na Figura 5.31, onde

68

cada estado foi nomeado no bloco de programação com o prefixo “S1” seguido do número do

estado. Assim, o estado “0” do supervisor passou a ser simbolizado por “S1,0” na

programação do CLP (Figura 5.32).

ESTADO 0 = S1,0

ESTADO 1 = S1,1

ESTADO 2 = S1,2

ESTADO 3 = S1,3

Figura 5.31 - Supervisor local 1 – SL1.

Conforme ilustrado na Network 1da Figura 5.32, a partir do comando FIRST

CHECK, o supervisor local 1 ativa o estado “S1,0” . Neste estado o supervisor fica aguardando

a ocorrência do evento E_liga (Network 2) para mudar de estado (transitar no autômato). O

evento E_liga, que será ativado no subsistema G1 (Bloco FC7) é controlável, ou seja, uma

ação de controle (desabilitação) é associada a este evento. No bloco FC7 também é gerada a

ação de controle para acionar a saída que liga o motor da esteira. Quando essa saída é

acionada, ela ativa o evento E_liga, conforme visto na Figura 5.34, o que permite que o

supervisor 1 transite do estado “S1,0” para o “S1,1” .

69

Figura 5.32 - Programação do SL1 em LADDER.

5.3.3 Programação do blocos FCs - Subsistemas
Na programação dos blocos dos subsistemas, cada estado também corresponde a uma

memória interna do CLP, que é ativada ou desativada de acordo com a seqüência de eventos.

Para o subsistema G1, mostrado na Figura 5.33, cada estado foi nomeado no bloco de

programação com o sufixo “G1” seguido do número do estado. Assim, o estado “0” do

subsistema passou a ser simbolizado por “G1,0” na programação do CLP.

ESTADO 0 = G1,0

ESTADO 1 = G1,1

Figura 5.33 – Subsistema G1 – Esteira

70

Assim, conforme a Figura 5.34, para que o subsistema G1 evolua de estado e execute

a seqüência operacional para ligar a esteira (o que é realizado pelo comando SET para a saída

correspondente ao motor da esteira) é necessário que o evento correspondente à esta ação de

controle esteja habilitado, o que é processado no bloco das desabilitações (FC20). Na Figura

5.35 (Network 1), observa-se que quando o supervisor local 1 estiver no estado “S1,0” , a

desabilitação correspondente é o evento d_E_desl. Ainda na Figura 5.35, na Network 2,

observa-se que se o evento d_E_liga não é desabilitado, permitindo então que a esteira seja

ligada.

 Figura 5.34 - Programação do bloco FC7 em LADDER.

5.3.4 Programação do bloco de Desabilitações (FC20)
Neste bloco são desabilitados os eventos controláveis, de acordo com o estado dos

supervisores locais. Desta forma, a desabilitação do evento E_desl será ativada nos estados

dos supervisores SL1 E SL78, conforme a Figura 5.35.

No caso do subsistema G2, que modela o comportamento do sensor, seu

processamento é feito unicamente com base na geração dos eventos não controláveis a partir

do sinal do sensor. Desta forma, como não existe uma ação de controle do CLP sobre este

subsistema, não é feita nenhuma desabilitação para seus eventos. A programação do

subsistema G2 é feita no bloco FC8, conforme mostrado na Figura 5.36.

71

Figura 5.35 - Programação do bloco FC20 em LADDER.

Figura 5.36 – Programação do Bloco FC8 em LADDER

Após a finalização da programação dos blocos, é necessário transferir o programa

para o CLP (Siemens, 2002a, 2002c).

72

5.4 Conclusões

Neste capítulo foram apresentadas as duas propostas de implementação para o CLP

Siemens Step7-300, a implementação monolítica e a implementação modular local. Ambas

foram desenvolvidas em linguagem LADDER, utilizando-se uma estrutura dividida em blocos

de programa, o que facilita a programação.

Foi apresentado também o software desenvolvido para a geração automática de

código para o CLP utilizado. Este software ainda apresenta apenas a funcionalidade para o

supervisor monolítico.

Destaca-se ainda que a metodologia empregada neste trabalho para a implementação

dos supervisores modulares locais é proposta por Queiroz et al. (2001), tendo sido feita uma

adaptação do procedimento originalmente adotado pelos autores, por se tratar neste trabalho

de supervisores modulares locais não reduzidos.

73

6 CONCLUSÕES

O emprego da Teoria de Controle Supervisório e suas abordagens Monolítica e

Modular Local para a célula flexível de manufatura didática modelada a partir de autômatos e

sua implementação em linguagem de CLP mostrou-se bastante viável, uma vez que na

indústria a solução de problemas é feita com base na experiência do projetista, e geralmente,

não é utilizado um procedimento formal. Esse exemplo real serve de modelo para aplicação e

solução de novos problemas, visto que apresenta um procedimento sistemático, baseado na

TCS.

A organização do programa em blocos de funções permite que o programa seja melhor

visualizado, tornando mais simples a tarefa de reprogramação e/ou solução de problemas

durante o funcionamento da célula, uma vez que é possível identificar em que bloco ocorreu o

problema e solucioná-lo sem a necessidade de percorrer todo o programa do CLP.

Na implementação do supervisor monolítico verificou-se a necessidade de mais

memória para o CLP, questão que havia sido discutida ao longo do trabalho, uma vez que

ocorre a explosão de estados do supervisor. Apesar de o sistema modelado ser relativamente

pequeno, na abordagem monolítica percebeu-se que a composição de restrições físicas

agregava mais estados ao autômato final, ficando este mais próximo da seqüência real.

Outro aspecto relevante na implementação monolítica é quando da inclusão ou

alteração de subsistemas ou especificações no projeto do supervisor, pois há a necessidade de

refazer todo o projeto. Por esta razão, um dos objetivos alcançados foi o desenvolvimento do

software de geração automática de código, o qual torna a tarefa de implementação monolítica

bem mais rápida. Desta forma, para a solução do problema da célula de manufatura didática,

a metodologia monolítica de síntese e implementação apresentada neste trabalho mostrou-se

apropriada.

 Como alternativa para a implementação de supervisores em CLP, foram

implementados os supervisores modulares locais, cuja abordagem foi apresentada ao longo do

trabalho. A abordagem modular local permite explorar a modularidade dos subsistemas da

planta em função das especificações impostas pelo projetista. Dessa forma, cada supervisor

tem ação em uma parte da planta, não sendo necessário refazer todo o projeto quando for

alterada alguma especificação ou incluído um novo subsistema. Aplica-se o método de síntese

e gera-se um novo supervisor local, o qual será implementado no CLP juntamente com os que

já existiam. O uso das restrições físicas foi abolido na abordagem modular local, por afetar a

74

modularidade dos subsistemas, visto que as restrições físicas agregam eventos de várias

especificações diferentes.

Na abordagem modular local é preciso fazer o teste para a verificação da modularidade

dos supervisores, ou seja, a verificação de não bloqueio para a ação coordenada de todos os

supervisores. Os autores apontam o teste da modularidade e a existência de bloqueio como os

principais desafios para a aplicação da técnica para sistemas de grande porte, visto que o teste

tem complexidade computacional que cresce exponencialmente com o número de subsistemas

e especificações.

Quando comparada com a implementação do supervisor monolítico, a implementação

modular local economizou, no exemplo visto, em torno de 10% da capacidade de memória do

CLP, o que é significativo para sistemas de grande porte.

Com os resultados obtidos neste trabalho, verifica-se que a proposta inicial de se

utilizar uma metodologia formal para desenvolver de forma sistemática o programa de

controle a partir do modelo da planta e das especificações e sua posterior implementação em

CLP foi atingida de forma satisfatória. Com base nestes resultados, pretende-se disseminar o

uso da teoria de controle supervisório em células flexíveis de manufatura industriais.

Outro aspecto relevante a ser considerado com relação à célula flexível de manufatura

apresentada neste trabalho é a possibilidade de ser usada como uma importante ferramenta de

ensino em diversas áreas das engenharias. Pode-se utilizá-la para discutir desde aspectos

técnicos específicos de determinadas áreas, como a programação de robôs e programação de

CLPs, até aspectos que envolvam conteúdos de diversas disciplinas.

Além disso, o uso da célula possibilita que as disciplinas sejam desenvolvidas na

forma de projetos, nos quais os alunos devem trabalhar em equipe de forma a resolver

problemas com os quais possivelmente se defrontarão na sua futura vida profissional. Através

desta metodologia, pode-se facilitar o desenvolvimento de habilidades importantes para a

formação de um bom profissional, tais como: capacidade de trabalho em equipe, habilidades

em gerenciamento de projetos e visão crítica.

Neste sentido, também o ensino de realidade virtual (Hounsell e Pimentel, 2003)

pode ser feito com auxílio da célula de manufatura didática proposta. Com a inclusão de

dispositivos de comunicação em rede (Ethernet, Profibus) será possível ainda a utilização da

célula para ensino e pesquisa na área de Manufatura Remota (Controle via Internet), Sistemas

Integrados de Manufatura, CAD/CAPP/CAM, viabilizando sua programação e supervisão

remotas (Álvares e Ferreira, 2003), além das disciplinas de Mecatrônica, Robótica,

75

Informática Industrial, Automação da Manufatura (automação de sistemas ou automação

industrial) e Sistemas Flexíveis de Manufatura, por exemplo.

6.1 Contr ibuições

Destacam-se como contribuições do presente trabalho:

• Integração dos equipamentos da célula de manufatura didática do Laboratório

de Robótica da UDESC – Joinville;

• Implementação de uma interface para os sinais dos equipamentos e do CLP;

• Proposição e resolução de um problema prático sobre a célula em questão;

• Implementação da TCS no CLP S7_300 da Siemens, utilizando uma estrutura

particionada em blocos de programa;

• Criação de um programa para conversão de código de autômatos para CLP;

• Estudos preliminares de integração da célula real com a RV;

• Publicação de trabalhos científicos divulgando a implementação de

supervisores monolíticos em CLP:

o CBA 2006 - Congresso Brasileiro de Automática (Curzel e Leal,

2006);

o COBENGE 2006 - Congresso Brasileiro de Ensino de Engenharia

(Curzel et al., 2006);

• Publicação de trabalhos científicos divulgando a integração da célula de

manufatura didática com a Realidade Virtual:

o SIECI 2007 - Simposium Iberoamericano de Educación, Cibernética e

Informática (Curzel et al. 2007a);

o ICECE 2007 – International Conference on Engineering and

Computer Education (Curzel et al. 2007b);

• Disseminação da aplicação da TCS junto à comunidade acadêmica;

• Elaboração de material tutorial sobre a implementação de supervisores em

CLP e sobre a geração automática de código;

• Submissão de artigos divulgando a implementação de supervisores modulares

locais em CLP:

o CBA 2008 - Congresso Brasileiro de Automática;

o INDUSCON 2008 – Conferência Internacional de Aplicações

Industriais.

76

6.2 Trabalhos Futuros

Possibilidades de desenvolvimento para futuros trabalhos utilizando a célula de

manufatura didática:

• Integração de novos dispositivos (subsistemas) na célula, tais como: sensores

para identificação de cores, sistema de visão artificial, dispositivos atuadores

na mesa giratória e a inclusão do Robô ABB existente no Laboratório de

Robótica da UDESC – Joinville;

• Expansão da quantidade de Entradas e Saídas digitais no CLP, de forma a

permitir que os novos dispositivos sejam conectados;

• Expansão da memória do CLP, permitindo a implementação de supervisores

com maior número de estados;

• Verificação da necessidade de criação de novas interfaces para sinais do CLP;

• Implementação da estrutura de controle distribuída (múltiplos CLPs), onde

um novo CLP será responsável pela comunicação no nível supervisório e

outros CLPs serão responsáveis pelo controle da célula (Vieira, 2007);

• Implementação de uma estrutura de rede de comunicação industrial (Profibus

ou Ethernet);

• Implementação de supervisores modulares locais reduzidos (Queiroz, 2004);

• Integração com a Realidade Virtual permitindo a operação virtual da célula,

de forma que a programação possa ser transferida para a célula virtual,

agilizando o processo de testes e verificação;

• Uso da célula para ensino e treinamento com o auxílio da Realidade Virtual,

onde problemas como colisão e bloqueio podem ser identificados e corrigidos

sem danificar os dispositivos reais;

• Utilização de outros softwares de controle, tais como LabView, com placas

acopladas para entrada e saída dos sinais da célula e robôs;

• Utilização de software Supervisório para a monitoração e controle da célula,

como o Elipse E3, por exemplo;

• Implementação de especificações de segurança (modo manual e automático)

para a célula (Vieira, 2007);

• Implementação do(s) supervisor(es) em Microcontroladores;

77

REFERÊNCIAS

ÁLVARES, A.J.; FERREIRA, J.C.E., Metodologia para Implantação de Laboratór ios
Remotos Via Internet na Área de Automação da Manufatura, Anais do 2o Congresso
Brasileiro de Engenharia de Fabricação (COBEF), Uberlândia, MG, 18 a 21 de maio, 2003.

ATTIÉ, S.S.; Automação Hidráulica e Pneumática Empregando a Teor ia de Sistemas a
Eventos Discretos. Dissertação (Mestrado em Engenharia Mecânica) – Centro Tecnológico,
Universidade Federal de Santa Catarina. Florianópolis. 1998.

BOUZON, G.; OLIVEIRA, M. L.; VALLIM, M. B.; LACOMBE, J. P.; FREITAS, G. M.;
CURY, J.E.R.; FARINES, J.M.; CEBE: uma plataforma para exper imentação real
aplicada ao ensino de sistemas a eventos discretos. Anais do Congresso Brasileiro de
Automática CBA.v. 1. p. 724-729, 2004.

CARVALHO, J. R.; Contr ibuições a Implementação da Estrutura de Controle Modular
Local. Mestrado (Dissertação em Engenharia de Produção e Sistemas) – Pontifícia
Universidade Católica do Paraná. Curitiba, 2007.

CASSANDRAS, C.G.; LAFORTUNE S.; Introduction to Discrete Event Systems. Kluwer
Academic Publishers. USA, 1999.

CASTRUCCI, L.C.; MORAES, C.C.; Engenhar ia de Automação Industr ial, Editora LTC,
Brasil, 2007.

COSTA, G. O.; Uma Plataforma Computacional de Suporte ao Ciclo de
Desenvolvimento de Sistemas Automatizados de Manufatura. Mestrado (Dissertação em
Engenharia de Produção e Sistemas) – Pontifícia Universidade Católica do Paraná. Curitiba,
2005.

CURY, J.E.R; Teor ia de Controle Supervisór io de Sistemas a Eventos Discretos. V
Simpósio Brasileiro de Automação Inteligente. Canela-RS, 2001.

CURZEL, J.L.; LEAL, A.B.; Implementação de controle supervisór io em linguagem
Ladder para uma célula flexível de manufatura didática. In: XVI Congresso Brasileiro de
Automática. Bahia, Brasil, p.2700-2705. 2006.

78

CURZEL, J.L.; SILVA, F.T. da; AMARAL, S. do e LEAL, A.B.; Concepção de uma célula
flexível de manufatura didática para o ensino de engenhar ia. In: Anais do XXXIV
Congresso Brasileiro de Ensino de Engenharia. Passo Fundo-RS, p.1916-1926. 2006.

CURZEL, J. L.; HOUNSELL, M. da S. ; LEAL, A. B. . Uso da Realidade Vir tual para
Ensino de Automação da Manufatura. In: ICECE 2007 International Conference on
Engineering and Computer Education, 2007, Monguaguá / Santos. Anais da International
Conference on Engineering and Computer Education, v. 1. p. 773-777. 2007a.

CURZEL, J. L.; LEAL, A. B.; HOUNSELL, M. da S.Realidade Vir tual como ferramenta
de simulação aplicada no ensino de automação da manufatura. In: 4º Simpósio
Iberoamericano de Educación, Cibernética e Informática (SIECI 2007), Orlando. 2007b.

CURZEL, J.L.; LEAL, A.B.; Implementação de controle supervisór io modular local para
uma célula flexível de manufatura didática. In: VIII Conferência Internacional de
Aplicações Industriais. MG, Brasil. 2008. (artigo aceito para publicação em 12/06/08).

DIAS, J. R. S.; Um Laboratór io para um Curso de Automação Industr ial Utilizando a
Teor ia de Sistemas a Eventos Discretos. Mestrado (Dissertação em Engenharia Elétrica) –
Universidade Federal do Rio de Janeiro. Rio de Janeiro, 2005.

FABIAN, M.; HELLGREN, A. PLC-based implementation of supervisory control for
discrete event systems. In: 37th IEEE Conference on Decision and Control, v. 3, p. 3305-
3310. 1998

GARCIA, T. R.; CURY, J. E. R.; Grail para Controle Supervisór io de Sistemas a Eventos
Discretos. Centro Tecnológico, Universidade Federal de Santa Catarina, Departamento de
Automação e Sistemas, Florianópolis, 2006.

HELLGREN, A.; FABIAN, M.; LENNARTSON, B.; On the execution of sequential
function char ts. Control Engineering Practice, v. 13 p. 1283-1293. 2005.

HOUNSELL, M. S.; PIMENTEL, A.; On The Use of Vir tual Reality to Teach Robotics. In:
ICECE - International Conference on Engineering and Computer Education, 2003, Santos-SP.
International Conference on Engineering and Computer Education (IEEE Education Society),
v. 01. p. 1-5. 2003.

IEC; International Standard IEC 61131-3, Programmable Logic Controllers – Part 3:
Programming Languages. 2003.

MORAES, W. R. de; LEAL, A. B.; Controle supervisór io do transportador de entrada de
um sistema flexível de manufatura. Anais do VI Induscon. Joinville, 2006.

QUEIROZ, M.H. de; Controle Supervisór io Modular de Sistemas de Grande Porte.
Mestrado (Dissertação em Engenharia Elétrica) – Centro Tecnológico, Universidade Federal
de Santa Catarina. Florianópolis, 2000.

��������; Controle Supervisór io Modular e Multitarefa de Sistemas Compostos. Tese
(Doutorado em Engenharia Elétrica) – Centro Tecnológico, Universidade Federal de Santa
Catarina. Florianópolis, 2004.�

79

QUEIROZ, M.H. de; CURY, J.E.R.; Modular supervisory control of large scale discrete
event systems. In: Proceedings of the 5th International Workshop on Discrete Event
Systems: Analysis and Control. Ghent, Belgium: Kluwer Academic Publishers, p. 103-110.
2000a.

��������; Modular control of composed systems. In: Proceedings of the American Control
Conference. Chicago, USA. 2000b.

��������; Controle supervisór io modular de sistemas de manufatura. Revista controle &
automação, v. 13, n. 2, p. 115-125. 2002a.
________; Synthesis and implementation of local modular supervisory control for a
manufactur ing cell. In: 6th International Workshop in Discrete Event Systems. Zaragoza,
Spain: Kluwer Academic Publishers, p. 377-382. 2002b.

QUEIROZ, M.H. de, SANTOS, E.A.P. e CURY, J.E.R.; Síntese modular do controle
supervisór io em diagrama escada para uma célula de manufatura. Anais do V Simpósio
Brasileiro de Automação Inteligente, Gramado RS. 2001.

RAMADGE, P. J.; WONHAM, W. M.; The control of discrete event systems, Proc. of
IEEE, Special Issue on Discrete Event Dynamic Systems, v. 77, n. 1, p. 81-98. 1989.

REISER, C; CUNHA, A. E. C. da ; CURY, J. E. R. . The Environment Grail for
Supervisory Control of Discrete Event Systems. In: 8th Workshop on Discrete Event
Systems (WODES 2006), Proceedings of the 8th Workshop on Discrete Event Systems, v. 1.
p. 390-391. Ann Arbor. 2006.

ROBOTEC, E.; Scorbot-ER 4pc – User ’s Manual, Catalog #100118 Rev A. 1982a.

ROBOTEC, E.; Scorbase para Windows – Manual do Usuár io, Catálogo No 100280 Rev
A. 1982b.

SANTOS, E.A.P.; VIEIRA, A.D.; BUSETTI, M.A.; Controle de um sistema integrado de
manufatura baseado na Teor ia de Controle Supervisór io. In: Congresso Brasileiro de
Automática, Bahia, Brasil, p. 1181-1186. 2006.

SILVEIRA, P. R.; SANTOS, W. E.; Automação e Controle Discreto, Editora Érica, São
Paulo, 231 p. 1998

SIEMENS, S.; SIMATIC S7-300 Programmable Controller Hardware and Installation –
Manual, Edition 10/2001 A5E00105492-01. Siemens AG, Nuemberg, 2001.

____________; SIMATIC Ladder Logic (LAD) for S7-300 and S7-400 Programming –
Reference Manual, Edition 11/2002 A5E00171231-01. Siemens AG, Nuemberg, 2002a.

____________; SIMATIC Configur ing Hardware and Communication Connections
STEP7 V5.2 – Manual, Edition 12/2002 A5E00171229-01. Siemens AG, Nuemberg, 2002b.

____________; SIMATIC Programming with STEP7 V5.2 – Manual, Edition 12/2002
A5E00171230-01. Siemens AG, Nuemberg, 2002c.

80

TEIXEIRA, C.A.; LEAL, A.B.; SOUZA, A.H.; Implementação de supervisores em
microcontroladores: Uma abordagem baseada na teor ia de controle de sistemas a
eventos discretos. In: XVI Congresso Brasileiro de Automática. Bahia, Brasil, p. 2772-2777.
2006.

VIEIRA, A. D.; Método de Implementação do Controle de Sistemas a Eventos Discretos
com Aplicação da Teor ia de Controle Supervisór io. Tese (Doutorado em Engenharia
Elétrica) – Centro Tecnológico, Universidade Federal de Santa Catarina. Florianópolis, 2007.

��������; Modelagem e implementação de sistemas seqüenciais utilizando o método
passo a passo. Pontifícia Universidade Católica do Paraná. Curitiba, 2001.

WONHAM, W. M.; Supervisory Control of Discrete-Event Systems. Dept. of Electrical
and Computer Engineering, University of Toronto, Canada. 2004.

81

APÊNDICE A – Tutor ial do Gerador de Código para o CLP

O Gerador de Programa Automático para CLP (GPACLP) é uma ferramenta de

geração automática de código para o CLP, com o intuito de auxiliar na tarefa de transcrição

do autômato obtido para o supervisor no código de programação do CLP. Esta ferramenta foi

desenvolvida com o auxílio de dois bolsistas do Programa de Educação Tutorial – PET

Engenharia Elétrica.

O GPACLP é um programa (ou compilador) capaz de, a partir de um autômato

obtido para o supervisor monolítico, gerar o código para o CLP referente à lógica de controle.

O GPACLP tem como arquivos de entrada oriundos dos softwares Grail, TCT ou do próprio

GPACLP, e a partir deles é possível gerar o programa em STL (Statement List) para ser

implementado diretamente em CLPs das famílias S7-300/S7-400 da Siemens.

O programa suporta a conversão com origem em três tipos de arquivos (Grail, TCT e

GPACLP):

GRAIL = Esse tipo arquivo está relacionado aos arquivos gerados pelo programa

Grail.

TCT = Esse tipo arquivo está relacionado aos arquivos gerados pelo programa

CTCT.

GPACLP = Corresponde aos arquivos salvos pelo próprio programa (depois de

realizar alguma modificação nas variáveis, pode-se gerar um novo arquivo para o qual se

adotou o nome de GPACLP).

O programa gerado para o CLP, é formado por três blocos de função: Supervisor,

Saídas e Eventos, e um bloco de organização: OB1, conforme descrito na Seção 5.1. Além

disso, pode-se gerar uma tabela de símbolos que associa automaticamente os nomes dos

eventos escolhidos com as entradas/saídas e memórias do CLP.

82

>> Ao abrir o programa (executável) surgirá à tela conforme a Figura A.1:

Figura A.1

>> Primeiramente deve-se abrir o arquivo do qual se deseja realizar a conversão

para o formato dos CLPs Siemens.

>> Selecione o tipo de arquivo que deseja abrir e clique em Abrir Arquivo (Figura

A.2).

Figura A.2

83

>> Em seguida, o arquivo será carregado pelo programa e na lista de eventos à

direita aparecerão todos os eventos (sem repetição) que estiverem presentes no arquivo do

supervisor que foi aberto (Figura A.3).

Figura A.3

>> Ao clicar em qualquer um dos eventos contidos na lista, os parâmetros desse

evento poderão ser alterados (se necessário) através dos campos à esquerda (Figura A.4):

Figura A.4

Nome do Evento = Coloque (se desejar alterar) um nome qualquer para o evento no

supervisor (arquivos TCT são, por padrão, números associados ao evento e não nomes, e

podem permanecer assim se for conveniente). Ex: S_Liga.

Evento no CLP = Coloque um nome para um evento no CLP, este corresponderá a

um “símbolo” da saída/entrada física do CLP. Ex: LIGA_MOTOR_ESTEIRA (é comum que

o nome/símbolo usado como evento no CLP tenha relação com a característica física que o

mesmo executa).

84

Relacionado = Caso tenha sido feito o modelamento de dois equipamentos por um

único autômato, ou de dois eventos relacionados (Ex: Esteira+Sensor), deve-se atribuir um

símbolo no CLP para o evento relacionado.

Autômato Nº = Indicar o número do autômato ao qual pertence o evento em questão.

Por exemplo, os eventos S_liga e S_desl pertencem ao autômato 1 (modelo para o sensor)

SET / RESET = Deve-se atribuir o SET caso seja um evento destinado a ligar

(habilitar), e um RESET se o evento for destinado a desligar (desabilitar).

Timer / Valor = Alguns eventos necessitam de um tempo de atraso para que o

processamento do evento pelo CLP possa ser executado. Nestes casos, pode ser feita a adição

de um Timer e colocado seu Valor em milissegundos.

Controlável / Não-Controlável = Indique se o evento selecionado é Controlável ou

Não-Controlável.

Salvar = Clique no botão depois de alterar qualquer um dos parâmetros acima, caso

contrário, a(s) alteração(ões) não será(ão) salva(s).

Depois de realizadas todas as modificações necessárias, pode-se passar para o

processo de geração dos blocos de programa.

>> Selecione primeiramente o modelo do CLP e em seguida o bloco que deseja

criar (conforme a Figura A.5). Então, basta clicar no botão “ Gerar” e escolher o local onde

será salvo o arquivo.

Na versão atual do GPACLP são aceitos somente os CLPs da Siemens S7_300 e 400.

Figura A.5

Ao selecionar a criação da tabela de símbolos, será gerada uma lista com os

símbolos definidos anteriormente (EVENTO NO CLP) relacionando-os aleatoriamente com

as saídas físicas do CLP a partir do primeiro endereço do CLP. Uma vez que esta lista está

85

relacionada diretamente as ligações elétricas do CLP, ela deve ser alterada posteriormente

conforme a Tabela 4-1 - Eventos dos dispositivos da célula., que define como estão

fisicamente distribuídas as entradas e saídas.

 Ao selecionar os blocos Organização, Supervisor, Eventos ou Saídas, será gerado

um arquivo no formato * .awl, que poderá ser importado diretamente no programa do CLP da

Siemens (SIMATIC STEP7) conforme será mostrado posteriormente.

IMPLEMENTAÇÃO NO CLP SIEMENS (SIMATIC Step7 V5.1)

Após feita a instalação do SIMATIC STEP7, clique no atalho do SIMATIC

MANAGER. Caso não tenha aparecido nada na tela, localize no canto superior esquerdo da

tela e clique em File (Arquivo) e em seguida em ‘New Project’ Wizard (conforme a Figura

A.6).

Figura A.6

Uma janela então se abrirá (Figura A.7), clique em “ Next (Avançar)” .

86

Figura A.7

Selecione na próxima janela (Figura A.8) a CPU que seu CLP SIEMENS possui e

clique em “ Next (Avançar)” .

Figura A.8

87

Desmarque o bloco OB1 (assim como todos os outros) e clique em Next (Figura

A.9).

Figura A.9

Dê um nome para seu projeto e clique em Finish (Figura A.10).

Figura A.10

88

O primeiro passo após a criação do projeto, é fazer a importação da tabela de

símbolos gerada pelo GPACLP.

Abra o Symbol Editor (Editor de Símbolos) e a janela mostrada na Figura A.11 irá se

abrir.

Figura A.11

Em seguida vá ao menu superior e clique em Symbol Table e Import (como mostra a

Figura A.12).

Figura A.12

89

Ao abrir a caixa de diálogo, selecione a extensão do arquivo para * .SEQ e procure a

pasta onde foi salvo o arquivo gerado pelo GPACLP. Em seguida clique em abrir (Figura

A.13).

Figura A.13

Caso apareçam as caixas de diálogos mostradas abaixo (Figura A.14) clique em SIM

para sobrepor a tabela de símbolos já existente (uma vez que esta está vazia) e clique em

NÃO para abrir o arquivo de protocolo.

Figura A.14

Depois de feita a importação da tabela de símbolos com sucesso, pode-se fechar a

janela do Symbol Editor.

Voltando ao SIMATIC MANAGER, o próximo passo consiste em fazer a

compilação de todos os blocos.

90

Clique então em Sources no menu à esquerda, em seguida clique com o botão direito

do mouse na parte da direita da janela depois Insert New Object e External Source (conforme

a Figura A.15).

Figura A.15

Ao abrir a caixa de diálogo, procure a pasta onde foi salvo o arquivo gerado pelo

GPACLP. Em seguida clique em abrir (Figura A.16).

Figura A.16

Deve-se então compilar o arquivo. Para tanto, procure o símbolo indicado na Figura

A.17 e clique nele.

91

Figura A.17

Caso o arquivo tenha sido compilado com sucesso, na barra se status na parte inferior

da janela surgirá a mensagem mostrada na Figura A.18.

Figura A.18

Caso tenha sido encontrado algum erro, este será mostrado nessa mesma barra para

posteriores correções.

O arquivo compilado é mostrado na Figura A.19:

Figura A.19

92

Repita o processo de compilação para os demais blocos na seguinte ordem:

1º) Saídas.awl

2º) Eventos.awl

3º) OB1.awl

Após todos os blocos compilados com sucesso, o programa está pronto para ser

implementado no CLP. Isso pode ser feito basicamente selecionando os blocos na aba Blocks

do menu à esquerda e em seguida clicando no botão Download (conforme a Figura A.20).

Figura A.20

 Maiores detalhes sobre o uso do software do CLP e características técnicas do

hardware utilizado encontram-se no manual (Siemens, 2001, 2002b).

