
LUCAS DEBATIN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DESENVOLVIMENTO E ANÁLISE DE DESEMPENHO DO 

RECONHECIMENTO OFF-LINE DE VOZ CONTÍNUO EM 

DISPOSITIVOS MÓVEIS  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Itajaí (SC), fevereiro de 2019



  

UNIVERSIDADE DO VALE DO ITAJAÍ 

CURSO DE MESTRADO ACADÊMICO EM  

COMPUTAÇÃO APLICADA 

 

 

 

 

 

 

 

 

DESENVOLVIMENTO E ANÁLISE DE DESEMPENHO DO 

RECONHECIMENTO OFF-LINE DE VOZ CONTÍNUO EM 

DISPOSITIVOS MÓVEIS 

 

 

 

 

por 

 

 

Lucas Debatin 

 

 

 
Dissertação apresentada como requisito parcial à 

obtenção do grau de Mestre em Computação 

Aplicada. 

Orientador: Rudimar Luís Scaranto Dazzi, Dr. 

 

 

 

 

 

Itajaí (SC), fevereiro de 2019



FOLHA DE APROVAÇÃO 

Esta página é reservada para inclusão da folha de assinaturas, a ser disponibilizada pela 

Secretaria do Curso para coleta da assinatura no ato da defesa. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Dedico este trabalho aos meu pais Edesio e Olivia e a minha namorada Isabelle que, com muito 

amor е apoio, não mediram esforços para que eu chegasse até esta etapa da minha vida.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

“So the problem is not so much to see what nobody has yet seen, as to think what nobody has yet 

thought concerning that which everybody sees” 

Arthur Schopenhauer. 



 

AGRADECIMENTOS 

Primeiramente, agradeço a Deus que me deu forças e iluminou o meu caminho, ajudando-

me a superar as dificuldades e os obstáculos nesta trajetória.  

Ao meu orientador Rudimar Luís Scaranto Dazzi que incansavelmente tirou minhas dúvidas, 

direcionando meu foco e impondo limites para tarefas impossíveis. 

Gostaria de agradecer também aos avaliadores Alejandro Rafael Garcia Ramirez e Aluizio 

Haendchen Filho, que contribuíram para a melhoria do trabalho por meio de sugestões e críticas. 

Além disso, agradeço de modo especial ao avaliador Aluizio pela sugestão de tema da pesquisa e todo 

o auxílio desde o início dos trabalhos. 

Agradeço à CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) pela 

concessão da bolsa durante todo o período de realização deste mestrado.  

Agradeço a esta universidade, seu corpo docente, direção е administração que oportunizaram 

а janela que hoje vislumbro um horizonte superior, eivado pela acendrada confiança no mérito е ética 

aqui presentes. 

Aos meus pais Edesio Debatin e Olivia Inês Hodecker Debatin por me ensinarem o valor e 

a importância do estudo e da instrução para a minha vida. 

Agradeço a minha namorada Isabelle Angelica Erbs que em todos os momentos desta 

trajetória esteve ao meu lado, ajudando e me dando forças para continuar. 

Aos amigos de pesquisa do LIA (Laboratório de Inteligência Aplicada): Alex Luciano 

Roesler Rese, Ivan Galvagno, João Victor Ribeiro, Rafael de Oliveira Schmitt, Rodrigo Lyra, Rudson 

Mendes, Thiago Felski Pereira, em especial ao Jonathan Nau e ao Fernando Concatto por sempre 

abdicar de seus afazeres para contribuir na resolução de problemas e dúvidas. 

E, finalmente, de modo geral agradeço a todos que acreditaram na realização deste projeto e 

me incentivaram nesta longa trajetória. 



 

DESENVOLVIMENTO E ANÁLISE DE DESEMPENHO DO 

RECONHECIMENTO OFF-LINE DE VOZ CONTÍNUO EM 

DISPOSITIVOS MÓVEIS 

Lucas Debatin 

Fevereiro / 2019 

 

Orientador: Rudimar Luís Scaranto Dazzi, Dr. 

Área de Concentração: Computação Aplicada 

Linha de Pesquisa: Inteligência Aplicada 

Palavras-chave: Reconhecimento de Voz Contínuo, Off-line, Dispositivos Móveis. 

Número de páginas: 144 

 

RESUMO 

O reconhecimento de voz é uma forma de acessibilidade utilizada para executar tarefas com 

as mãos e os olhos livres em aparelhos eletrônicos, e isso é vantajoso independentemente do tipo de 

usuário. Atualmente, o reconhecimento de voz é realizado por meio de APIs que apresentam algumas 

limitações: (i) dependem de conexão com a internet; e (ii) muitas vezes são softwares proprietários, 

ou seja, há um custo para a aquisição de licenças de uso. Visando a solução desses problemas, o 

presente trabalho propôs o desenvolvimento do reconhecimento off-line de voz contínuo do português 

brasileiro para dispositivos móveis com Android. Inicialmente, realizou-se uma revisão sistemática 

da literatura, no qual identificou as técnicas mais utilizadas no reconhecimento de voz contínuo, 

obtendo o estado da arte da pesquisa. Durante a leitura completa dos artigos selecionados na revisão, 

percebeu-se o uso de bibliotecas para facilitar a implementação, tais como CMUSphinx, HTK e Kaldi. 

Para cada biblioteca foram criados 10 arquivos de configurações de treinamento, e as configurações 

que obtiveram as melhores métricas de avaliação (WER e SER) foram implementadas na versão 

desktop. Para o treinamento e testes, utilizou-se os corpora de voz do grupo FalaBrasil. A versão 

desktop foi responsável por realizar a análise de desempenho das bibliotecas em um computador 

desktop, isto é, foram verificados os percentuais de uso do processador e da memória. A biblioteca 

Kaldi obteve o melhor resultado da análise de desempenho, entretanto não foi possível implementá-

la no aplicativo móvel devido a restrições de permissionamento. Por isso, utilizou-se a biblioteca 

CMUSphinx que apresentou resultados semelhantes ao Kaldi. Esse aplicativo móvel foi testado em 

11 dispositivos, com diferentes versões do Android e configurações de hardware. Nos testes foram 

capturadas informações sobre o uso do processador, da memória e da bateria do dispositivo, 

realizando assim a análise de desempenho, que comprovou que o reconhecimento de voz contínuo 

pode ser executado com êxito em dispositivos móveis. O WER obtido pelo aplicativo foi de 9,6% no 

corpus de voz com vários locutores e 3,2% no corpus com apenas um locutor. Algumas sugestões de 

trabalhos futuros são apresentadas, entre elas a criação de um corpus de voz de vários locutores com 

maior duração, implementação da biblioteca Kaldi em dispositivos móveis, redução do custo 

computacional exigido pelas RNAs para serem utilizadas nos dispositivos móveis, testes em 



 

dispositivos móveis com IOS, comparação dos resultados desse trabalho com o das APIs e testes em 

sistemas embarcados. 



 

DEVELOPMENT AND PERFORMANCE ANALYSIS OF OFFLINE 

CONTINUOUS VOICE RECOGNITION IN MOBILE DEVICES 

Lucas Debatin 

February / 2019 

 

Advisor: Rudimar Luís Scaranto Dazzi, Dr. 

Area of Concentration: Applied Computer Science 

Research Line: Applied Intelligence 

Keywords: Continuous Speech Recognition, Offline, Mobile Devices. 

Number of pages: 144 

 

ABSTRACT 

Voice recognition is a form of accessibility used to execute tasks leaving hands and eyes free 

in electronic devices, which is advantageous no matter the kind of user. Currently, voice recognition 

is performed through APIs that present some limitations: (i) depend on an Internet connection; and 

(ii) are often proprietary software, i.e. have a license that must be purchased to enable its usage. 

Aiming to solve these problems, this work proposed the development of an offline continuous voice 

recognition for the Brazilian Portuguese language for mobile devices running Android. Initially, a 

systematic review of the literature was performed, which identified the most frequently used 

techniques for offline voice recognition, obtaining the state of the art in the field. During the 

examination of the papers selected in the literature review, a frequent usage of libraries such as 

CMUSphinx, HTK and Kaldi was noticed. For each of these libraries, 10 training configuration files 

were created, and the settings that obtained the best values for the WER and SER evaluation metrics 

were implemented in a desktop version. For the training and validation steps, voice corpora from the 

FalaBrasil group were used. The desktop version was responsible for running a performance 

comparison between the libraries in a desktop computer, i.e. the usage ratios of the CPU and RAM 

were verified. The Kaldi library obtained the best result in the performance comparison; however, the 

library could not be implemented in the mobile application due to permission restrictions. For this 

reason, the CMUSphinx library was used, which presented results similar to Kaldi. The mobile 

application was tested in 11 devices, with differing versions of Android and hardware specifications. 

In the tests, information about CPU, RAM and battery usage were captured, thus achieving a 

performance analysis, which demonstrated that continuous voice recognition can be performed 

successfully in mobile devices. The mobile application obtained a WER of 9.6% in the voice corpus 

with multiple speakers and 3.2% in the corpus with a single speaker. A few suggestions for future 

research are presented, such as developing a voice corpus with multiple speakers with a longer 

duration, implementing the Kaldi library in mobile devices, reducing the computational resources 

demanded by the ANNs in mobile devices, testing in mobile devices running iOS, comparing the 

results of this work with proprietary APIs and testing with embedded systems. 



 

LISTA DE ILUSTRAÇÕES 

Figura 1 - Estrutura do reconhecimento de voz ................................................................................. 31 
Figura 2 - Etapas da extração de características do MFCC ............................................................... 33 
Figura 3 - Modelo de neurônio artificial ............................................................................................ 39 
Figura 4 - Arquitetura da MLP .......................................................................................................... 42 

Figura 5 - Arquitetura da RNN .......................................................................................................... 43 
Figura 6 - Modelo HMM com estrutura esquerda-direita .................................................................. 44 
Figura 7 - Diagrama com as transições permitidas da palavra inglesa tomato .................................. 45 
Figura 8 - Cálculo de probabilidades ................................................................................................. 48 

Figura 9 - Comparação entre as frases de referência e gerada para cálculo do WER ....................... 49 
Figura 10 - Artigos selecionados por ano .......................................................................................... 54 
Figura 11 - Tela da versão desktop .................................................................................................... 68 
Figura 12 - Tela da versão móvel em Android .................................................................................. 69 

 

Quadro 1 - Hipóteses de pesquisa para cada pergunta ....................................................................... 20 
Quadro 2 - Exemplo de fonema de palavras ...................................................................................... 28 
Quadro 3 - Perguntas de pesquisa da revisão sistemática da literatura .............................................. 52 

Quadro 4 - Repositórios eletrônicos................................................................................................... 52 
Quadro 5 - Critérios de inclusão e exclusão ...................................................................................... 53 

Quadro 6 - Relação de artigos selecionados ...................................................................................... 54 
Quadro 7 - Técnicas utilizadas na implementação dos modelos ....................................................... 55 
Quadro 8 - Soluções para reduzir a taxa de erro ................................................................................ 56 

Quadro 9 - Extração de características, bibliotecas e idioma dos artigos selecionados ..................... 56 

Quadro 10 - Corpora de texto e voz utilizados nos trabalhos relacionados ....................................... 57 
Quadro 11 - Comparativo entre o estado da arte do trabalho e as bibliotecas ................................... 63 
Quadro 12 - Configuração do computador desktop utilizado ............................................................ 72 

Quadro 13 - Configurações da biblioteca CMUSphinx e do corpus LaPS Benchmark .................... 73 
Quadro 14 - Configurações da biblioteca CMUSphinx e do corpus Constituição Federal ............... 73 

Quadro 15 - Configurações da biblioteca HTK e do corpus LaPS Benchmark ................................. 74 
Quadro 16 - Configurações da biblioteca HTK e do corpus Constituição Federal ............................ 75 

Quadro 17 - Configurações da biblioteca Kaldi e do corpus LaPS Benchmark ................................ 75 
Quadro 18 - Configurações da biblioteca Kaldi e do corpus Constituição Federal ........................... 76 
Quadro 19 - Desempenho das bibliotecas no corpus LaPS Benchmark ............................................ 77 

Quadro 20 - Desempenho das bibliotecas no corpus Constituição Federal ....................................... 78 

Quadro 21 - Configuração dos dispositivos móveis utilizados nos testes ......................................... 79 
Quadro 22 - Desempenho do corpus LaPS Benchmark em dispositivos móveis .............................. 80 
Quadro 23 - Desempenho do corpus Constituição Federal em dispositivos móveis ......................... 81 

Quadro 24 - Comparativo entre processador e valor xRT ................................................................. 82 
Quadro 25 - Artigos aceitos para publicação ..................................................................................... 86 
 



 

LISTA DE TABELAS 

Tabela 1 - Número de artigos descobertos e selecionados ................................................................. 53 
Tabela 2 - Melhores resultados obtidos nos trabalhos relacionados .................................................. 58 
Tabela 3 - Número de treinamentos realizados .................................................................................. 66 



 

LISTA DE ABREVIATURAS E SIGLAS 

API Application Programming Interface 

DCT  Discrete Cosine Transform 

DNN Deep Neural Network 

FFT  Fast Fourier Transform 

fMLLR  feature space Maximum Likelihood Linear Regression  

G2P  Grapheme to Phoneme 

GMM Gaussian Mixture Models 

HMM Hidden Markov Models 

HTK  Hidden Markov Models Toolkit 

HZ Hertz 

IA Inteligência Artificial 

IHC Interação Homem-Computador 

LM Language Modeling 

LPCC  Linear Predictive Cepstral Coefficients 

LSTM  Long Short-Term Memory 

MFCC Mel Frequency Cepstral Coefficients 

ML  Maximum Likelihood 

MLP Multilayer Perceptron 

NDK Android Native Development Kit 

OCSR  Offline Continuous Speech Recognition 

PLN  Processamento de Linguagem Natural 

PLP Perceptual Linear Prediction  

ReLU  Rectified Linear Units 

RNA Redes Neurais Artificiais 

RNN Recurrent Neural Network  

SDK  Software Development Kit 

SER  Sentence Error Rate 

SRILM  SRI Language Modeling Toolkit 

SCT  Speech Corpus Treatment 

TanH  Tangente Hiperbólica  

WER Word Error Rate  

xRT  Real Time Factor 

 



 

LISTA DE SÍMBOLOS 

α Alfa, minúsculo (alfabeto grego) 

Δ Delta, maiúsculo (alfabeto grego) 

Π Pi, maiúsculo (alfabeto grego) 

π Pi, minúsculo (alfabeto grego)  

Σ Sigma, maiúsculo (alfabeto grego)  

υ Úpsilon, minúsculo (alfabeto grego) 

φ Fi, minúsculo (alfabeto grego) 

 



 

SUMÁRIO 

1 INTRODUÇÃO .................................................................................... 16 

1.1 PROBLEMA DE PESQUISA........................................................................... 18 

1.1.1 Solução Proposta ............................................................................................. 19 

1.1.2 Delimitação de Escopo .................................................................................... 20 

1.1.3 Justificativa ...................................................................................................... 21 

1.2 OBJETIVOS ...................................................................................................... 21 

1.2.1 Objetivo Geral ................................................................................................. 21 

1.2.2 Objetivos Específicos ...................................................................................... 22 

1.3 METODOLOGIA .............................................................................................. 22 

1.3.1 Metodologia da Pesquisa ................................................................................ 22 

1.3.2 Procedimentos Metodológicos ........................................................................ 23 

1.4 ESTRUTURA DA DISSERTAÇÃO ................................................................ 24 

2 FUNDAMENTAÇÃO TEÓRICA ...................................................... 26 

2.1 RECONHECIMENTO DE VOZ ..................................................................... 26 

2.1.1 Características da Voz .................................................................................... 27 

2.1.2 Fatores de Complexidade ............................................................................... 28 

2.1.3 Estrutura do Reconhecimento de Voz Contínuo ......................................... 31 

2.2 EXTRAÇÃO DE CARACTERÍSTICAS DO ÁUDIO................................... 32 

2.3 DECODIFICADOR ........................................................................................... 36 

2.3.1 Modelo Acústico .............................................................................................. 37 

2.3.1.1 Redes Neurais Artificiais ............................................................................. 38 

2.3.1.2 Modelos Ocultos de Markov ........................................................................ 43 

2.3.2 Modelo de Linguagem .................................................................................... 46 

2.4 MÉTRICAS DE AVALIAÇÃO ....................................................................... 49 

2.5 CONSIDERAÇÕES .......................................................................................... 50 

3 ESTADO DA ARTE ............................................................................ 51 

3.1 REVISÃO SISTEMÁTICA DA LITERATURA ........................................... 51 

3.1.1 Perguntas de Pesquisa .................................................................................... 51 

3.1.2 Repositórios e Estratégia de Pesquisa ........................................................... 52 

3.1.3 Seleção dos Artigos .......................................................................................... 53 

3.1.4 Resultados ........................................................................................................ 53 

3.2 ANÁLISE COMPARATIVA............................................................................ 55 

3.3 CONSIDERAÇÕES .......................................................................................... 58 

4 DESENVOLVIMENTO ...................................................................... 60 

4.1 INSTALAÇÃO DAS BIBLIOTECAS ............................................................. 60 

4.1.1 CMUSphinx ..................................................................................................... 60 

4.1.2 HTK .................................................................................................................. 61 



 

4.1.3 Kaldi ................................................................................................................. 62 

4.1.4 Comparativo .................................................................................................... 63 

4.2 PREPARAÇÃO DOS CORPORA DE VOZ .................................................. 63 

4.3 IMPLEMENTAÇÃO DO TREINAMENTO ................................................. 66 

4.4 IMPLEMENTAÇÃO DOS TESTES ............................................................... 67 

4.4.1 Desktop ............................................................................................................. 67 

4.4.2 Móvel ................................................................................................................ 68 

4.5 CONSIDERAÇÕES .......................................................................................... 70 

5 RESULTADOS .................................................................................... 72 

5.1 MELHORES CONFIGURAÇÕES DE TREINAMENTO ........................... 72 

5.1.1 CMUSphinx ..................................................................................................... 73 

5.1.2 HTK .................................................................................................................. 74 

5.1.3 Kaldi ................................................................................................................. 75 

5.2 ANÁLISE DO DESEMPENHO EM DESKTOPS ......................................... 76 

5.3 ANÁLISE DO DESEMPENHO EM DISPOSITIVOS MÓVEIS ................ 79 

5.4 CONSIDERAÇÕES .......................................................................................... 83 

6 CONCLUSÕES .................................................................................... 84 

6.1 CONTRIBUIÇÕES ........................................................................................... 85 

6.2 TRABALHOS FUTUROS ................................................................................ 87 

REFERÊNCIAS ....................................................................................... 88 

GLOSSÁRIO ............................................................................................ 93 

APÊNDICE A   – ARTIGOS EXCLUÍDOS NA REVISÃO 

SISTEMÁTICA DA LITERATURA ..................................................... 94 

APÊNDICE B   – CONFIGURAÇÕES DA BIBLIOTECA 

CMUSPHINX........................................................................................... 98 

APÊNDICE C   – CONFIGURAÇÕES DA BIBLIOTECA HTK .. 105 

APÊNDICE D   – CONFIGURAÇÕES DA BIBLIOTECA 

KALDI..................................................................................................... 120 

APÊNDICE E   – DEMAIS TIPOS DA BIBLIOTECA HTK ......... 141 

APÊNDICE F   – DEMAIS TIPOS DA BIBLIOTECA KALDI ..... 143 

 



16 

 

1  INTRODUÇÃO 

Desde o surgimento dos computadores, pesquisadores buscam formas de tornar os sistemas 

computacionais mais inteligentes. Uma dessas formas é a compreensão da fala, que tem como 

objetivo fazer com que as máquinas sejam capazes de entender e se comunicar em linguagem natural. 

Para compreender a fala computacionalmente, é necessário converter a linguagem falada em texto; 

esse processo é chamado de reconhecimento de voz (ALENCAR, 2005; SILVA, 2010). 

Para Yu e Deng, (2015), o reconhecimento de voz é uma importante tecnologia para melhorar 

a IHC (Interação Homem-Computador), visto que a voz é uma característica humana que a maioria 

das pessoas possui. De acordo com Benyon (2011), a IHC é responsável por garantir que os sistemas 

sejam fáceis de usar e de aprender, ou seja, utiliza métodos, diretrizes, princípios e padrões focados 

na melhora da usabilidade do sistema. 

O reconhecimento de voz pode ser classificado em dois tipos: (i) palavras isoladas, que 

necessita que as sentenças sejam pronunciadas com pausas entre cada palavra, por isso são utilizados 

em sistemas simples e com vocabulário pequeno, tais como, sistemas de comando e controle por voz; 

e (ii) contínuo, tem como objetivo tornar a comunicação mais eficaz para os seres humanos, visto que 

reconhecem sentenças pronunciadas de forma natural, isto é, sem a necessidade de pausas entre as 

palavras (ALENCAR, 2005; HUANG; DENG, 2010; SILVA, 2010). 

No contexto dos tipos de reconhecimento, este trabalho realiza o reconhecimento do tipo 

contínuo, que é mais complexo se comparado com o de palavras isoladas, pois deve ser capaz de lidar 

com todas as características e vícios de linguagem da fala. Além disso, muitas palavras podem ser 

substituídas ou não identificadas, pois nesse tipo de reconhecimento não há informação de onde 

começam e terminam determinadas palavras ou fonemas (ALENCAR, 2005; JURAFSKY; MARTIN, 

2008; RUSSELL; NORVIG, 2004; SILVA, 2010; TEVAH, 2006). 

Atualmente, as APIs (Application Programming Interface, em português: interface de 

programação de aplicação) Web Speech, Java Speech, Google Cloud Speech, Bing Speech, dentre 

outras, facilitam a implementação do reconhecimento de voz contínuo do português brasileiro em 

softwares e aplicações. Uma API permite que aplicações possam apenas requisitar serviços de 

programação, isto é, não é necessário se envolver com os detalhes de implementação (DEBATIN; 

HAENDCHEN FILHO; DAZZI, 2017; DEBATIN; HAENDCHEN FILHO; DAZZI, 2018; PERICO; 



17 

 

SHINOHARA; SARMENTO, 2014). Em outras palavras, as APIs para reconhecimento de voz 

recebem o áudio por meio de uma requisição, realizam o processamento do reconhecimento em 

servidores disponíveis na internet, e retornam o que foi falado no áudio em formato de texto. 

Entretanto, as APIs atualmente disponibilizadas não podem ser empregadas em qualquer tipo de 

aplicação, pois apresentam algumas limitações, que serão descritas na seção 1.1.  

O termo off-line embora caracterize uma abordagem antiga, visto que atualmente a sociedade 

encontra-se na era da computação em nuvem, apresenta algumas vantagens: (i) não sofrem de 

problemas relacionados à latência e à largura de banda, pois os serviços em nuvem são 

disponibilizados por servidores remotos; (ii) não apresentam problemas relacionados ao 

compartilhamento do mesmo servidor, visto que os serviços de nuvem atendem a vários clientes, e se 

as requisições de um usuário comprometer o servidor, também poderá comprometer aplicativos de 

outros usuários; e (iii) não apresentam problemas de segurança, conformidade e regulamentares, pois 

os dados na nuvem podem ser acessíveis a terceiros (GROSSMAN, 2009). 

Para implementar o reconhecimento de voz é necessário conhecer algumas de suas 

propriedades fundamentais, tais como: (i) as características do sinal da voz, que são as diversas 

informações sobre o locutor presentes no sinal de áudio; (ii) as formas para extração de características 

do áudio e para a decodificação, que são utilizados para gerar a melhor sequência textual a partir do 

sinal de áudio de entrada; e (iii) as métricas de avaliação, que são utilizadas para medir o desempenho 

do reconhecimento de voz. Além disso, com os avanços tecnológicos aumentou o interesse no 

desenvolvimento do reconhecimento de voz utilizando técnicas de aprendizagem profunda, tais como 

DNN (Deep Neural Network, em português: rede neural profunda) (DAHL et al., 2012; FERREIRA; 

SOUZA, 2017; SAMPAIO NETO, 2011; SILVA, 2010; VEIGA, 2013). 

A etapa de decodificação manipula os modelos, acústico e de linguagem, para gerar a melhor 

sequência textual a partir das propriedades acústicas extraídas do áudio, independentemente do 

idioma a ser utilizado, entretanto é necessário possuir um corpus1 de voz e de texto. Nesse trabalho, 

desenvolveu-se uma ferramenta para criação dos modelos acústicos do português brasileiro utilizando 

                                                 

 

 

 
1 Corpus é um conjunto de documentos ou dados sobre determinado assunto (BAUER; AARTS, 2013). 



18 

 

os corpora de voz do grupo de pesquisa FalaBrasil2 (FERREIRA; SOUZA, 2017; SILVA, 2010; 

VEIGA, 2013).  

Dentro desse contexto, esse trabalho identificou e selecionou as principais técnicas que foram 

utilizadas na implementação do reconhecimento de voz contínuo. Na implementação utilizou-se as 

bibliotecas CMUSphinx, HTK (Hidden Markov Models Toolkit, em português: kit de ferramentas dos 

modelos ocultos de Markov) e Kaldi, porém cada biblioteca possui arquivos de configuração que 

podem ser editados, por isso realizou-se um estudo comparativo para encontrar a configuração com 

o melhor custo-benefício entre desempenho e precisão da taxa WER (Word Error Rate, em português: 

taxa de erro de palavras). Por fim, esse trabalho também comparou o processamento e uso de memória 

das bibliotecas em um computador desktop, e em seguida, implementou a que obteve os melhores 

resultados em um aplicativo Android para testar seu desempenho em diversos dispositivos móveis. 

1.1 PROBLEMA DE PESQUISA 

A primeira limitação que as APIs existentes apresentam é que nenhuma delas realiza o 

reconhecimento em modo off-line, ou seja, é necessário que o usuário esteja conectado à internet. 

Essa limitação é uma barreira no Brasil, pois aproximadamente 36% da população, com idade acima 

de 10 anos, não está conectada à internet. Isso afeta diversas pessoas que possuem capacidades 

limitadas e moram em localidades sem internet, uma vez que o reconhecimento de voz é um 

importante meio de acessibilidade. Além disso, também afeta empresas que possuem, em seus 

aplicativos móveis, o reconhecimento de voz via APIs, visto que em muitos casos não é possível 

distribuir o sinal wireless por toda a empresa, ou a empresa não oferece um dispositivo móvel com 

acesso à internet para o seu funcionário por motivos de confiança (DEBATIN; HAENDCHEN 

FILHO; DAZZI, 2018; IBGE, 2016). 

Para que esse reconhecimento seja executado em modo off-line, é necessário realizar o 

processamento do reconhecimento de voz no próprio dispositivo móvel. Segundo Alencar (2005), o 

reconhecimento de voz apresenta uma alta complexidade computacional e requer uma grande 

                                                 

 

 

 
2 Grupo do Laboratório de Processamento de Sinais (LaPS), da Universidade Federal do Pará, cujo o objetivo é a 

criação e disponibilização de ferramentas e recursos para reconhecimento de voz em português brasileiro. 



19 

 

quantidade de memória, e isso é uma limitação, dado que muitos smartphones e tablets possuem 

recursos de hardware limitados. 

Outra limitação, é que as APIs são softwares proprietários, e em muitos casos o valor pago 

pela licença de uso se torna alto, visto que depende diretamente da quantidade de requisições que a 

API realiza. Essa limitação também afeta as empresas, pois é fundamental que o mesmo seja gratuito, 

devido ao grande número de requisições que é necessário (DEBATIN; HAENDCHEN FILHO; 

DAZZI, 2018). 

Para solucionar os problemas dessa pesquisa foram levantadas as seguintes perguntas de 

pesquisa: 

1. As técnicas atualmente utilizadas no reconhecimento de voz contínuo para extração de 

características do áudio e para implementação dos modelos, acústico e de linguagem, 

funcionam corretamente ao serem aplicadas em dispositivos móveis? 

2. Além de funcionar corretamente, é possível que a solução desenvolvida também tenha um 

WER menor que 14% para o português brasileiro? 

O valor máximo de 14% do WER é proveniente do Capítulo 3 , no qual o WER médio dos 

trabalhos selecionados na revisão sistemática da literatura foi de 14,01% para uma grande variedade 

de idiomas. 

1.1.1  Solução Proposta 

Nesse trabalho é apresentado uma solução para as limitações das APIs de reconhecimento de 

voz existentes no mercado, isto é, realizando o reconhecimento de voz contínuo de modo off-line e 

gratuito. Desta forma, foram adaptadas para o português brasileiro as técnicas de extração de 

características do áudio e de implementação dos modelos, acústico e de linguagem, selecionadas por 

meio de uma revisão sistemática da literatura. Visto que o reconhecimento desenvolvido é executado 

em dispositivos móveis, é necessário que o mesmo apresente um bom desempenho, por isso foram 

identificadas: (i) as configurações das bibliotecas que apresentam os melhores resultados; e (ii) a 

biblioteca que apresenta o melhor desempenho em um computador desktop. Essa solução procura 

comprovar as hipóteses para cada pergunta de pesquisa, apresentadas no Quadro 1. 



20 

 

Quadro 1 - Hipóteses de pesquisa para cada pergunta 

Pergunta Hipótese nula (H0) Hipótese alternativa (H1) 

Primeira As técnicas utilizadas não podem ser 

aplicadas em nenhum modelo de 

dispositivo móvel, pois não há recursos 

computacionais suficientes. 

Pelo menos um modelo de dispositivo 

móvel possui recursos computacionais 

suficientes. 

Segunda Com as técnicas que funcionam 

corretamente nos dispositivos móveis, não 

é possível ter um WER menor que 14% 

para o português brasileiro. 

Com as técnicas que funcionam 

corretamente nos dispositivos móveis, é 

possível ter um WER menor que 14% para 

o português brasileiro. 

1.1.2  Delimitação de Escopo 

Para Gordillo (2013), uma das principais dificuldades do reconhecimento de voz é delimitar 

as características do reconhecimento de acordo com a necessidade da aplicação. Essas características 

aumentam ou diminuem a complexidade. 

O reconhecimento de voz desenvolvido nesse trabalho possui as seguintes delimitações: (i) 

tipo contínuo; (ii) para o português brasileiro; e (iii) executado em modo off-line em dispositivos 

móveis com o sistema operacional Android. 

O treinamento dos modelos acústico e de linguagem das bibliotecas foram realizados em 

computadores desktop, pois os mesmos possuem maiores recursos de hardware. Para cada 

configuração de biblioteca foi realizado um treinamento a fim de encontrar a que apresente o melhor 

custo-benefício entre o valor da taxa WER e o desempenho exigido. 

Esse projeto possuirá duas versões para testes: (i) desktop, que foi utilizada para testar o 

desempenho das bibliotecas em um computador desktop, com o objetivo de selecionar a biblioteca 

que apresente os melhores resultados para ser implementada nos dispositivos móveis; e (ii) móvel, 

que foi utilizada para testar o desempenho da biblioteca selecionada em diversos dispositivos móveis 

com Android. 

O treinamento e os testes foram realizados utilizando dois corpora de voz com: (i) apenas um 

locutor e com um vocabulário de 5.327 palavras; e (ii) vários locutores e com um vocabulário de 

2.730 palavras.  Ambos descobertos por meio do website do grupo FalaBrasil. Além disso, o 

reconhecimento desenvolvido é de vocabulário restrito, pois reconhece apenas as palavras que estão 

presentes nos corpora de voz. 



21 

 

1.1.3  Justificativa 

O aumento do uso de interfaces adaptativas utilizando reconhecimento de voz, deve-se ao fato 

de que a fala é a forma mais natural de interação, pois torna-se mais rápido o uso e o acesso às 

informações nos softwares e aplicações (HEARST, 2011). 

Os avanços nas técnicas de reconhecimento de voz viabilizaram o uso dessa tecnologia em 

diversas aplicações, sobretudo em dispositivos móveis. Embora muitas tarefas sejam melhor 

resolvidas com interfaces visuais (teclado, mouse, entre outros), a voz tem o potencial de ser uma 

interface mais natural, visto que pode proporcionar interação mesmo se o usuário estiver com as mãos 

e olhos ocupados ou se o usuário possuir capacidades limitadas, ou seja, é vantajosa 

independentemente do tipo de usuário, exceto para pessoas com afonia ou disfemia (JURAFSKY; 

MARTIN, 2008; SILVA, 2010; VEIGA, 2013; YU; DENG, 2015).  

No Brasil, o decreto número 5.296 apresenta diretrizes de acessibilidade que, segundo a Casa 

Civil (2004), estabelece que todos os dispositivos devem oferecer recursos que exijam menor esforço 

físico e mental, minimizando sua desorientação ou sobrecarga cognitiva. 

Em ambientes comerciais e industriais, além da dificuldade em distribuir o sinal wireless por 

toda a empresa, o uso da internet e da tecnologia móvel durante o horário de trabalho para fins 

pessoais é um grande problema. Além de perdas financeiras resultantes da redução da produtividade 

dos trabalhadores, isso também ameaça a segurança da rede e reduz a largura de banda organizacional. 

Por isso, se faz necessário desenvolver funções e aplicativos corporativos de modo off-line (VITAK; 

CROUSE; LAROSE, 2011). 

Nesse contexto, e considerando as limitações das APIs de reconhecimento de voz, que 

essencialmente dependem da internet e, com sua tendência de manter-se indisponível de forma 

gratuita, é útil dispor desse recurso em modo off-line em dispositivos móveis. 

1.2 OBJETIVOS 

1.2.1  Objetivo Geral 

Desenvolver o reconhecimento off-line de voz contínuo do português brasileiro e analisar o 

seu processamento e uso de memória em dispositivos móveis. 



22 

 

1.2.2  Objetivos Específicos 

1. Identificar e selecionar, por meio de uma revisão sistemática da literatura, as principais 

técnicas que são utilizadas na extração de características do áudio e na implementação dos 

modelos, acústico e de linguagem, do reconhecimento de voz contínuo; 

2. Testar diversos valores dos parâmetros de configuração de treinamento das bibliotecas 

para obter o melhor custo-benefício entre desempenho e precisão; 

3. Verificar o WER para o português brasileiro do reconhecimento off-line de voz contínuo; 

4. Medir o processamento e uso de memória do reconhecimento off-line de voz contínuo em 

diversos dispositivos móveis com o sistema operacional Android. 

1.3 METODOLOGIA 

1.3.1  Metodologia da Pesquisa 

Nesse projeto é aplicada a metodologia hipotético-dedutiva, visto que esse método procura 

evidências empíricas para rejeitar as hipóteses: (i) de que não é possível aplicar as técnicas mais 

utilizadas em nenhum dispositivo móvel; e (ii) de que não é possível ter um WER abaixo de 14% 

para o reconhecimento de voz do português brasileiro ao utilizar as técnicas que funcionam 

corretamente em dispositivos móveis.  

Além disso, foram aplicados experimentos e análises para avaliar: (i) quais valores para os 

parâmetros de configuração de treinamento das bibliotecas possuem melhor desempenho, para serem 

aplicadas em dispositivos móveis; (ii) o WER do português brasileiro; e (iii) o desempenho do 

reconhecimento proposto em diferentes dispositivos móveis.  

O método de pesquisa segue o princípio metodológico dos trabalhos científicos, visando 

contribuir com a comunidade científica. A seguir são exibidos os pontos de vista: de sua natureza, da 

forma de abordagem do problema e de seus objetivos.  

Sob o ponto de vista de sua natureza  

Sob o ponto de vista de sua natureza a pesquisa é aplicada, pois tem como objetivo gerar 

conhecimentos para aplicações práticas dirigidas à solução do problema proposto, isto é, busca 



23 

 

conhecimentos para desenvolver o reconhecimento de voz proposto com o menor processamento e 

uso de memória, e com uma boa precisão para o português brasileiro. 

Sob o ponto de vista da forma de abordagem do problema 

A pesquisa tem uma abordagem quantitativa para o problema, pois tem como objetivo: (i) 

verificar os melhores valores para os parâmetros de configuração de treinamento das bibliotecas; (ii) 

avaliar o WER no português brasileiro; e (iii) avaliar o desempenho do reconhecimento desenvolvido 

em diferentes dispositivos móveis. 

Sob o ponto de vista de seus objetivos 

Aplicou-se uma pesquisa exploratória, pois tem como objetivo proporcionar maior 

familiaridade com o problema, visto que envolve o levantamento bibliográfico, busca de autores que 

possuem experiências práticas e análise de exemplos do problema pesquisado. Além disso, foi 

utilizada a pesquisa explicativa, uma vez que essa procura documentar e analisar os resultados obtidos 

por meio dos testes de desempenho e dos valores da taxa WER. 

1.3.2  Procedimentos Metodológicos 

Os procedimentos metodológicos adotados nessa pesquisa são: 

1. Revisão bibliográfica: essa etapa tem como objetivo proporcionar a fundamentação teórica 

necessária ao desenvolvimento da pesquisa; 

2. Estado da arte: essa etapa tem como objetivo realizar uma revisão sistemática da literatura 

sobre o tema de pesquisa para identificar as técnicas que são utilizadas na extração de 

características do áudio e na implementação dos modelos acústico e de linguagem, do 

reconhecimento de voz contínuo; 

3. Preparação dos corpora de voz: essa etapa tem como objetivo realizar a preparação dos dados 

dos corpora de voz para serem utilizados no treinamento dos modelos acústico e de linguagem 

de cada biblioteca; 

4. Desenvolvimento: essa etapa tem como objetivo implementar, por meio do uso de bibliotecas, 

o reconhecimento off-line de voz contínuo; 



24 

 

5. Análise dos resultados: essa etapa tem como objetivo analisar os resultados obtidos, 

reconhecendo e explanando possíveis limitações, utilizando como base os valores do: (i) 

desempenho dos diversos parâmetros de configuração de treinamento das bibliotecas; (ii) 

WER do português brasileiro; (iii) desempenho das bibliotecas em um computador desktop; 

e (iv) processamento e uso de memória do reconhecimento desenvolvido em diferentes 

dispositivos móveis;   

6. Conclusão: essa etapa tem como objetivo analisar as contribuições da pesquisa e apresentar 

sugestões relevantes de trabalhos futuros. 

1.4 ESTRUTURA DA DISSERTAÇÃO 

O trabalho está organizado em 6 capítulos correlacionados. O Capítulo 1 apresenta uma 

contextualização do tema proposto nesse trabalho, estabelecendo os resultados esperados, por meio 

da definição dos objetivos da pesquisa, e apresentando as delimitações do trabalho permitindo uma 

visão clara do escopo proposto.  

No Capítulo 2 é demonstrada a fundamentação teórica sobre os assuntos relevantes ao tema, 

sendo eles: (i) reconhecimento de voz; (ii) extração de características do áudio; (iii) decodificador, 

focando nos assuntos relacionados aos modelos acústico e de linguagem; e (iv) métricas de avaliação. 

O Capítulo 3 apresenta o resultado da revisão sistemática da literatura para obter o estado da 

arte do tema da pesquisa. Os resultados dessa revisão demostram as melhores abordagens atualmente 

utilizadas no reconhecimento de voz contínuo. 

No Capítulo 4 descreve as etapas utilizadas no desenvolvimento do reconhecimento de voz 

proposto, sendo elas: (i) instalação das bibliotecas; (ii) preparação dos corpora linguísticos; (iii) 

implementação do treinamento; e (iv) implementação dos testes. 

O Capítulo 5 é dedicado à discussão dos resultados obtidos no estudo comparativo dos valores: 

(i) do WER do português brasileiro dos diversos parâmetros de configuração de treinamento das 

bibliotecas; (ii) do desempenho das bibliotecas em um computador desktop; e (ii) do processamento 

e uso de memória do reconhecimento proposto em diferentes dispositivos móveis. 



25 

 

O Capítulo 6 apresenta as conclusões do trabalho, relacionando os objetivos do trabalho com 

os resultados obtidos. Além disso, são listadas as contribuições da pesquisa, as publicações realizadas 

durante o desenvolvimento da dissertação e os trabalhos futuros. 



26 

 

2  FUNDAMENTAÇÃO TEÓRICA 

Este capítulo apresenta a base teórica dos temas abordados na dissertação. Além de servir 

como base para o desenvolvimento do trabalho, a fundamentação teórica esclarece os conceitos que 

auxilia no entendimento da pesquisa. 

Os principais conceitos e elementos utilizados para auxiliar esse estudo são: reconhecimento 

de voz contínuo, extração de características do áudio, decodificador e métricas de avaliação, 

introduzidos, respectivamente, nas seções 2.1, 2.2, 2.3 e 2.4. 

2.1 RECONHECIMENTO DE VOZ 

O reconhecimento de voz é o processo de converter o sinal de voz analógico em sua 

representação textual, isto é, o texto gerado é composto pela sequência de palavras que foram 

identificadas a partir do sinal de entrada (RUSSELL; NORVIG, 2004; SILVA, 2010; VEIGA, 2013).  

Segundo Gordillo (2013), esse reconhecimento processa a mensagem contida na onda acústica 

por meio do processo de classificação dos sinais em sequências de padrões, e requer conhecimentos 

de diferentes áreas, tais como fisiologia, acústica, processamento de sinal, linguística, computação, 

entre outros. 

De acordo com Yu e Deng (2015), o reconhecimento de voz é uma área de pesquisa que está 

ativa por mais de cinco décadas. Antigamente, a voz era pouco utilizada na IHC, visto que a mesma 

não superava a eficiência e precisão do teclado e do mouse. Isso deve-se ao fato que a tecnologia da 

época não era boa o suficiente; porém, nos últimos anos, o poder computacional aumentou, 

possibilitando o treinamento de modelos maiores e mais complexos, reduzindo assim o WER (Word 

Error Rate, em português: taxa de erro de palavras).  

Para Jurafsky e Martin (2008), a fala entre humano e computador é mais fácil de reconhecer 

do que a fala entre humanos, isto é, reconhecer a fala de humanos conversando com computadores, 

por exemplo, via comando de voz, tende a ser mais fácil do que reconhecer o discurso de dois seres 

humanos conversando entre si. Um dos motivos para essa facilidade é porque quando os humanos 

falam com computadores, eles tendem a simplificar bastante a fala, ou seja, falando mais devagar e 

com mais clareza. 



27 

 

Segundo Veiga (2013), o reconhecimento de voz simula o sistema de audição humana, e tem 

seu desempenho influenciado pelas características que afetam o sinal da fala, tais como o vocabulário 

utilizado, características dos locutores e ruídos de fundo. A subseção 2.1.2 irá aprofundar o 

conhecimento sobre esses fatores de complexidade para o reconhecimento de voz. 

Além disso, para que o reconhecimento tenha um bom desempenho é importante conhecer as 

características do sinal da voz (ALENCAR, 2005); isso é base para a seção 2.2 na qual são descritos 

os métodos de extração dessas características. Além do mais, é fundamental descrever: os fatores que 

aumentam a complexidade do reconhecimento de voz e a sua estrutura básica. 

2.1.1  Características da Voz 

Nos seres humanos a voz é produzida da seguinte maneira: o ar proveniente dos pulmões 

provoca uma vibração ao passar pelas cordas vocais, porém esse som ainda é fraco e possui poucos 

harmônicos. Esse som então é amplificado ao passar pelas cavidades de ressonância, que são 

formadas pela laringe, faringe, fossas nasais e boca. Os movimentos da língua, lábios, mandíbula, 

dentes e palato também auxiliam na formação da voz (HUCHE; ALLALI, 1999; GORDILLO, 2013; 

MELO, 2011). 

A taxa de amostragem3 de um sinal de áudio é entre 8 e 16 kHz, e a precisão de cada medição 

é determinada pelo fator de quantização4, que geralmente são de 8 a 12 bits. Um sistema de baixo 

custo, no qual a amostragem de 8 kHz com quantização de 8 bits exigiria quase a metade de um 

megabyte por minuto de fala. A quantidade de dados gerada durante a fala é grande, porém as 

características essenciais da voz mudam lentamente, isto é, requer uma menor quantidade de dados 

para representar as características mais importantes. Por isso, em sistemas de voz resumem-se as 

propriedades do sinal ao longo de intervalos chamados quadros, e cada quadro é representado por um 

vetor de características que será visto na seção 2.2 (PATRA, 2007; RUSSELL; NORVING, 2004).  

                                                 

 

 

 
3 É o número de amostras de um sinal analógico, obtidas em um certo intervalo de tempo, para conversão em um sinal 

digital. O número de amostras dessa taxa deve ser o suficiente para reconstituir o sinal analógico original. 
4 É o número de bits utilizado na representação do sinal e determina a resolução do conversor. 



28 

 

Além disso, esse sinal de áudio possui diversas informações sobre o locutor, que são 

classificadas em: (i) baixo nível, que são os tons, intensidade, correlações espectrais, entre outros; e 

(ii) alto nível, que são variações na entonação, tais como dialeto, contexto, estilo de falar, estado 

emocional (por exemplo, dor e alegria), entre outros (GORDILLO, 2013; MÜLLER, 2006; PATRA, 

2007; PLANNERER, 2005). 

As palavras são a interpretação gráfica dos sons da voz, e a fonologia é o estudo dos fonemas 

(sons da linguagem) que compõem palavras, isto é, relaciona os sons da fala com as funções que eles 

exercem em um idioma. Os fonemas são as unidades sonoras mais simples da língua, e dividem-se 

em vogais, semivogais e consoantes. O fonema não apresenta significado próprio, entretanto é 

utilizado para diferenciar palavras (COPPIN, 2010; GORDILLO, 2013; MAIA, 1999; SILVEIRA, 

1986). O Quadro 2 apresenta exemplos de fonemas de palavras do português. 

Quadro 2 - Exemplo de fonema de palavras 

Palavra Fonema 

Hoje = 4 letras /o/ /j/ /e/ = 3 fonemas 

Táxi = 4 letras /t/ /a/ /k/ /s/ /i/ = 4 fonemas 

Elevador = 8 letras /e/ /l/ /e/ /v/ /a/ /d/ /o/ /r/ = 8 fonemas 

O fonema é o elemento básico do som, que é caracterizado pelo fato de que duas palavras são 

diferentes se pelo menos um de seus elementos básicos diferirem. Por exemplo, as frases “ontem 

comi um pão no café da manhã” e “ontem comi um cão no café da manhã”, apresentam uma diferença 

sonora que faz mudar o sentido da palavra, apenas mudando um de seus elementos básicos 

(ALENCAR, 2005; GORDILLO, 2013). 

Uma descoberta importante da fonologia é que todos os idiomas possuem um repertório 

limitado de aproximadamente 40 ou 50 sons, chamados de fones. Um fone é o som que corresponde 

a uma única vogal ou consoante, mas existem algumas complicações, pois “lh” e “rr” possuem fones 

singulares. Além do mais, algumas letras produzem fones diferentes, por exemplo o som da letra “c” 

da palavra “casa” é diferente se comparado com o da palavra “céu” (RUSSELL; NORVIG, 2004). 

2.1.2  Fatores de Complexidade 

O entendimento de todas as características da voz humana por parte do computador é uma 

tarefa difícil e complexa de se realizar, porém alguns problemas que afetam a precisão do 



29 

 

reconhecimento vêm sendo reduzidos e eliminados, com pesquisas na área e com o surgimento de 

novas tecnologias (SILVA, 2010). 

Além do tipo de reconhecimento de voz (palavras isoladas ou contínuo) existem outros fatores 

que tornam o reconhecimento de voz uma tarefa difícil e complexa, como por exemplo o tamanho do 

vocabulário, variabilidade, tipo de locutor, presença de ruído e limitações do corpus. 

Quanto maior for o tamanho do vocabulário, maior é a probabilidade de erro do 

reconhecimento de voz, por dois motivos: (i) sistemas com grandes vocabulários possuem muitas 

palavras que são homófonas, isto é, apresentam a mesma pronúncia, por exemplo “sessão/cessão”, 

“mais/mas”, “consertar/concertar”, entre outros; e (ii) o tempo de treinamento e a quantidade de 

memória utilizada aumenta linearmente com o aumento do vocabulário, ou seja, é proporcional ao 

número de palavras. Em comparação, os sistemas com vocabulários de tamanho reduzido apresentam 

ótimos resultados, pois são menos suscetíveis a erros. Vocabulários considerados pequenos possuem 

menos de 20 palavras, já os grandes possuem mais de 20 mil palavras (ALENCAR, 2005; 

GORDILLO, 2013; JURAFSKY; MARTIN, 2008; SILVA, 2010). 

Outra complexidade está relacionada à variabilidade de fatores internos ou externos do áudio. 

Os fatores internos são as diferenças: (i) de uma pessoa para outra, que está relacionado a diversidade 

de gênero, idade e sotaques dos locutores, isto é, cada locutor apresenta características diferentes de 

fala; e (ii) em um mesmo indivíduo, que ocorrem devido a distintas situações físicas e psicológicas, 

tais como estado emocional, contexto da conversação, inclusão de ruídos do ambientes, e além disso, 

a mesma palavra, se pronunciada várias vezes, pode apresentar diferentes formas de onda. Já os 

fatores externos estão relacionados ao modo de transmissão do sinal acústico, pois pode haver 

diferenças entre caraterísticas de microfones, linhas de transmissão, entre outros. Na fala nenhum 

som é exatamente idêntico a outro (ALENCAR, 2005; GORDILLO, 2013; HUCHE; ALLALI, 1999; 

MAIA, 1999; SILVA, 2010). 

Os sistemas de reconhecimento de voz podem ser classificados como dependentes ou 

independentes de locutor. No dependente o sistema é treinado somente para um locutor, sendo assim, 

reconhece apenas o locutor para o qual foi treinado, e por esse motivo apresenta uma boa taxa de 

acerto. Já os sistemas independentes de locutor são capazes de reconhecer a fala de qualquer locutor, 

mesmo aquele que não participou do treinamento do sistema (JURAFSKY; MARTIN, 2008; SILVA, 

2010). 



30 

 

Treinar modelos acústicos que modelam toda a variabilidade do sinal de voz necessita de um 

corpus com uma grande variedade e quantidade de amostras, isto é, modelar corretamente a maioria 

das variações acústicas aumenta a confiabilidade dos resultados do sistema de reconhecimento de voz 

de amplo vocabulário e independente do locutor. Entretanto, para o português brasileiro a 

disponibilidade de corpora de voz de grande porte é uma das principais limitações, pois os que 

existem atualmente possuem poucas horas de duração. Além disso, para treinar um modelo que utiliza 

um enorme corpus é necessário possuir computadores com elevada capacidade de armazenamento e 

de processamento (VEIGA, 2013; GORDILLO, 2013; SILVA, 2010). 

Uma das maiores dificuldades existentes no reconhecimento de voz é a presença de ruído no 

sinal da voz. Os ruídos do ambiente, tais como vozes de outros locutores, sons de equipamentos, e, 

até mesmo, os provocados pelo próprio locutor (tosses, espirros, suspiros, respiração forte, entre 

outros), são inevitáveis e influenciam no conteúdo do sinal, fazendo com que a mensagem que o 

emissor quer transmitir seja diferente à que o receptor vai ouvir (ALENCAR, 2005; GORDILLO, 

2013; SILVA, 2010). 

Durante o reconhecimento, quanto menor a presença de ruído no sinal de voz mais fácil é para 

o decodificador identificar o que foi dito, pois reconhecer a fala de um locutor em um escritório 

silencioso é muito mais fácil do que reconhecer a fala de um locutor em um carro na estrada com a 

janela aberta (JURAFSKY; MARTIN, 2008; SILVA, 2010). 

Os ruídos podem ser do tipo: (i) estacionário, se possuir uma densidade espectral que não varia 

com o tempo, como o caso do ruído branco, o qual tem a sua potência distribuída uniformemente no 

espectro de frequência, gerando um espetro de potência plana, e (ii) não estacionário, se suas 

densidades espectrais mudam com o tempo, por exemplo, as vozes espontâneas, efeitos da respiração, 

entre outros. Além desses tipos de ruído, existe um ruído chamado de distorção, esse se une com o 

sinal de voz no domínio do tempo (GORDILLO, 2013).  

Segundo Ferreira e Souza (2017), os sistemas de reconhecimento de voz atuais não possuem 

precisão absoluta, visto que é praticamente impossível que um sistema seja perfeito a ponto de 

abranger todos os fatores de complexidade citados nessa seção. 

 



31 

 

2.1.3  Estrutura do Reconhecimento de Voz Contínuo 

A estrutura básica dos sistemas de reconhecimento de voz, representada na Figura 1, é dividida 

em duas etapas: 

1. Extração de características: aplica algoritmos no sinal de voz da entrada a fim de 

representá-lo de uma forma mais compacta e robusta. Para isso, é necessário converter o 

sinal analógico em uma representação digital, e, além disso, é necessário determinar o que 

é silêncio/ruído e o que de fato é informação de voz útil, reduzindo assim a quantidade de 

informação de voz e diminuindo, consequentemente, o custo computacional (MELO, 

2011; VEIGAS, 2013). 

2. Decodificador: procura a melhor sequência de palavras num conjunto de hipóteses 

possíveis dada a representação de características do sinal de voz.  Essa etapa utiliza os 

modelos: (i) acústico, que transforma o sinal que está sendo processado em palavras e 

sentenças; e (ii) de linguagem, que é responsável por caracterizar o idioma e condicionar 

a combinação de palavras descartando frases gramaticalmente incorretas (FERREIRA; 

SOUZA, 2017; SILVA, 2010; VEIGAS, 2013). 

Figura 1 - Estrutura do reconhecimento de voz 

 

Fonte: Adaptado de Sampaio Neto (2011); Silva (2010); Veiga (2013). 

Nas seções 2.2 e 2.3 serão fundamentadas as etapas: (i) extração de características, no qual 

descreve o funcionamento do MFCC (Mel Frequency Cepstral Coefficients, em português: 

coeficientes cepstrais de frequência Mel); e (ii) decodificador, no qual apresenta os modelos acústico 

e de linguagem. 



32 

 

2.2 EXTRAÇÃO DE CARACTERÍSTICAS DO ÁUDIO 

A extração e seleção da melhor representação paramétrica dos sinais acústicos é uma tarefa 

importante do sistema de reconhecimento de voz, visto que afeta significativamente no seu 

desempenho. Além disso, é importante focar na extração de características, pois um dos problemas 

do reconhecimento de voz é obter informações úteis do áudio. Pode-se citar como exemplo, os 

seguintes métodos de extração de características: MFCC, LPCC (Linear Predictive Cepstral 

Coefficients, em português: coeficientes cepstrais preditivos lineares), PLP (Perceptual Linear 

Prediction, em português: previsão linear perceptual), entre outros. Os coeficientes dinâmicos 

(energia, delta e delta-delta) também podem ser utilizados em conjunto com os anteriores 

(GORDILLO, 2013; TIWARI, 2010; VEIGA, 2013). 

Apesar de existirem muitas representações de características, o MFCC é o mais utilizado para 

o reconhecimento de voz (JURAFSKY; MARTIN, 2008; TIWARI, 2010; VEIGA, 2013). Na revisão 

sistemática da literatura (Capítulo 3 ) a maioria dos trabalhos selecionados também utilizavam esse 

método de extração.  

O MFCC faz uma análise de características espectrais de curto prazo, baseando-se no uso do 

espectro da voz convertido em uma escala de frequências denominada Mel. Essa escala visa 

transcrever as características perceptíveis pelo ouvido humano, ou seja, as de baixo nível, pois são 

foneticamente mais importantes para a percepção humana do que as de alto nível. Em outras palavras, 

a escala Mel tem como objetivo imitar o comportamento dos ouvidos humanos (GORDILLO, 2013; 

PATRA, 2007; SAUNDADE; KURLE, 2014). A Figura 2, representa as etapas da extração de 

características do MFCC. 



33 

 

Figura 2 - Etapas da extração de características do MFCC 

 

Fonte: Tevah (2006). 

Os sinais da voz são representados analogicamente, por isso é necessário realizar a conversão 

analógico-digital para que os computadores possam representar e processar esses sinais. Portanto, o 

reconhecimento de voz pode ser considerado um exemplo de processamento de sinais digitais 

(DINIZ; SILVA; NETTO, 2014; SAUNDADE; KURLE, 2014). 

Primeiramente, é necessário aplicar o filtro pré-ênfase, que é representado pela equação (1), 

no sinal da voz para compensar a atenuação dos componentes de alta frequência. No qual z é o sinal 

de áudio e α é a frequência de corte com valores variando entre 0,95 e 0,98 (GORDILLO, 2013; 

VEIGA, 2013). 

𝐻(𝑧) = 1 − 𝛼𝑧−1 (1) 

Em seguida, é necessário determinar com precisão os pontos de início e fim das palavras, isto 

é, remover o silêncio do sinal de áudio visando reduzir o tempo de cálculo, e após isso realizar a 

segmentação, dividindo o sinal de voz em quadros. Para suavizar cada quadro é aplicado a janela 

Hamming, pois a segmentação apresenta o problema de descontinuidade no início e no final devido 

ao fato de começar e terminar bruscamente, para isso são reduzidos os valores do sinal para zero nos 



34 

 

limites de cada quadro. A equação (2) representa o cálculo da janela Hamming, no qual n é o sinal de 

áudio de cada quadro (GORDILLO, 2013; JURAFSKY; MARTIN, 2008; VEIGA, 2013). 

𝑤(𝑛) =  {
0,54 − 0,46𝑐𝑜𝑠 (

2𝜋𝑛

𝑁 − 1
)       para      0 ≤ 𝑛 ≤ 𝑁 − 1,     

                                            0       para      caso contrário.       
} (2) 

Após a etapa de “janelamento” do sinal, é necessário converter o sinal da voz do seu domínio 

original para uma representação no domínio da frequência. Segundo Diniz, Silva e Netto (2014), para 

isso pode-se utilizar o DFT (Discrete Fourier Transform, em português: transformada discreta de 

Fourier), porém esse apresenta uma limitação que está associada ao grande número de operações 

aritméticas envolvidas no cálculo para longas amostras de sinal. Esse problema foi parcialmente 

resolvido com a criação de algoritmos eficientes para o DFT, conhecidos como FFT (Fast Fourier 

Transform, em português: transformação rápida de Fourier) representado pela equação (3). Além 

disso, o método FFT permite obter o mesmo resultado em menor tempo e complexidade, quando 

comparado com o DFT.  

𝑋(𝑘) =  ∑ 𝑥(2𝑛)𝑊𝑁/2
𝑛𝑘

𝑁/2−1

𝑛=0

+𝑊𝑁
𝑘 ∑ 𝑥(2𝑛 + 1)𝑊𝑁/2

𝑛𝑘

𝑁/2−1

𝑛=0

 
(3) 

Em que, x(n) é o sinal da voz, N é o número de amostras na potência de dois, k é a frequência. 

A equação (3) também apresenta os elementos x(n) dos índices pares e ímpares do sinal. 

Os resultados da FFT são informações sobre a quantidade de energia em cada banda de 

frequência. Como já visto, a audição humana é menos sensível em frequências mais altas, então nessa 

etapa ocorre apenas a extração dos recursos essenciais. Para isso, aplica-se um banco de filtros à 

potência espectral, que é formado por filtros triangulares, espaçados de acordo com a escala de 

frequência Mel, representada pela equação (4), no qual f é a frequência de corte (GORDILLO, 2013; 

JURAFSKY; MARTIN, 2008). 

𝑚𝑒𝑙(𝑓) = 1127𝑙𝑛 (1 +
𝑓

700
) (4) 

Após esse cálculo é realizado o log de cada um dos valores do espectro Mel, visto que a 

resposta humana ao nível do sinal é logarítmica. O uso do log faz com que o recurso seja menos 



35 

 

sensível a variações na entrada, como por exemplo as variações de energia devido à proximidade do 

microfone em relação a boca do locutor (JURAFSKY; MARTIN, 2008). 

Na etapa final, os coeficientes do espectro do log Mel são convertidos novamente no domínio 

do tempo usando a DCT (Discrete Cosine Transform, em português: transformação discreta de 

cosseno). Utilizou-se o DCT porque a maior parte da energia é concentrada em poucos coeficientes, 

e isso é uma propriedade muito importante quando aplicada a sinais de voz. A equação (5) calcula o 

DCT, no qual N é o comprimento do sinal x(n) (DINIZ; SILVA; NETTO, 2014; SAUNDADE; 

KURLE, 2014). 

𝐶(𝑘) = 𝛼(𝑘)∑ 𝑥(𝑛)𝑐𝑜𝑠
𝜋 (𝑛 +

1
2
) 𝑘

𝑁

𝑁−1

𝑛=0

,      para 0 ≤ 𝑘 ≤ 𝑁 − 1 
(5) 

Para calcular o valor de α(k), utiliza-se a equação (6). 

𝛼(𝑘) =  

{
 
 

 
 
√
1

𝑁
        para 𝑘 = 0                    

√
2

𝑁
        para 1 ≤ 𝑘 ≤ 𝑁 − 1   

}
 
 

 
 

 

(6) 

Um vetor acústico de MFCC é computado para cada quadro. Geralmente esse vetor apresenta 

39 elementos, que são: (i) estáticos: 12 coeficientes cepstrais extraídos do MFCC; (ii) dinâmicos: 1 

coeficiente de energia, 13 coeficientes de velocidade (delta) e 13 coeficientes de aceleração (delta-

delta) (GORDILLO, 2013; JURAFSKY; MARTIN, 2008; VEIGA, 2013). 

Os coeficientes dinâmicos são utilizados para captar as mudanças temporais bruscas presentes 

no espectro. A energia de um quadro é calculada por meio da soma ao longo do tempo da capacidade 

das amostras no quadro. A equação (7) representa o cálculo da energia, em que x é um sinal em uma 

janela da amostra de tempo t1 para a amostra de tempo t2 (JURAFSKY; MARTIN, 2008). 

𝐸𝑛𝑒𝑟𝑔𝑖𝑎 = ∑ 𝑥2[𝑡]

𝑡2

𝑡=𝑡1

 (7) 

Para o cálculo do coeficiente delta (Δ) é utilizado regressão linear sobre um quadro, ou seja, 

calculando a diferença entre os quadros anteriores e posteriores. O valor delta d(t) para um 



36 

 

determinado valor cepstral c(t) no tempo t pode ser estimado pela equação (8) (GORDILLO, 2013; 

JURAFSKY; MARTIN, 2008). 

𝑑(𝑡) =
𝑐(𝑡 + 1) − 𝑐(𝑡 − 1)

2
 

(8) 

Os parâmetros de segunda ordem, chamados delta-delta (Δ2), são adquiridos replicando a 

derivada sobre os resultados obtidos na primeira derivação que foi calculada na equação (8) 

(GORDILLO, 2013). 

2.3 DECODIFICADOR 

No decodificador, a sequência textual é concebida pelo modelo acústico e corrigida pelo 

modelo de linguagem. Esses modelos trabalham em conjunto e um depende do outro, pois, como já 

visto, existem palavras homófonas e é praticamente impossível para o modelo acústico diferenciá-

las, por isso utiliza-se o modelo de linguagem (FERREIRA; SOUZA, 2017; JURAFSKY; MARTIN, 

2008; RUSSELL; NORVIG, 2004; SILVA, 2010; VEIGA, 2013). 

Essa etapa necessita de treinamento, visto que é necessário gerar modelos acústicos e de 

linguagem que forneçam bons resultados e que sejam adequados ao contexto de aplicação, mas para 

isso é necessário possuir grandes corpora de áudio e de linguagem. No treinamento do modelo 

acústico, os vetores de características do sinal da voz são utilizados para determinar um padrão que 

melhor represente cada frase do corpus. Já o treinamento de linguagem é utilizado para modelar e 

compreender as regras gramaticais. Na etapa de teste, após o treinamento de todos os modelos, utiliza-

se a extração de características para converter o sinal de entrada em parâmetros e o decodificador 

para encontrar a melhor sentença (MELO, 2011; SAMPAIO NETO, 2011; VEIGA, 2013). 

Para solucionar os problemas complexos do reconhecimento de voz são utilizados, nos 

modelos acústicos e de linguagem, algumas técnicas de IA (Inteligência Artificial), tais como HMM 

(Hidden Markov Models, em português: modelos ocultos de Markov), RNA (Redes Neurais 

Artificiais) e PLN (Processamento de Linguagem Natural). Segundo Russell e Norvig (2004), a IA 

surgiu logo após a segunda guerra mundial (1956), e tenta não apenas compreender, mas também 

construir entidades inteligentes. Para Coppin (2010, p.4), “IA envolve utilizar métodos baseados no 



37 

 

comportamento inteligente de humanos e outros animais para solucionar problemas complexos”. Já 

para Luger (2013, p.1) “IA pode ser definida como o ramo da ciência da computação que se ocupa 

da automação do comportamento inteligente”. 

Essa seção está estruturada da seguinte forma: na subseção 2.3.1 será descrito o modelo 

acústico, juntamente com a descrição da RNA e do HMM; e na subseção 2.3.2 será descrito o modelo 

de linguagem com base no PLN e com foco no modelo n-grama.   

2.3.1  Modelo Acústico 

O modelo acústico é o componente do sistema de reconhecimento de fala responsável por 

definir, a partir das características extraídas do áudio de entrada, a sequência mais provável de: 

palavras, se o reconhecimento for do tipo isolado; ou fonemas, no caso de reconhecimento de voz 

contínuo (PERICO; SHINOHARA; SARMENTO, 2014; SILVA, 2010). Nessa dissertação o modelo 

acústico é baseado em fonemas, pois foi desenvolvido o reconhecimento de voz contínuo. 

O dicionário fonético é indispensável no processo de treino de modelos acústicos. Esse 

dicionário é uma lista de palavras que são possíveis de reconhecer, com suas respectivas pronúncias 

expressas em uma sequência de fonemas. Isto é, tem como objetivo converter as palavras em fonemas, 

e ao contrário, convertendo de fonema para texto (FERREIRA; SOUZA, 2017; JURAFSKY; 

MARTIN, 2008; SILVA, 2010; TEVAH, 2006; VEIGA, 2013). 

Nesse modelo são utilizados dois tipos de classificadores: (i) RNA, que resolve o problema 

do reconhecimento de padrões da sequência de características, que diferenciam o sinal de voz, por 

meio de um processo de aprendizagem; (ii) modelo estatístico HMM, que é utilizado para solucionar 

o problema do treinamento da RNA no reconhecimento de voz, pois pode combinar as probabilidades 

acústicas produzidas pela rede com as probabilidades de transição de estado do HMM, ou seja, esses 

geralmente são utilizados em conjunto, combinando suas potencialidades, gerando assim sistemas 

híbridos bastante robustos para a tarefa de reconhecimento de voz contínuo (ALENCAR, 2005; 

GRAVES; JAITLY; MOHAMED, 2013; HAYKIN, 2001; MÜLLER, 2006; SAMPAIO NETO, 

2011; SILVA, 2010). Ambos os classificadores utilizados no modelo acústico para o reconhecimento 

dos padrões da fala serão apresentados nos tópicos a seguir.  

 



38 

 

2.3.1.1 Redes Neurais Artificiais 

A RNA tem como principal fonte de inspiração as redes neurais biológicas, visto que se 

assemelha ao cérebro humano em dois aspectos básicos: (i) o conhecimento é adquirido pela rede a 

partir de seu ambiente, por intermédio do processo de aprendizagem; e (ii) as forças de conexão entre 

neurônios são utilizadas para armazenar o conhecimento adquirido. As RNAs são utilizadas para 

solucionar problemas complexos, tais como: reconhecimento de padrões (diagnósticos médicos, 

previsões no mercado financeiro, entre outros), processamento de sinais e imagens, sistemas de 

controle, classificação, entre outros (HAYKIN, 2001; SPÖRL; CASTRO; LUCHIARI, 2011).  

As redes neurais também são conhecidas como sistemas conexionistas, e isso faz com que a 

informação e o processamento da rede sejam distribuídos e paralelos, pois os neurônios processam as 

suas entradas simultaneamente e independentemente (LUGER, 2013; RUSSELL; NORVIG, 2004). 

Essas redes são compostas por cinco elementos básicos, sendo eles: (i) sinais de entrada (xn): 

são dados que podem vir do ambiente ou da ativação de outros neurônios; (ii) pesos sinápticos (wkn): 

são conexões entre os neurônios da rede, que possuem um peso para representar a força da conexão, 

podendo ser negativo ou positivo; (iii) bias (bk): valor aplicado externamente a cada neurônio e tem 

o efeito de aumentar ou diminuir a entrada da função de ativação; (iv) junção aditiva (υk): realiza as 

somas dos sinais de entrada, ponderados pelos pesos sinápticos; (v) função de ativação (φ): restringe 

a amplitude do valor de saída de um neurônio; e (vi) sinal de saída (yk): são os valores dos neurônios 

da camada de saída e são constituídos por meio da resposta global da rede para o padrão de ativação 

fornecido pelos valores de entrada.  O índice n representa os neurônios da rede e o índice k representa 

um neurônio em questão (COPPIN, 2010; HAYKIN, 2001; LUGER, 2013; RUSSELL; NORVIG, 

2004). A Figura 3 representa visualmente todos os componentes do neurônio artificial descritos no 

parágrafo. 



39 

 

Figura 3 - Modelo de neurônio artificial 

 

Fonte: Haykin (2001). 

A RNA é representada por valores numéricos, com isso pode-se dizer que o processo de 

aprendizado é o resultado de operações numéricas (LUGER, 2013; RUSSELL; NORVIG, 2004).  

Segundo Haykin (2001), a função de ativação é restritiva, pois limita o intervalo do valor da 

saída do neurônio em um valor finito, geralmente, esse intervalo é entre [0,1] ou [-1,1]. No 

reconhecimento de voz as funções mais utilizadas são: (i) sigmoide é definida como uma função 

estritamente crescente que exibe um balanceamento adequado entre comportamento linear e não-

linear, além disso, essa função é contínua, o que permite uma medida mais precisa de erro, visto que 

mapeia a maioria dos valores para regiões próximas a 0 ou 1; (ii) TanH (Tangente Hiperbólica) é 

semelhante a função sigmoide, porém apresenta o intervalo entre -1 a 1, e é utilizada para acelerar o 

processo de treinamento/aprendizagem, necessitando de menos iterações para encontrar uma 

solução.; e (iii) ReLU (Rectified Linear Units, em português: unidades lineares retificadas) é uma 

função de ativação convencionalmente usada nas camadas ocultas para melhorar o treinamento do 

DNN, e funciona por valores de limiar em 0, isto é, gera 0 quando x < 0 e gera uma função linear 

com inclinação de 1 quando x ≥ 0 (AGARAP, 2018; COPPIN, 2010; DIMITRIADIS; BOCCHIERI, 

2015; HAYKIN, 2001; KIPYATKOVA; KARPOV, 2017; LUGER, 2013; MIKOLOV et al., 2010; 

VEIGA, 2013; YU; DENG, 2015).  

Além disso, geralmente utiliza-se a função softmax na camada de saída, em conjunto com 

outras funções de ativação presentes nas camadas ocultas. Essa função auxilia na solução do 

aprendizado profundo de problemas de classificação, por isso é conhecido como uma função de 

classificação (AGARAP, 2018; HAYKIN, 2001). 



40 

 

Uma rede neural pode ser caracterizada por dois aspectos principais: (i) método de 

determinação dos pesos das conexões (algoritmo de treinamento ou aprendizado); e (ii) padrão de 

conexões entre as unidades (arquitetura) (HAYKIN, 2010). Nessa dissertação serão utilizadas a 

aprendizagem supervisionada e as arquiteturas MLP (Multilayer Perceptron, em português: 

perceptron multicamadas) e RNN (Recurrent Neural Network, em português: rede neural recorrente). 

Algoritmo de aprendizagem é o procedimento utilizado para modificar os pesos sinápticos da 

rede. Esse peso associado a cada conexão pode ser alterado em resposta a conjuntos específicos de 

entradas e de eventos, visto que se a saída da rede estiver incorreta, os pesos serão ajustados para 

melhor classificar a entrada (COPPIN, 2010).  

Na aprendizagem supervisionada o aprendizado ocorre da seguinte forma: a RNA é exposta a 

um corpus pré-classificado, e para cada amostra desse conjunto a rede oferece uma saída. Essa saída 

é então comparada com a saída desejada do corpus, a diferença entre a resposta desejada e a resposta 

real da rede gera um sinal de erro, e com isso são ajustados os parâmetros da rede de modo a reduzir 

o erro. Dessa forma, o conhecimento disponível é transferido para a rede neural por meio de 

treinamento, e quando o conhecimento for adquirido pode-se então dispensar o corpus. Esse 

procedimento tem o efeito de produzir um conjunto de pesos que pretende minimizar o erro sobre 

todo o corpus (HAYKIN, 2001; LUGER, 2013).  

Após a execução de cada amostra do conjunto de treinamento, inicia-se novamente o mesmo 

processo, isso é chamado de época, e são repetidas até alcançar algum critério de parada. Para cada 

época é essencial randomizar o corpus de treinamento para evitar possíveis vícios da rede.  Um dos 

critérios de parada consiste em definir uma taxa mínima de erro aceitável e forçar a parada, porém 

esse critério pode resultar em um encerramento prematuro do processo de aprendizagem, ou pode 

requerer um tempo longo para atingir o valor desejado ou, no pior caso, nunca atingir. Outro critério 

utilizado para encerrar o ajuste dos pesos é o mínimo local ou global da superfície de erro (HAYKIN, 

2001; RUSSELL; NORVIG, 2004). 

Um fator que impacta no aprendizado é a taxa de aprendizagem, pois quanto menor for a taxa, 

menor serão as variações dos pesos sinápticos da rede, entretanto o custo disso é uma aprendizagem 

lenta, isto é, requer mais épocas. Por outro lado, ao utilizar uma alta taxa o processo de aprendizagem 

é acelerado, visto que há grandes modificações nos pesos sinápticos, porém pode deixar a rede 

instável (HAYKIN, 2001).  



41 

 

Como já visto, a RNA consiste em vários neurônios organizados em camadas. Basicamente 

as redes possuem uma camada de entrada, que provocam a ativação de alguns neurônios e esses 

enviam sinais aos neurônios aos quais estão conectados. Desse modo, um padrão complexo de 

ativações é organizado pela rede, resultando na ativação dos neurônios da camada de saída. Isto é, 

quando uma entrada é dada, a saída não aparece imediatamente porque leva um tempo para os sinais 

passarem de um neurônio ao outro (COPPIN, 2010). Atualmente há uma família de arquiteturas, cada 

qual adequada para funcionalidades específicas; abaixo serão descritas as arquiteturas MLP e RNN. 

A MLP é chamada de redes alimentadas adiante com múltiplas camadas. Alimentação adiante 

quer dizer que os dados são alimentados a partir dos nós de entrada em direção aos nós de saída, ou 

seja, os sinais de saída da primeira camada são utilizados como entradas para a segunda camada, e 

assim por diante; e múltiplas camadas quer dizer que a rede, além das camadas de entrada e saída, 

possui uma ou mais camadas ocultas. A adição de camadas ocultas aumenta o espaço de hipóteses 

que a rede pode representar, e com isso, resolvem problemas que não são linearmente separáveis, tais 

como a função OU exclusivo, também conhecida como XOR (COPPIN, 2010; HAYKIN, 2001; 

RUSSELL; NORVIG, 2004). 

A função dos neurônios ocultos é intervir entre a entrada e a saída da rede de uma maneira 

útil, agindo como detectores de características, isto é, esses neurônios começam a encontrar 

características que individualizam os dados de treinamento conforme o processo de aprendizagem 

avança. Além disso, a quantidade de neurônios na camada de entrada e saída da rede e a existência e 

quantidade de neurônios nas camadas ocultas são características do problema a ser resolvido 

(COPPIN, 2010; HAYKIN, 2001). 

Os erros das camadas ocultas são emblemáticos uma vez que os dados de treinamento não 

informam quais valores os nós ocultos devem possuir, por isso a análise da fonte de erro na camada 

de saída é complexa, e consequentemente, dificulta os ajustes dos pesos. Para facilitar isso existe um 

algoritmo de retropropagação (em inglês: backpropagation) que consiste em iniciar a sua execução 

na camada de saída e propagar o erro retroativamente através das camadas ocultas (LUGER, 2013; 

RUSSELL; NORVIG, 2004). 

De acordo com Haykin (2001), a retropropagação é baseada na aprendizagem supervisionada 

e consiste em dois passos, um para frente (propagação) e o outro para trás (retropropagação). No 

passo para frente, são inseridos os valores de entrada do conjunto de treinamento, para obter os valores 



42 

 

de saída, que é a resposta real da rede, e então é calculado o sinal de erro (diferença entre a resposta 

real e desejada). Durante o passo para trás, os pesos sinápticos são todos ajustados de acordo com o 

erro calculado, para fazer com que a resposta real da rede se mova para mais perto da resposta 

desejada, em um sentido estatístico. 

A Figura 4 demonstra a arquitetura de uma rede MLP, com uma camada de entrada, uma 

camada oculta e uma camada de saída. Como pode-se perceber essa rede é totalmente conectada, ou 

seja, um neurônio de qualquer camada está conectado a todos os neurônios da camada posterior 

(quando possuir). Entretanto, se algumas das conexões sinápticas estiverem faltando, pode-se dizer 

que a rede é parcialmente conectada (HAYKIN, 2001). 

Figura 4 - Arquitetura da MLP 

 

Fonte: Adaptado de Haykin (2001). 

Uma arquitetura RNN se distingue de uma MLP quando apresenta um ou mais laços de 

realimentação, isto é, utiliza suas saídas para alimentar de volta suas entradas. Uma rede recorrente 

pode consistir: (i) em uma única camada de neurônios com cada neurônio alimentando seu sinal de 

saída de volta para as entradas de todos os outros; ou (ii) com a presença de uma camada oculta no 

qual as conexões de realimentação se originam dos neurônios ocultos ou de saída (COPPIN, 2010; 

HAYKIN, 2001). 

A presença de realimentação tem um impacto profundo na capacidade de aprendizagem da 

rede e no seu desempenho, além disso, o uso de realimentação faz com que as RNN sejam aplicáveis 

em diversas áreas, tais como previsão não-linear e modelagem, equalização adaptativa de canais de 

comunicação, processamento de voz, entre outros. Qualquer que seja o uso, as redes recorrentes 

apresentam a característica de serem estáveis (HAYKIN, 2001; RUSSELL; NORVIG, 2004). A 

Figura 5 representa a arquitetura de uma RNN. 



43 

 

Figura 5 - Arquitetura da RNN 

 

Fonte: Haykin (2001). 

Resumindo, a resposta da rede a uma determinada entrada depende das entradas iniciais e das 

anteriores, e com isso pode-se dizer que este tipo de RNA possui uma memória de curto prazo. 

Entretanto, em algumas aplicações há a necessidade da RNN possuir LSTM (Long Short-Term 

Memory, em português: memória de longo prazo), que é projetada para modelar sequências temporais 

e suas dependências de longo alcance de maneira mais precisa do que as RNNs convencionais, pois 

contém unidades especiais chamadas blocos de memória na camada oculta recorrente. Esses blocos 

possuem células de memória que armazenam o estado temporal da rede, além de unidades 

multiplicativas especiais chamadas de portas, que controlam o fluxo de informações (RUSSELL; 

NORVIG, 2004; SAK; SENIOR; BEAUFAYS, 2014). 

2.3.1.2 Modelos Ocultos de Markov 

Uma cadeia de Markov é um autômato finito ponderado5, pois a sequência de entrada 

determina de maneira única quais estados o autômato irá passar, porém não são apropriados para a 

marcação de fala. Isso ocorre porque, na marcação da fala, enquanto observa-se as palavras na 

entrada, não se observa os fonemas, assim não se pode condicionar qualquer probabilidade. Por isso 

utiliza-se o HMM, visto que permite ponderar os estados observados (palavras na entrada) e os ocultos 

(fonemas) no modelo probabilístico. Isto é, são capazes de modelar tanto as variabilidades acústicas 

                                                 

 

 

 
5 Um autômato finito é definido por um conjunto de estados e transições entre estados que são baseadas nas observações 

de entrada. Já um autômato finito ponderado é um simples aumento do autômato finito no qual cada arco é associado a 

uma probabilidade, indicando o caminho a ser seguido (JURAFSKY; MARTIN, 2008). 



44 

 

como temporais do sinal de voz, e permitem a construção hierárquica dos modelos acústicos das 

sentenças (GORDILLO, 2013; JURAFSKY; MARTIN, 2008; SILVA, 2010). 

Os HMMs são aplicados para a identificação temporal de fonemas, palavras ou frases, pois é 

uma técnica largamente utilizada para estimação dos símbolos indicados pelo sinal codificado, ou 

seja, a sua principal característica é a modelagem temporal de sequências de símbolos (MÜLLER, 

2006; RUSSELL; NORVIG, 2004). Nessa dissertação serão utilizados os modelos HMM baseados 

em fonemas.  

No reconhecimento de voz, é comum a utilização da estrutura esquerda-direita (do inglês: letf-

right), isto é, o estado atual depende apenas do anterior e só pode transitar para ele próprio ou para o 

seguinte. Cada estado oculto está associado a um vetor de probabilidades para cada fonema de 

observação, por isso pode ser facilmente entendido como sendo um gerador de sequências de vetores. 

A Figura 6 mostra o modelo básico de um HMM com 3 estados emissores e 2 não emissores que são 

utilizados para concatenação de modelos, ou seja, o estado de saída do modelo de um fonema pode 

estar ligado ao de entrada de outro, criando assim um HMM composto, e isso permite a formação de 

palavras. A probabilidade de transição do estado i para o estado j que ocorre a cada tempo t é definida 

por aij, e o estado sofre transição para ele quando i=j. O bi(xt) é a probabilidade da observação x no 

tempo t dado o estado i (GORDILLO, 2013; JURAFSKY; MARTIN, 2008; RUSSELL; NORVIG, 

2004; SILVA, 2010; TEVAH, 2006; VEIGA, 2013). 

Figura 6 - Modelo HMM com estrutura esquerda-direita 

 

Fonte: Adaptado de Silva (2010) e Veiga (2013). 

Em outras palavras, o HMM é definido pelos seguintes parâmetros: número de estados, matriz 

de probabilidades de transição entre estados e uma função de densidade de probabilidade, que 



45 

 

caracteriza os parâmetros acústicos observados nesse estado. A razão pela qual os HMMs são 

populares é que seus parâmetros podem ser estimados automaticamente a partir de uma grande 

quantidade de dados, e, além disso, são simples e computacionalmente viáveis (HUANG; DENG, 

2010; VEIGA; 2013). 

O número de estados e a topologia dos modelos HMM são definidos antes de iniciar o 

processo de construção dos modelos de transições de estados e treinamento das probabilidades dessas 

transições. O método de treino do ML (Maximum Likelihood, em português: máxima verosimilhança) 

é muito utilizado para estimar os parâmetros dos modelos recorrendo ao algoritmo de viterbi 

(MÜLLER, 2006; VEIGA, 2013). 

O algoritmo viterbi cria N colunas de estado. Para cada coluna, e para cada estado na coluna 

1, calcula-se a probabilidade de mover para cada estado na coluna 2 e assim por diante. Esse algoritmo 

de decodificação é o mais utilizado em HMMs, para o processamento de fala e linguagem. Essa 

técnica obtém de maneira rápida a sequência mais provável de estados para uma sequência emitida 

pelo HMM, pois em vez de considerar todas as combinações de transições de estado possíveis, 

considera somente a sequência com maior probabilidade de produzir a sequência de observações, ou 

seja, para o reconhecimento de voz interessa apenas uma classificação ordenada das probabilidades, 

visto que isso já permite determinar qual palavra foi reconhecida. Por exemplo, a palavra inglesa 

tomato pode ser pronunciada de diferentes formas devido aos efeitos do dialeto e de coarticulação, e 

a função do algoritmo é escolher qual o melhor caminho, conforme a Figura 7 (ALENCAR, 2005; 

GORDILLO, 2013; JURAFSKY; MARTIN, 2008; RUSSELL; NORVIG, 2004). 

Figura 7 - Diagrama com as transições permitidas da palavra inglesa tomato 

 

Fonte: Russell e Norvig (2004). 

 

 



46 

 

2.3.2  Modelo de Linguagem 

No reconhecimento de voz contínuo de grande vocabulário é inviável desenvolver um corpus 

com todas as frases possíveis para lidar com a gramática do idioma, pois em um vocabulário de 

tamanho X com o reconhecimento de uma sequência de Y palavras, existem XY possibilidades. Para 

isso, faz-se o uso de modelos de linguagem, que buscam caracterizar a língua para capturar suas 

regularidades e assim condicionar as combinações de palavras, evitando frases gramaticalmente 

incorretas (SILVA, 2010; TEVAH, 2006; GORDILLO, 2013). 

O modelo de linguagem define um caminho de maior probabilidade, em relação à conexão 

das palavras dentro de uma sentença levando em consideração as regras gramaticais, isto é, esses 

modelos são construídos a partir de regras gramaticais básicas que são otimizadas pelo sistema por 

meio de probabilidade. Em outras palavras, estima a probabilidade de uma palavra, em uma sentença, 

dadas as palavras anteriores (MÜLLER, 2006; SILVA et al., 2004). 

Gordillo (2013) apresenta um exemplo de um problema que pode ser resolvido pelo modelo 

de linguagem: as palavras “norte” e “morte” apresentam ondas sonoras quase idênticas, porém sabe-

se que quando a palavra anterior for “polo” a próxima palavra será “norte”. Isso melhora 

consideravelmente o desempenho e taxa de erro do reconhecedor, pois reduz significativamente o 

espaço de busca da frase correta. 

Esse modelo utiliza o PLN para processar e manipular a linguagem falada em diversos níveis. 

Segundo Coppin (2010), os cinco níveis de processamento e manipulação da linguagem são 

fonologia, morfologia, sintaxe, semântica e pragmática. A fonologia esteve presente no modelo 

acústico, e a pragmática, que tem como objetivo compreender o contexto da frase, não é utilizada 

nessa dissertação. A morfologia, sintaxe e semântica são descritas abaixo: 

1. Morfologia é o primeiro estágio da análise que é aplicado a palavras que foram 

identificadas pelo sistema. Esse estágio baseia-se em regras que analisam as palavras e as 

classificam segundo tabelas de afixos. Por exemplo, a entrada ‘zinho’ de uma tabela de 

sufixos está associada a um diminutivo de um substantivo, portanto, a palavra bonezinho 

é o diminutivo da palavra boné, que é seu radical. Com isso, antes do nível de sintaxe, são 

reconhecidas e corrigidas as palavras que não estão na sua forma padrão. A análise 

morfológica é importante para determinar o papel de uma palavra em uma sentença 

(LUGER, 2013; MÜLLER, 2006). 



47 

 

2. No nível da sintaxe são aplicadas as regras de gramática do idioma que está sendo 

utilizado, ou seja, a sintaxe determina o papel de cada palavra em uma sentença para 

verificar se as palavras geram uma frase válida e gramaticalmente correta (COPPIN, 2010; 

LUGER, 2013). 

3. Semântica examina o significado das sentenças formadas. Apesar do extenso 

processamento realizado nas análises morfológica e sintática, apenas com essas não é 

possível distinguir certas categorias de palavras e muito menos prever o objetivo da frase, 

isto é, a sentença pode estar sintaticamente correta, mas ser incorreta semanticamente 

(LUGER, 2013; MÜLLER, 2006). 

A maneira mais usada e simples de se obter as probabilidades do modelo de linguagem é com 

a utilização de n-grama, que dependem apenas das palavras anteriores da frase, ou seja, a 

probabilidade de cada palavra em uma sentença depende apenas das n−1 palavras anteriores a ela. O 

custo computacional para validar o modelo é proporcional ao valor de n, isto é, se o n for muito grande 

então o custo computacional pode ser muito alto (GORDILLO, 2013; SILVA, 2010; TEVAH, 2006). 

Ao capturar a correlação existente entre palavras anteriores, os n-grama acabam absorvendo 

a sintaxe, semântica e pragmática existente nas frases observadas. Isso os faz extremamente efetivos 

no idioma português, visto que a ordem das palavras é importante, uma vez que os efeitos contextuais 

vêm dos vizinhos mais próximos, sem a necessidade de criação de regras e nem de uma gramática 

formal. As distribuições de probabilidade são computadas diretamente de frases prontas e a estimação 

pode ser executada simplesmente contando o número de ocorrências, porém para se obter uma boa 

estimação é necessário um conjunto de milhares de frases (SILVA, 2010; TEVAH, 2006). 

Nos sistemas de reconhecimento de voz os modelos de linguagem tendem a ser 2-grama e 3-

grama. Pode-se usar também 4-grama, entretanto isso exige uma enorme quantidade de memória, 

dificultando a sua utilização pelos aplicativos de linguagem em dispositivos móveis (JURAFSKY; 

NORVIG, 2004; SILVA, 2010). Segundo Russell e Norvig (2004), a forma de calcular 2-grama está 

representada na equação (9), no qual apenas é considerada a palavra anterior. 

𝑃(𝑊) = 𝑃(𝑤𝑛|𝑤𝑛−1) 
(9) 



48 

 

Uma grande vantagem do modelo 2-grama é a facilidade de treinar o modelo, contando apenas 

o número de vezes que cada par de palavras ocorre em um corpus para estimar as probabilidades. Por 

exemplo, na Figura 8, a probabilidade da palavra “eu” ser antes de “sou” é de 0,67, pois a palavra 

“eu” aparece três vezes no corpus, porém a palavra “sou” aparece apenas duas vezes após a palavra 

“eu”, ou seja, quando aparecer “eu sou” na frase tem 67% de estar correto. No corpus de linguagem 

utiliza-se marcadores de início e fim de sentenças, tais como <s> e </s>, respectivamente (LUGER, 

2013; RUSSELL; NORVIG, 2004; SILVA, 2010). 

Figura 8 - Cálculo de probabilidades 

 
 

Fonte: Adaptado de Jurafsky e Norvig (2008). 

Já no modelo 3-grama a interpretação da palavra atual depende das duas anteriores, e seu 

cálculo é representado pela equação (10) (LUGER, 2013; RUSSELL; NORVIG, 2004).  

𝑃(𝑊) = 𝑃(𝑤𝑛|𝑤𝑛−2𝑤𝑛−1) 
(10) 

O uso de 3-grama, se comparado com o 2-grama, apresenta melhor desempenho, pois a 

maioria das palavras possui uma forte dependência das duas palavras anteriores. Por exemplo, a frase 

“comeu uma bandana” está correta no modelo 2-grama, visto que o mesmo calcula a probabilidade 

da palavra “bandana” com a palavra anterior “uma”. Já com o modelo 3-grama é possível notar que 

a frase está semanticamente incorreta, uma vez que calcula a probabilidade da palavra “bandana” com 

as palavras anteriores “comeu uma”, com isso, o modelo de linguagem deverá localizar uma palavra 

para realizar a correção do erro, e a tendência será a palavra “banana” (RUSSELL; NORVIG, 2004; 

SILVA, 2010). 

 



49 

 

2.4 MÉTRICAS DE AVALIAÇÃO 

O desempenho do reconhecimento de voz depende da precisão dos modelos acústicos, da 

complexidade da tarefa definida pelo modelo de linguagem e da qualidade do sinal de áudio 

adquirido. Para isso, existem na literatura diversas funções matemáticas as quais podem ser chamadas 

de métricas de avaliação. Para esse trabalho serão estudadas as seguintes: WER, SER (Sentence Error 

Rate, em português: taxa de erro de sentença) e xRT (Real Time Factor, em português: fator em 

tempo real) (FERREIRA; SOUZA, 2017; SAMPAIO NETO, 2011; VEIGA, 2013). 

A WER é uma das métricas mais utilizadas em sistemas de reconhecimento de voz contínuo 

(TEVAH, 2006). Isso também pode ser observado na revisão sistemática da literatura (Capítulo 3 ), 

haja visto que todos os trabalhos selecionados utilizavam essa métrica para avaliar a qualidade. Para 

Jurafsky e Martin (2008), a WER é baseada na quantidade de palavras que foram inseridas 

incorretamente, que foram excluídas e que foram substituídas em comparação com a frase de 

referência. Essa taxa é calculada pela equação (11). 

𝑊𝐸𝑅 = 
𝑆 + 𝐼 + 𝐸

𝑁
 (11) 

No qual, N é o número total de palavras da frase de referência e S, I e E são, respectivamente, 

o número total de erros por substituição, inserção e exclusão da frase gerada em comparação com a 

frase de referência. A Figura 9 apresenta um exemplo de comparação entre as frases de referência e 

gerada. Como pode-se observar a frase gerada apresenta duas substituições, uma inclusão e uma 

exclusão, totalizando quatro erros, e a frase de referência possui cinco palavras, sendo assim, ao 

substituir os respectivos valores na equação (11), o valor do WER é de 0,8 (80%). 

Figura 9 - Comparação entre as frases de referência e gerada para cálculo do WER 

 
  

Segundo Ferreira e Souza (2017), a SER representa quantas frases possuem pelo menos um 

erro, ou seja, quantas frases apresentaram um WER maior que 0%.  A SER é calculada utilizando a 

equação (12). 



50 

 

𝑆𝐸𝑅 =  
𝐸

𝑇
 (12) 

Em que E é a quantidade de sentenças com pelo menos um erro e T é a quantidade total de 

sentenças. Por exemplo, em um corpus com 100 frases, apenas 30 apresentaram um WER maior que 

0%, sendo assim, a SER é de 0,3 (30%).  

Já o fator xRT é utilizado para calcular a velocidade do processo de reconhecimento de voz, 

ou seja, é calculado dividindo o tempo que o sistema gasta para reconhecer uma sentença pela sua 

duração, de acordo com a equação (13). Assim, quanto menor for o fator xRT mais rápido será o 

reconhecimento (SAMPAIO NETO, 2011). 

𝑥𝑅𝑇 =  
𝑃

𝐷
 (13) 

Em que P é o tempo de processamento gasto para realizar o reconhecimento da voz do arquivo 

de áudio e D é o tempo de duração do arquivo de áudio. Por exemplo, o computador leva 1,2 segundo 

para reconhecer um arquivo de 28 segundos, então o seu fator xRT é 0,04. 

2.5 CONSIDERAÇÕES 

Neste capítulo foram apresentados os conceitos básicos do reconhecimento de voz, 

descrevendo as características da voz e os fatores de complexidade. Além disso, foram apresentadas 

as etapas que são utilizadas pelo reconhecimento de voz contínuo, juntamente com a descrição de 

suas principais técnicas.  

O uso das técnicas de IA neste trabalho tem o propósito de melhorar o desempenho e as 

métricas de avaliação do reconhecimento de voz contínuo. Dentre essas técnicas de IA pode-se citar 

o uso de RNA, HMM e PLN no desenvolvimento dos modelos acústico e de linguagem. 

 



51 

 

3  ESTADO DA ARTE 

Este capítulo apresenta a revisão sistemática da literatura que tem como objetivo identificar e 

selecionar as principais técnicas que são utilizadas na extração de características do áudio e na 

implementação dos modelos, acústico e de linguagem, para o desenvolvimento do reconhecimento 

de voz contínuo. Para isso, realizou-se uma revisão contemplando artigos publicados nos últimos 

cinco anos em quatro repositórios diferentes, sendo esses: ACM, IEEE, ScienceDirect e Scopus. Além 

disso, o presente capítulo possui duas publicações, que são demonstradas na seção 6.1. 

O capítulo está organizado da seguinte maneira: a seção 3.1 apresenta a revisão sistemática de 

literatura com o protocolo de busca e os trabalhos selecionados que oferecem uma proposta de solução 

relevante a esse problema; na seção 3.2 é realizada uma análise comparativa dos trabalhos 

relacionados; e na seção 3.3 são apresentadas algumas considerações sobre esse capítulo. 

3.1 REVISÃO SISTEMÁTICA DA LITERATURA  

De acordo com Kitchenham e Charters (2007), uma revisão sistemática da literatura é um 

meio de identificar, avaliar e interpretar todas as pesquisas disponíveis e relevantes para uma 

determinada questão de pesquisa ou uma área de interesse. Os motivos mais comuns para realizar 

essa revisão são para: (i) sumarizar as evidências existentes sobre uma tecnologia; (ii) identificar 

lacunas na pesquisa atual; (iii) criar uma base para posicionar adequadamente novas atividades de 

pesquisa; (iv) examinar até que ponto a evidência empírica sustenta ou contradiz as hipóteses; e (v) 

auxiliar na geração de novas hipóteses. 

A metodologia aplicada nessa revisão consiste na delimitação: (i) das perguntas de pesquisa; 

(ii) dos repositórios e estratégia de pesquisa; e (iii) seleção dos artigos. 

3.1.1  Perguntas de Pesquisa 

Com base no objetivo dessa revisão sistemática da literatura foram desenvolvidas três 

perguntas de pesquisa que são apresentadas no Quadro 3. 

 

 



52 

 

Quadro 3 - Perguntas de pesquisa da revisão sistemática da literatura 

ID Pergunta de pesquisa 

P1 Quais técnicas estão sendo utilizadas na implementação do modelo acústico do 

reconhecimento de voz contínuo? 

P2 Quais técnicas estão sendo utilizadas na implementação do modelo de linguagem para 

aperfeiçoar o reconhecimento de voz contínuo? 

P3 Quais soluções estão sendo estudadas para reduzir as taxas de erros do reconhecimento 

de voz contínuo? 

Essas perguntas de pesquisa não abordaram o português brasileiro, pois as técnicas, 

identificadas e selecionadas na revisão, podem ser adaptadas para qualquer corpus de voz, de qualquer 

idioma. Além disso, não foi abordado o termo off-line, porque muitas técnicas do modo on-line 

também podem ser adaptadas. 

3.1.2  Repositórios e Estratégia de Pesquisa 

Para responder a essas perguntas, foram selecionados quatro repositórios eletrônicos. No 

Quadro 4, pode-se observar o nome e o endereço de acesso na web de cada um. 

Quadro 4 - Repositórios eletrônicos 

Repositório Endereço de acesso 

ACM http://www.acm.org 

IEEE http://ieeexplore.ieee.org 

ScienceDirect http://www.sciencedirect.com 

Scopus https://www.scopus.com 

Com base nos repositórios selecionados desenvolveu-se uma expressão de busca a partir de 

palavras-chave que não apresentassem redundância nos resultados, visando contemplar o maior 

número de artigos, e ao mesmo tempo servindo como um filtro para o retorno dos artigos mais 

relevantes ao tema.  

Utilizou-se a seguinte expressão de busca, utilizada na pesquisa em cada repositório: 

"continuous speech recognition" E ("acoustic models" OU "neural networks" OU ann OU "deep 

learning") E ("language models" OU lm OU n-gram OU "natural language processing" OU nlp). 

Esses termos de busca foram adaptados para o formato de cada repositório de busca, ou seja, sem 

alterar as palavras ou o valor dos operadores lógicos.  

 



53 

 

3.1.3  Seleção dos Artigos 

Os critérios de inclusão e exclusão para a escolha dos artigos são apresentados no Quadro 5. 

Quadro 5 - Critérios de inclusão e exclusão 

Inclusão Exclusão 

CI1: artigos publicados entre 01/01/2014 até 

31/12/2018. 

CE1: artigos que não possuem resultados 

relacionados ao desenvolvimento do 

reconhecimento de voz contínuo. 

CI2: expressão de busca filtrando os artigos por 

meio do título, resumo e palavras-chave. 

CE2: artigos que não apresentam o 

desenvolvimento do modelo acústico e do 

modelo de linguagem. 

CI3: artigos em inglês e português. CE3: ausência de especificação das técnicas 

utilizadas no desenvolvimento dos modelos 

acústico e de linguagem. 

 CE4: artigos curtos (5 páginas ou menos). 

Além dos critérios, realizou-se a seleção dos artigos por meio da leitura dos seguintes tópicos: 

(i) título e palavras-chave; (ii) resumo; e (iii) introdução e conclusão. Esses critérios para a leitura e 

seleção foram úteis para minimizar o esforço na leitura e seleção de trabalhos que realmente 

contribuem para responder às perguntas do tema de pesquisa. 

3.1.4  Resultados 

Ao aplicar a expressão de busca e considerar os critérios de inclusão e exclusão em cada 

repositório, foram localizados 80 artigos, porém 16 artigos apareceram em mais de um repositório, 

ou seja, apenas 64 artigos foram descobertos. Em seguida, realizou-se a seleção desses artigos, por 

meio da leitura do título, palavras-chave, resumo, introdução e conclusão. Após essa seleção, o 

número de artigos reduziu para 10, isto é, apenas 16% dos artigos descobertos apresentaram alguma 

relação direta com o tema proposto. A Tabela 1 apresenta o número de artigos descobertos e 

selecionados por repositório, já os artigos excluídos podem ser consultados no APÊNDICE A. 

Tabela 1 - Número de artigos descobertos e selecionados 

Repositório Descobertos Selecionados 

ACM 7 0 

IEEE 20 3 

ScienceDirect 3 1 

Scopus 34 6 



54 

 

O Quadro 6 apresenta os artigos selecionados em ordem alfabética, cada qual com a sua 

identificação, título, repositório e ano de publicação.  

Quadro 6 - Relação de artigos selecionados 

Identificação Título Repositório Ano 

Abushariah (2017) TAMEEM V1.0: speakers and text independent Arabic 

automatic continuous speech recognizer 

Scopus 2017 

Georgescu, Cucu e 

Burileanu (2017) 

SpeeD's DNN approach to Romanian speech 

recognition 

IEEE 2017 

Kipyatkova e 

Karpov (2017) 

A study of neural network Russian language models 

for automatic continuous speech recognition systems 

Scopus 2017 

LAleye et al. 

(2016) 

First automatic fongbe continuous speech recognition 

system: Development of acoustic models and language 

models 

IEEE 2016 

Naing et al. (2015) A Myanmar large vocabulary continuous speech 

recognition system 

IEEE 2015 

Pakoci, Popović e 

Pekar (2017) 

Language model optimization for a deep neural 

network based speech recognition system for Serbian 

Scopus 2017 

Pakoci, Popović e 

Pekar (2018) 

Improvements in Serbian Speech Recognition Using 

Sequence-Trained Deep Neural Networks 

Scopus 2018 

Phull e Kumar 

(2016) 

Investigation of Indian English speech recognition 

using CMU sphinx 

Scopus 2016 

Tachbelie, Abate e 

Besacier (2014) 

Using different acoustic, lexical and language 

modeling units for ASR of an under-resourced 

language – Amharic 

ScienceDirect 2014 

Zhang, Bao e Gao 

(2015) 

Mongolian speech recognition based on deep neural 

networks 

Scopus 2015 

A Figura 10 representa graficamente os artigos selecionados por ano. A maioria desses artigos 

foram publicados no ano de 2017. 

Figura 10 - Artigos selecionados por ano 

 
  



55 

 

A próxima seção apresenta uma análise comparativa, que tem como objetivo responder as três 

perguntas de pesquisa de maneira sintetizada por meio da leitura de cada artigo do Quadro 6, visando 

facilitar a interpretação e a tabulação dos dados.  

3.2 ANÁLISE COMPARATIVA 

O Quadro 7 apresenta os artigos selecionados e as técnicas utilizadas na implementação dos 

modelos, acústico e de linguagem, para cada artigo.  

Quadro 7 - Técnicas utilizadas na implementação dos modelos 

Identificação Modelo Acústico Modelo de Linguagem 

Abushariah (2017) HMM 1-grama, 2-grama e 3-grama 

Georgescu, Cucu e Burileanu 

(2017) 

RNN e HMM 1-grama, 2-grama e 3-grama 

Kipyatkova e Karpov (2017) HMM RNN-LM e 3-grama 

LAleye et al. (2016) Métodos "monofone" e 

"trifone" da biblioteca Kaldi 

3-grama, utilizando a ferramenta 

SRILM 

Naing et al. (2015) MLP e HMM Word-base 

Pakoci, Popović e Pekar 

(2017) 

MLP e HMM 1-grama, 2-grama e 3-grama 

Pakoci, Popović e Pekar 

(2018) 

MLP, RNN e HMM 1-grama, 2-grama e 3-grama 

Phull e Kumar (2016) HMM e HMM 2-grama e 3-grama 

Tachbelie, Abate e Besacier 

(2014) 

HMM 3-grama, utilizando a ferramenta 

SRILM 

Zhang, Bao e Gao (2015) MLP e HMM 2-grama e 3-grama 

As principais técnicas utilizadas no desenvolvimento do modelo acústico foram o HMM 

(Hidden Markov Models, em português: modelos ocultos de Markov) e as RNA (Redes Neurais 

Artificiais): MLP (Multilayer Perceptron, em português: perceptron multicamadas) e RNN 

(Recurrent Neural Network, em português: rede neural recorrente). Esses tipos de redes neurais 

artificias também são conhecidos como sendo DNN (Deep Neural Network, em português: rede 

neural profunda), e são aplicados com sucesso em modelos acústicos de sistemas de reconhecimento 

de voz de última geração, pois permitem que dados complexos sejam bem modelados (DAHL et al., 

2012). O modelo 3-grama foi a principal técnica utilizada no desenvolvimento do modelo de 

linguagem.  Esses assuntos foram abordados no Capítulo 2 . 

No Quadro 8 são apresentadas as soluções mais utilizadas para reduzir a taxa de erro do 

reconhecimento de voz contínuo. 



56 

 

Quadro 8 - Soluções para reduzir a taxa de erro 

Identificação Solução para reduzir a taxa de erro 

Abushariah (2017) - 

Georgescu, Cucu e Burileanu 

(2017) 

Utilizando modelos acústicos baseados em DNN 

Kipyatkova e Karpov (2017) Com um modelo de linguagem baseado em RNN e 3-grama 

LAleye et al. (2016) Removendo diacríticos de tons do modelo de linguagem 

Naing et al. (2015) Utilizando DNN 

Pakoci, Popović e Pekar (2017) Combinando o uso de DNN, HMM e modelo de linguagem 

Pakoci, Popović e Pekar (2018) Utilizando uma DNN de 8 camadas com 625 neurônios cada 

Phull e Kumar (2016) - 

Tachbelie, Abate e Besacier 

(2014) 

Utilizando unidades acústicas de sílabas baseado em morfema 

Zhang, Bao e Gao (2015) Utilizando redes neurais profundas em conjunto com HMM 

A grande maioria dos artigos selecionados apresentam alguma solução para reduzir as taxas 

de erros do reconhecimento de voz, e pode-se notar que, em muitos casos, essa solução está associada 

ao uso de DNN. 

Com a leitura dos artigos foi possível extrair diversas particularidades essenciais para o 

reconhecimento de voz. A partir disso, elaborou-se o Quadro 9 para destacar e comparar os métodos 

de extração de características de áudio, se usou ou não bibliotecas para facilitar a implementação e 

os idiomas de cada artigo selecionado. 

Quadro 9 - Extração de características, bibliotecas e idioma dos artigos selecionados 

Identificação Extração de 

características  

Bibliotecas Idioma 

Abushariah (2017) MFCC CMUSphinx Árabe (11 países) 

Georgescu, Cucu e Burileanu 

(2017) 

MFCC Kaldi Romeno 

Kipyatkova e Karpov (2017) MFCC HTK Russo 

LAleye et al. (2016) MFCC Kaldi Fongbe 

Naing et al. (2015) MFCC - Myanmar 

Pakoci, Popović e Pekar (2017) - Kaldi Sérvio 

Pakoci, Popović e Pekar (2018) MFCC Kaldi Sérvio 

Phull e Kumar (2016) MFCC CMUSphinx Inglês Indiano 

Tachbelie, Abate e Besacier (2014) MFCC CMUSphinx Amárica 

Zhang, Bao e Gao (2015) MFCC - Mongol 

Pode-se observar que as bibliotecas CMUSphinx, HTK (Hidden Markov Models Toolkit, em 

português: kit de ferramentas dos modelos ocultos de Markov) e Kaldi foram utilizadas para facilitar 

a implementação dos modelos, acústico e de linguagem. Além disso, o principal método de extração 



57 

 

de características do áudio é por meio do MFCC (Mel Frequency Cepstral Coefficients, em português: 

coeficientes cepstrais de frequência Mel), que foi abordado no Capítulo 2 . 

Ainda de acordo com o Quadro 9, pode-se notar que praticamente todos os artigos 

selecionados desenvolveram o reconhecimento de voz para algum idioma específico. Para isso, é 

necessário possuir um corpus de voz e de texto. O Quadro 10 realiza uma comparação do tamanho 

dos corpora de texto e voz dos artigos selecionados. 

Quadro 10 - Corpora de texto e voz utilizados nos trabalhos relacionados 

Identificação Corpora de voz Corpora de texto 

Abushariah 

(2017) 

Foram utilizadas 41.005 sentenças, resultando em 

cerca de 45 horas de dados de fala coletados de 36 

falantes nativos de 11 países árabes diferentes 

41.005 sentenças do 

corpus de voz 

Georgescu, Cucu 

e Burileanu 

(2017) 

Três corpora: (i) 100 horas em ambiente 

silencioso; (ii) 28 horas de transmissões de 

programas de entrevistas (afetados por ruídos) e 

noticiários (discurso limpo); e (iii) 103 horas de 

duração de conversação 

Dois corpora: 315 

milhões de palavras 

coletadas de sites de 

notícias; e 40 milhões de 

palavras de transcrições 

de reuniões 

Kipyatkova e 

Karpov (2017) 

Áudio de 327 frases, onde cada frase foi 

pronunciada por 50 oradores com língua russa 

nativa (25 de ambos os sexos). A gravação foi 

realizada em uma sala à prova de ruído, com 

duração total de 21 horas 

Corpus de textos russos 

construídos a partir de 

notícias eletrônicas, com 

mais de 350 milhões de 

palavras 

LAleye et al. 

(2016) 

10 horas de fala, contendo 1.500 frases, gravados 

em um ambiente silencioso, com 28 falantes 

nativos, 8 mulheres e 20 homens. Os áudios foram 

gravados em 16 kHz 

Corpus de 34.653 frases, 

com quase 10.130 

palavras 

Naing et al. 

(2015) 

4 mil frases com 40 horas de duração, gravadas em 

um ambiente aberto. Participaram da gravação 52 

oradores do sexo masculino e 48 do sexo feminino 

86 mil frases 

Pakoci, Popović 

e Pekar (2017) e 

Pakoci, Popović 

e Pekar (2018) 

Dois corpora: (i) 154 horas de duração, com 87 

mil enunciados, com uma média de 15 palavras 

cada, com 21 locutores do sexo masculino e 27 

locutores do sexo feminino; e (ii) 61 horas de 

duração, com 170 locutores do sexo masculino e 

181 do sexo feminino. Ambos com boa qualidade 

de gravação 

Cerca de 1,5 milhões de 

palavras, das quais apenas 

121.000 são diferentes, 

extraídas do corpus 

textual jornalístico sérvio  

Phull e Kumar 

(2016) 

75 locutores com 15 minutos cada, 

correspondendo o total de 23 horas. Os áudios 

foram amostrados no formato de 16 kHz e 16 bit 

64.000 palavras, que 

ocorrem mais de 100 

vezes no corpus 

Tachbelie, Abate 

e Besacier (2014) 

20 horas de treinamento de discurso coletadas de 

100 falantes, com um total de 10.850 sentenças 

120.262 frases 



58 

 

Zhang, Bao e 

Gao (2015) 

78 horas de duração, de diálogos, notícias e artigos 

em mongol, e com 193 oradores diferentes, sendo 

110 homens e 83 mulheres 

85 milhões de tokens de 

páginas da web em 

mongol 

Os resultados alcançados nos trabalhos relacionados são apresentados na Tabela 2 

considerando os percentuais WER (Word Error Rate, em português: taxa de erro de palavras), que 

foi abordado no Capítulo 2 . Quanto menor essa taxa, maior será a precisão da saída do 

reconhecimento de voz. 

Tabela 2 - Melhores resultados obtidos nos trabalhos relacionados 

Identificação Melhor WER obtido 

Abushariah (2017) 2,68% 

Georgescu, Cucu e Burileanu (2017) 4,5%6 

Kipyatkova e Karpov (2017) 22,87% 

LAleye et al. (2016) 14,83% 

Naing et al. (2015) 15,63% 

Pakoci, Popović e Pekar (2017) 12,01% 

Pakoci, Popović e Pekar (2018) 7,23% 

Phull e Kumar (2016) 19% 

Tachbelie, Abate e Besacier (2014) 13,3% 

Zhang, Bao e Gao (2015) 12,37% 

Na Tabela 2, pode-se observar que o WER médio foi de 14,01% com vários idiomas, e esse 

trabalho tem como objetivo alcançar essa porcentagem para o português brasileiro. Além disso, 

apenas os trabalhos de Pakoci, Popović e Pekar (2017) e de Pakoci, Popović e Pekar (2018), 

apresentaram resultados da taxa de erro das palavras em modo off-line e para mobile. 

3.3 CONSIDERAÇÕES 

Nesse capítulo foi apresentado o estado da arte sobre o desenvolvimento do reconhecimento 

de voz contínuo. O uso dos critérios de inclusão e exclusão ajudou na seleção dos artigos mais 

relevantes, pois todos os artigos selecionados apresentaram diferentes respostas e soluções para as 

questões de pesquisa. 

                                                 

 

 

 
6 Em base de dados sem ruídos, porém em uma base com ruído o WER foi de 20,2%. 



59 

 

Os trabalhos selecionados foram úteis para descobrir: (i) as técnicas utilizadas na 

implementação dos modelos, acústico e de linguagem; (ii) as soluções existentes para reduzir a taxa 

de erro; (iii) as técnicas utilizadas na extração das características do áudio; (iv) as bibliotecas 

utilizadas para a implementação; (v) o tamanho dos corpora de texto e voz; e (vi) os melhores 

resultados obtidos.  

Essa revisão auxiliou na aquisição de conhecimento sobre as vantagens de cada abordagem, e 

as melhores foram utilizadas no desenvolvimento do reconhecimento off-line de voz contínuo do 

português brasileiro para dispositivos móveis, com o objetivo de obter um bom processamento e uso 

da memória e um baixo valor da métrica WER. O capítulo a seguir descreverá a implementação do 

reconhecimento de voz contínuo proposto. 

 



60 

 

4  DESENVOLVIMENTO 

Este capítulo descreve os procedimentos que foram utilizados para o desenvolvimento do 

reconhecimento off-line de voz contínuo, que são: (i) instalação das bibliotecas CMUSphinx, HTK 

(Hidden Markov Models Toolkit, em português: kit de ferramentas dos modelos ocultos de Markov) 

e Kaldi; (ii) preparação dos corpora linguísticos utilizados; (iii) implementação do treinamento; e (iv) 

implementação dos testes em computadores desktops e em dispositivos móveis. Além disso, o 

presente capítulo possui uma publicação, que pode ser encontrada na seção 6.1. 

4.1 INSTALAÇÃO DAS BIBLIOTECAS 

A rapidez no desenvolvimento do reconhecimento de voz contínuo foi um dos principais 

motivos para a utilização de bibliotecas, porém é necessário que elas estejam em constante atualização 

e que tenham uma boa documentação. As bibliotecas CMUSphinx, HTK e Kaldi são as mais 

utilizadas nos artigos selecionados no Capítulo 3 e atendem aos requisitos previamente mencionados. 

Essas bibliotecas são gratuitas e foram instaladas em um computador com o sistema 

operacional Antergos (distribuição Linux baseada em Arch Linux) versão 64 bits. A escolha pelo 

Linux se deu devido a fácil instalação das bibliotecas, pois com algumas linhas de comandos é 

possível instalar as bibliotecas e suas dependências. 

Nas subseções abaixo serão descritos os detalhes da instalação dessas bibliotecas.  Além disso, 

será realizado um comparativo das técnicas utilizadas nos artigos do Capítulo 3 com as técnicas 

utilizadas pelas bibliotecas. 

4.1.1  CMUSphinx 

Segundo Lee, Hon e Reddy (1990), o Sphinx é uma biblioteca para reconhecimento de voz 

contínuo independente de locutor. Essa biblioteca utiliza a técnica HMM (Hidden Markov Models, 

em português: modelos ocultos de Markov) no modelo acústico e a técnica n-grama no modelo de 

linguagem. 

As ferramentas CMUSphinx são projetadas especificamente para plataformas de baixo 

recurso e a sua licença é semelhante à BSD (Berkeley Software Distribution), que permite a 



61 

 

distribuição comercial. Além disso, essa biblioteca pode ser utilizada para diversas finalidades 

relacionadas ao reconhecimento de voz, tais como identificação de palavras-chave, alinhamento, 

avaliação de pronúncia, entre outros (CMUSPHINX, 2019). 

O kit de ferramentas CMUSphinx possui diversos pacotes de bibliotecas para diferentes 

tarefas e aplicações. Nesse trabalho utilizou-se o pacote PocketSphinx que é ideal para ser utilizada 

em sistemas embarcados. O Pocketsphinx é escrito na linguagem de programação C e pode ser 

utilizado com Linux, Microsoft Windows, MacOS, iPhone e Android (CMUSPHINX, 2019). 

A biblioteca PocketSphinx depende da instalação de outras bibliotecas: (i) SphinxBase, que é 

a base para todos os projetos CMUSphinx; e (ii) SphinxTrain, que fornece ferramentas de treinamento 

de modelo acústico. O download das bibliotecas é realizado pelo website7, e a instalação é por meio 

da compilação dos códigos-fonte das bibliotecas usando o programa “make”8. Nesse trabalho utilizou 

as bibliotecas “pocketsphinx”, “sphinxbase” e o “sphinxtrain” da versão “5prealpha” (CMUSPHINX, 

2019). 

4.1.2  HTK 

O HTK, disponível na linguagem de programação C, é um kit de ferramentas para construir e 

manipular HMMs.  O HTK é usado principalmente para a pesquisa de reconhecimento de voz, porém 

pode ser utilizado em inúmeras aplicações, tais como pesquisa em síntese de voz, reconhecimento de 

caracteres e sequenciamento de DNA. Além disso, as ferramentas do HTK fornecem recursos 

sofisticados para análise de fala, treinamento de HMM, testes e análise de resultados (HTK, 2019). 

Para realizar o download da biblioteca é necessário se cadastrar no website e estar de acordo 

com a sua licença de uso9. Embora a Microsoft mantenha os direitos autorais do código-fonte do 

HTK, os desenvolvedores podem fazer alterações e contribuí-los para inclusão nas futuras versões. 

Após baixar o código-fonte da biblioteca é necessário compilá-lo utilizando o programa “make”. Esse 

                                                 

 

 

 
7 Link para download da biblioteca CMUSphinx: https://cmusphinx.github.io/wiki/download/ 
8 É responsável por construir automaticamente programas e bibliotecas executáveis a partir do código-fonte. 
9 Link para download da biblioteca HTK: http://htk.eng.cam.ac.uk/download.shtml 



62 

 

projeto inclui o HTKBook10 que é uma documentação detalhada sobre cada funcionalidade. Nesse 

trabalho foi utilizada a versão estável 3.4.1 da biblioteca (HTK, 2019). 

4.1.3  Kaldi 

Segundo Povey et al. (2011), Kaldi é um kit de ferramentas de código aberto para 

reconhecimento de voz desenvolvido na linguagem de programação C++ e licenciado sob a Apache 

License v2.0. As suas ferramentas compilam em sistemas do tipo Unix e Microsoft Windows, e a 

biblioteca está disponível para download em seu website11. A biblioteca está hospedada na plataforma 

GitHub e neste trabalho utilizou-se a versão 5.5. 

As bibliotecas CMUSphinx e HTK são as principais concorrentes do Kaldi, porém essas 

bibliotecas não possuem uma estrutura baseada em transdutor de estado finito, amplo suporte à 

álgebra linear e uma licença não restritiva (POVEY et al., 2011). Além disso, o Kaldi é a única 

biblioteca entre as três que possui suporte a DNN (Deep Neural Network, em português: rede neural 

profunda), tais como, MLP (Multilayer Perceptron, em português: perceptron multicamadas) e RNN 

(Recurrent Neural Network, em português: rede neural recorrente) (KALDI, 2019). 

A instalação do Kaldi também é por meio do programa “make”. Essa biblioteca possui 

dependências de ferramentas externas, e nesse trabalho foram utilizadas as seguintes: (i) OpenFST, é 

a ferramenta mais importante para o Kaldi, pois como visto a estrutura da biblioteca é baseada em 

transdutor de estado finito; (ii) OpenBLAS, é responsável pelo suporte à álgebra linear; e (iii) SRILM 

(SRI Language Modeling Toolkit, em português: kit de ferramentas do modelo de linguagem SRI), é 

responsável por executar o modelo de linguagem (KALDI, 2019). A biblioteca possui uma 

documentação detalhada sobre cada funcionalidade12. 

 

 

                                                 

 

 

 
10 Link para download do HTKBook: http://htk.eng.cam.ac.uk/docs/docs.shtml 
11 Link para download da biblioteca Kaldi: http://kaldi-asr.org 
12 Documentação da biblioteca Kaldi: http://kaldi-asr.org/doc/ 



63 

 

4.1.4  Comparativo 

O Quadro 11 apresenta um comparativo das técnicas utilizadas nos artigos do Capítulo 3 com 

as técnicas utilizadas pelas bibliotecas, para a implementação dos modelos acústico e de linguagem. 

Quadro 11 - Comparativo entre o estado da arte do trabalho e as bibliotecas 

 Estado da arte CMUSphinx HTK Kaldi 

Extração de 

características 

MFCC MFCC MFCC MFCC e PLP 

Modelo acústico HMM, MLP e 

RNN 

HMM HMM fMLLR, GMM, 

HMM, MLLR, 

MLP, RNN, 

MLP-HMM e 

RNN-HMM 

Modelo de 

linguagem 

1-grama, 2-grama 

e 3-grama 

1-grama, 2-grama 

e 3-grama 

2-grama e 3-

grama 

Kit de 

ferramentas 

IRSTLM ou 

SRILM 

Métricas de 

avaliação 

WER SER e WER SER e WER SER e WER 

Com base no Quadro 11, pode-se observar que as técnicas utilizadas pelas bibliotecas 

CMUSphinx e Kaldi apresentam uma grande compatibilidade com as técnicas utilizadas nos artigos 

do estado da arte. 

4.2 PREPARAÇÃO DOS CORPORA DE VOZ 

Segundo Bauer e Aarts (2013), corpora linguísticos são coleções de dados de linguagem, 

escritos ou falados, que servem para vários tipos de pesquisa e que podem ser usados em todos os 

ramos da linguística. Em outras palavras, pode-se dizer que os corpora têm como objetivo representar 

uma linguagem particular como um todo. Por exemplo, um pesquisador pode estudar um corpus de 

conversas via telefone para comprovar que as pessoas falam no telefone de maneira diferente do que 

quando conversando pessoalmente. 

Para treinar o modelo acústico do reconhecimento de voz contínuo, é necessário possuir um 

corpus de voz que é um conjunto de arquivos de áudio com suas respectivas transcrições, e 

dependendo do idioma desejado é difícil obtê-lo com arquivos de alta qualidade. O áudio do corpus 

de voz pode ser proveniente de textos que são lidos ou de falas espontâneas do locutor (GORDILLO, 

2013; SILVA, 2010). 



64 

 

De acordo com Ferreira e Souza (2017), para os idiomas que são diferentes do inglês, como 

por exemplo o português brasileiro, a obtenção de um corpus de grande porte e gratuito é um dos 

principais problemas encontrados pelos pesquisadores da área.  

Nesse trabalho, foram utilizados os corpora disponíveis no website do grupo FalaBrasil, 

porém esses corpora possuem poucas horas de duração. Segundo Silva et al. (2005), a maioria dos 

trabalhos publicados para o português brasileiro restringe-se a um vocabulário reduzido. Por isso, o 

modelo de linguagem é constituído apenas pelas frases que estão presentes em cada corpus de voz, 

isto é, o reconhecimento desenvolvido é de vocabulário restrito, pois reconhece apenas as palavras 

que estão nos corpora de voz. 

O corpus LaPS Benchmark13 é composto por 700 frases e possui 35 locutores com 20 frases 

cada, sendo 25 homens e 10 mulheres, o que corresponde a aproximadamente 54 minutos de áudio. 

Todas as gravações foram realizadas em computadores utilizando microfones comuns, e o ambiente 

não é controlado (presença de ruído). A taxa de amostragem utilizada foi de 22050 Hz e cada amostra 

foi representada com 16 bits. 

Para reconhecer diversas variações e então tornar-se mais abrangente, é necessário que o 

reconhecimento de voz seja independente de locutor. As frases devem ser capturadas por muitos 

locutores, preferencialmente de diferentes idades, sotaques e gêneros, para que haja uma grande 

variação no ritmo, timbre e intensidade nos áudios de treinamento. Entretanto nesse caso deve haver 

uma grande variedade de locutores no corpus de treino, o que dificulta a construção de tais sistemas 

(MELO, 2011; SILVA, 2010). 

Já o corpus de voz Constituição Federal14 é composto por 1.255 frases com aproximadamente 

30 segundos de duração cada, totalizando aproximadamente 9 horas de áudio com apenas um locutor 

do sexo masculino. Os arquivos de áudio foram amostrados em 22050 Hz com 16 bits. Além disso, 

utilizou-se um ambiente de gravação controlado, isto é, com pouca presença de ruído. 

                                                 

 

 

 
13 Link para download do corpus LaPS Benchmark: http://bit.ly/2SMWxoR 
14 Link para download do corpus Constituição Federal: http://bit.ly/2Flp8yt 



65 

 

Em cada corpus de voz foi verificado se a escrita estava: (i) normalizada, ou seja, números e 

siglas traduzidos para suas respectivas representações textuais; (ii) com a ortografia correta; (iii) sem 

caracteres especiais e de pontuação; e (iv) em minúsculo, sem a presença de letras em caixa alta. Esses 

itens são importantes para padronizar a escrita dos corpora utilizados. Além disso, foi verificado se 

os arquivos de áudio estavam com a mesma configuração, isto é, mesma taxa de amostragem, fator 

de quantização, entre outros (FERREIRA; SOUZA, 2017; TEVAH, 2006). 

Foi necessário dividir os corpora de voz em arquivos de áudio de treinamento e testes. Dividiu-

se o corpus LaPS Benchmark em: (i) treinamento com 30 locutores (640 arquivos), sendo 23 do sexo 

masculino e 9 do sexo feminino; e (ii) testes com 3 locutores (60 arquivos), sendo 2 do sexo masculino 

e 1 do sexo feminino. Já o corpus Constituição Federal foi dividido em 1.129 arquivos (90%) para 

treinamento e 126 arquivos (10%) para testes. 

Além disso, também foi necessário desenvolver um dicionário fonético para cada corpus 

utilizado. Para isso foi convertido cada palavra em uma sequência de fonemas utilizando a ferramenta 

de conversão de G2P (Grapheme to Phoneme, em português: grafema para fonema) disponibilizada 

de forma gratuita pelo grupo FalaBrasil15. 

Para utilizar estes corpora nas bibliotecas foi necessário realizar a preparação dos dados. Para 

isso, desenvolveu-se a ferramenta SCT (Speech Corpus Treatment, em português: tratamento do 

corpus de voz) que está disponibilizada de forma gratuita no GitLab16. Essa ferramenta foi 

desenvolvida na linguagem de programação Java, e tem como objetivo realizar a preparação dos 

dados dos dois corpora de voz, para as bibliotecas CMUSphinx, HTK e Kaldi. A preparação dos 

dados dos corpora foi baseada na documentação de cada biblioteca. Além disso, essa ferramenta 

poderá ser facilmente adaptada para um novo corpus de voz.  

Essa ferramenta, também possibilita a redução da taxa de amostragem dos arquivos de áudio 

das bibliotecas. Nesse trabalho todos os arquivos de áudio dos dois corpora de voz foram alterados 

para 16000 Hz de taxa de amostragem. 

                                                 

 

 

 
15 Link para download da ferramenta G2P: http://labvis.ufpa.br/falabrasil/downloads/ 
16 Link do GitLab da ferramenta: https://gitlab.com/lucasdebatin/speech-corpus-treatment-kaldi/ 



66 

 

4.3 IMPLEMENTAÇÃO DO TREINAMENTO 

Os modelos acústico e de linguagem do reconhecimento de voz necessitam de treinamento. 

Nessas bibliotecas são utilizadas a técnica de treinamento supervisionado, pois aprendem a classificar 

os dados de treinamento que já foram classificados manualmente pelos humanos (COPPIN, 2010; 

FERREIRA; SOUZA, 2017). 

Para cada biblioteca e para cada corpus foi criado um diretório de treinamento que possui as 

configurações e os arquivos do modelo acústico do corpus, ambos criados de acordo com a 

documentação das bibliotecas. Esses diretórios estão disponibilizados no GitLab17. A Tabela 3 

apresenta o número de treinamentos realizados em cada diretório.  

Tabela 3 - Número de treinamentos realizados 

 CMUSphinx HTK Kaldi 

LaPS Benchmark 10 10 10 

Constituição Federal 10 10 10 

No total foram executados 30 treinamentos em cada corpus, isto é, 10 arquivos com diferentes 

configurações para cada biblioteca. Esses 10 arquivos foram divididos em dois conjuntos, 

modificando a lógica de alteração das configurações, conforme destacados abaixo: 

• Biblioteca CMUSphinx: foram alterados os valores da configuração padrão da biblioteca 

de modo uniforme: (i) reduziu-se os valores em 80%; (ii) reduziu-se os valores em 40%; 

(iii) manteve a configuração padrão; (iv) aumentou-se os valores em 40%; e (v) aumentou-

se os valores em 80%. Além disso, gerou-se mais cinco arquivos de configuração alterando 

os valores padrão previamente mencionados e alterando as opções textuais dos parâmetros 

de configuração, por exemplo, onde era “no” passou a ser “yes”. As configurações dessa 

biblioteca estão no APÊNDICE B. 

• Biblioteca HTK: os valores da configuração padrão da biblioteca foram alterados em -

80%, -40%, 0%, 40% e 80%. Além disso, gerou-se mais cinco arquivos de configuração 

alterando as configurações padrão de extração de características do áudio, usando a mesma 

                                                 

 

 

 
17 Link do GitLab: https://gitlab.com/lucasdebatin/train-examples 



67 

 

lógica de alteração uniforme, -80%, -40%, 0%, 40% e 80%. As configurações dessa 

biblioteca estão no APÊNDICE C. 

• Biblioteca Kaldi: a configuração padrão da biblioteca foi alterada para os valores de -80%, 

-40%, 0%, 40% e 80%. Entretanto, cinco configurações utilizaram DNN e as outras cinco 

não. As configurações dessa biblioteca estão no APÊNDICE D. 

O treinamento das bibliotecas foram executados utilizando arquivos Shell Script, que geraram 

em cada diretório os seguintes arquivos de resultados para cada configuração: (i) a data e hora de 

início e fim; e (ii) a saída da biblioteca com o valor das métricas de avaliação SER (Sentence Error 

Rate, em português: taxa de erro de sentença) e WER (Word Error Rate, em português: taxa de erro 

de palavras).  

4.4 IMPLEMENTAÇÃO DOS TESTES 

Esse projeto possui duas versões (desktop e móvel) que são utilizadas para testar o 

desempenho, uso de processador e memória das bibliotecas de reconhecimento de voz contínuo que 

foram implementadas para o português brasileiro. O nome escolhido para as versões de teste é OCSR 

(Offline Continuous Speech Recognition, em português: reconhecimento off-line de voz contínuo). 

Para os testes das bibliotecas foram: (i) implementados apenas os códigos-fonte que são responsáveis 

por gerar a saída dos modelos já treinados; e (ii) utilizados apenas os arquivos de testes dos corpora. 

4.4.1  Desktop 

A versão para desktop foi utilizada para testar o desempenho das bibliotecas em um 

computador desktop. O resultado desse teste foi utilizado para encontrar a biblioteca que apresentou 

o melhor desempenho, que foi implementada na versão mobile.  

Na implementação, utilizou-se a linguagem de programação C++ em conjunto com o Qt SDK 

(Software Development Kit, em português: kit de desenvolvimento de software). Nessa versão foram 

utilizadas as quatro melhores configurações de treinamento obtidas para cada biblioteca, 



68 

 

CMUSphinx, HTK e Kaldi. A implementação da versão desktop está disponível de forma gratuita no 

GitLab18. 

A Figura 11 apresenta a tela da versão para desktop. Esta tela possui as seguintes opções de 

configuração: (i) biblioteca, que é responsável por selecionar a biblioteca (CMUSphinx, HTK e 

Kaldi) que será utilizada nos testes; e (ii) corpus de voz, que é responsável por selecionar o corpus de 

voz (LaPS Benchmark e Constituição Federal) que será utilizado nos testes.  O botão “Testar” gera 

os arquivos de resultados para a biblioteca e corpus selecionados. 

Figura 11 - Tela da versão desktop 

 
  

Para cada biblioteca e corpus são gerados três arquivos de resultados: (i) data e hora de início; 

(ii) uso de processador e memória, isto é, o desempenho exigido; e (iii) data e hora de encerramento. 

O desempenho exigido é capturado utilizando o comando Linux “top”19. 

4.4.2  Móvel 

A versão móvel foi utilizada para testar o desempenho, em dispositivos móveis, da biblioteca 

que apresentou o melhor desempenho na versão desktop. De acordo com o Capítulo 5 , os modelos 

da biblioteca Kaldi apresentaram os melhores resultados para os corpora. Entretanto, a 

implementação dessa biblioteca no aplicativo não obteve sucesso, pois os executáveis funcionam 

apenas em dispositivos que estão liberadas as permissões de “superusuário” (root). As tentativas de 

                                                 

 

 

 
18 Link do GitLab da versão desktop: https://gitlab.com/lucasdebatin/ocsr-desktop 
19 Exibe os dados sobre os processos em execução no dispositivo. 



69 

 

implementar o Kaldi foram baseadas no tutorial de compilação da biblioteca no Android20. Por esse 

motivo, utilizou-se apenas os modelos da biblioteca CMUSphinx, que também apresentou excelentes 

resultados em comparação com os resultados da biblioteca Kaldi. 

Os testes foram realizados apenas em dispositivos móveis com o sistema operacional Android, 

sendo a versão 4.1 a mínima suportada. Para a implementação, utilizou-se a linguagem de 

programação Java e NDK21 (Android Native Development Kit, em português: kit de desenvolvimento 

nativo Android). O uso do NDK facilitou a compilação do código-fonte em C da biblioteca. O código-

fonte do aplicativo está disponível no GitLab22 

A Figura 12 apresenta a tela do aplicativo, e como pode-se observar apenas uma mensagem 

avisando que o aplicativo está: (i) inicializando o aplicativo: copiando os modelos da biblioteca para 

a memória interna do dispositivo; e (ii) gerando o arquivo de testes: executando a biblioteca com os 

arquivos de testes dos corpora de voz e gerando os arquivos de resultados. 

Figura 12 - Tela da versão móvel em Android 

 
  

                                                 

 

 

 
20 Link para o tutorial: http://jcsilva.github.io/2017/03/18/compile-kaldi-android/ 
21 NDK é um conjunto de ferramentas que permitem usar código C e C++ em aplicativos Android. 
22 Link do GitLab da versão móvel: https://gitlab.com/lucasdebatin/ocsr-android-native 



70 

 

Ao finalizar os testes é gerado um texto com os seguintes dados de resultados para cada 

corpora: (i) percentual de uso do processador inicial, para verificar se o processador não está 

sobrecarregado com outro processo; (ii) a quantidade de memória disponível, indicador de memória 

cheia e a quantidade de memória total do dispositivo; (iii) percentual de bateria no início e fim dos 

testes; (iv) a data e hora de início e fim; e (v) o uso do processador (máximo, mínimo e médio) e de 

memória (máxima, mínima e média) durante a execução dos testes. 

O percentual de uso do processador é obtido utilizando: (i) o comando “top” em versões 

menores que a versão 8 do Android; e (ii) o comando “ps”23 nas versões 8 e 9 do Android. A 

quantidade de memória e bateria do dispositivo são capturadas utilizando classes do Java. 

Para os testes em dispositivos móveis foi necessário reduzir a quantidade de arquivos de testes 

do corpus Constituição Federal de 126 para 30, pois em alguns dispositivos o tempo gasto para o 

processamento ultrapassava 30 minutos. Essa redução foi necessária para tornar os testes mais 

atrativos e rápidos para os voluntários da pesquisa. Além disso, o aplicativo foi disponibilizado na 

Play Store24 para facilitar a sua instalação nos dispositivos de teste. 

4.5 CONSIDERAÇÕES 

Esse capítulo apresentou as etapas que foram necessárias para o desenvolvimento do 

aplicativo Android que realiza o reconhecimento off-line de voz contínuo do português brasileiro. As 

bibliotecas foram instaladas e os modelos acústicos criados conforme a documentação de cada 

biblioteca. Os códigos-fonte desse trabalho foram disponibilizados ao público para servir de suporte 

para pesquisas futuras na área ou para a reprodução desse estudo. 

A dificuldade de implementar a biblioteca Kaldi no Android foi um dos principais 

contratempos do trabalho, visto que isso atrasou o início da etapa de testes do aplicativo. Os motivos 

para isso foram levantados, destacando-se a necessidade de permissão de “superusuário” nos 

dispositivos móveis. 

                                                 

 

 

 
23 Exibe os dados sobre os processos em execução no dispositivo. 
24 Link de download Play Store: https://play.google.com/store/apps/details?id=com.debatin.ocsr_android_native 



71 

 

Os corpora utilizados nesse estudo diferem em tamanho e conteúdo dos empregados nos 

artigos selecionadas na revisão sistemática da literatura, porém isso não comprometeu os resultados. 

Os cálculos de desempenho foram obtidos por meio de comandos e classes já existentes. No capítulo 

seguinte são apresentados e discutidos os resultados obtidos. 

 



72 

 

5  RESULTADOS 

Esse capítulo apresenta e discute os resultados do projeto, permitindo avaliar a sua 

contribuição, o alcance dos seus objetivos e as respostas para as hipóteses de pesquisa. Na seção 5.1 

são apresentadas as melhores configurações de treinamento para cada biblioteca. A seção 5.2 

apresenta o desempenho da melhor configuração de cada biblioteca em um computador desktop. Na 

seção 5.3 apresenta o desempenho da biblioteca selecionada em diversos dispositivos móveis. Por 

fim, na seção 5.4 são apresentadas algumas considerações sobre os resultados obtidos. O Quadro 12 

apresenta a configuração do computador desktop utilizado para o treinamento e para o teste da versão 

desktop. 

Quadro 12 - Configuração do computador desktop utilizado 

Processador Intel Core i5-7200U 2.50GHz 

Memória 16 GB DDR4 2400MHz 

Sistema operacional Linux Antergos de 64 bits 

Versão do Java 1.8.0_192 

Versão do compilador GCC 8.2.1 

5.1 MELHORES CONFIGURAÇÕES DE TREINAMENTO 

Esta seção apresenta as métricas de avaliação obtidas para cada arquivo de configuração 

elaborado. Com base no percentual das métricas foram escolhidas as melhores para realizar testes de 

desempenho em um computador desktop. As subseções abaixo apresentam os resultados obtidos para 

cada biblioteca. 

Para o cálculo das métricas de avaliação SER (Sentence Error Rate, em português: taxa de 

erro de sentença) e WER (Word Error Rate, em português: taxa de erro de palavras) utilizou-se os 

arquivos de testes dos corpora: (i) LaPS Benchmark, que contém 60 frases e 614 palavras; e (ii) 

Constituição Federal, que contém 126 frases e 7073 palavras.  Os cálculos dessas métricas são 

realizados por cada biblioteca. 

Cada biblioteca possuía 10 configurações com dois conjuntos diferentes de modificações, por 

isso foram selecionadas as duas melhores para cada um. O principal motivo para isso é analisar o 

desempenho de cada conjunto de configuração, evitando selecionar apenas os melhores resultados no 

geral, pois eles podem ser os piores em desempenho. 



73 

 

5.1.1  CMUSphinx 

O Quadro 13 apresenta os valores obtidos por cada configuração no corpus LaPS Benchmark. 

A coluna ID é um identificador da configuração e servirá como referência para os resultados da seção 

5.2. Nesse trabalho, a unidade dos valores do tempo de duração foi hora, minuto e segundo 

(hh:mm:ss). As especificações de configurações de cada ID estão no APÊNDICE B. 

Quadro 13 - Configurações da biblioteca CMUSphinx e do corpus LaPS Benchmark 

ID WER SER Duração 

1 49,4% 93,3% 00:03:08 

2 9,6% 55% 00:03:01 

3 9,1% 56,7% 00:03:17 

4 11,4% 61,7% 00:05:29 

5 22,1% 68,3% 00:08:21 

6 38% 81,7% 00:07:53 

7 8,8% 41,7% 00:04:48 

8 6,7% 45% 00:05:37 

9 6,2% 35% 00:09:13 

10 11,9% 50% 00:11:39 

De acordo com o Quadro 13 pode-se notar que o as melhores configurações obtidas possuem 

um WER inferior a 14%, isto é, atendem a um dos requisitos desse trabalho. Além disso, pode-se 

observar que as melhores métricas de avaliação são provenientes de configurações cujo os valores de 

configuração alterados são próximos dos valores de configuração padrão da biblioteca. A duração 

total do treinamento de todas as configurações foi em torno de 1 hora. Já o Quadro 14 apresenta os 

valores obtidos no corpus Constituição Federal. 

Quadro 14 - Configurações da biblioteca CMUSphinx e do corpus Constituição Federal  

ID WER SER Duração 

1 14,5% 96,8% 00:22:56 

2 5% 77,8% 00:22:42 

3 3,2% 75,4% 00:27:17 

4 4,6% 81% 00:30:29 

5 5,6% 81,7% 00:32:18 

6 10,8% 90,5% 00:40:43 

7 3% 70,6% 00:43:36 

8 2,2% 59,5% 00:56:03 

9 2% 62,7% 01:17:39 

10 3,4% 67,5% 01:24:58 



74 

 

Os resultados obtidos no Quadro 14 demonstram que os testes com apenas um locutor 

possuem maior precisão (WER) do que com vários locutores, do Quadro 13.  Quase todas as 

configurações possuem um WER inferior a 14%, entretanto apresentaram um alto valor na métrica 

SER, isto é, muitas frases geradas com um ou mais erros. Isso deve-se ao fato de que cada áudio de 

teste do corpus tem duração média de 30 segundos, ou seja, são frases extensas. A duração total do 

treinamento de todas as configurações da biblioteca ultrapassou 6 horas, e um dos motivos para isso 

também é a duração média dos arquivos de teste do corpus. 

5.1.2  HTK 

A biblioteca HTK (Hidden Markov Models Toolkit, em português: kit de ferramentas dos 

modelos ocultos de Markov) apresentou os piores resultados, pois com qualquer configuração e em 

qualquer corpus não foi possível ter um WER abaixo de 80%. O Quadro 15 apresenta os valores das 

métricas de avaliação obtidos pela biblioteca no corpus LaPS Benchmark. As especificações de 

configurações de cada ID estão no APÊNDICE C. A coluna Tipo representa o nome da classe 

utilizada para gerar os valores de saída. O APÊNDICE E apresenta os valores obtidos pelos demais 

tipos utilizados. 

Quadro 15 - Configurações da biblioteca HTK e do corpus LaPS Benchmark  

ID Tipo WER SER Duração 

1 HVite (2-grama) 94,95% 100% 00:05:19 

2 HVite (2-grama) 92,18% 100% 00:05:33 

3 HVite (2-grama) 93,32% 100% 00:05:25 

4 HVite (2-grama) 92,35% 100% 00:05:21 

5 HVite (2-grama) 93,49% 100% 00:05:25 

6 HVite (2-grama) 95,44% 100% 00:05:21 

7 HVite (2-grama) 93,00% 100% 00:05:25 

8 HVite (2-grama) 92,83% 100% 00:05:19 

9 HVite (2-grama) 92,83% 100% 00:05:18 

10 HVite (2-grama) 92,18% 100% 00:05:17 

Ao realizar uma comparação com os resultados obtidos pela biblioteca CMUSphinx no 

mesmo corpus (Quadro 13) pode-se observar que os resultados do Quadro 15 foram insignificantes. 

Além disso, ao comparar as frases dos arquivos de teste com as frases geradas pela biblioteca pode-

se notar que todas possuíram um ou mais erros. A duração média de treinamento foi de 5 minutos e 

22 segundos para cada configuração. O Quadro 16 apresenta os resultados obtidos no corpus 

Constituição Federal. 



75 

 

Quadro 16 - Configurações da biblioteca HTK e do corpus Constituição Federal  

ID Tipo WER SER Duração 

1 HVite (2-grama) 91,98% 100% 02:08:11 

2 HVite (2-grama) 89,64% 100% 02:12:03 

3 HVite (2-grama) 86,17% 100% 02:09:21 

4 HVite (2-grama) 86,47% 100% 02:06:09 

5 HVite (2-grama) 84,97% 100% 02:06:32 

6 HVite (2-grama) 93,85% 100% 01:58:51 

7 HVite (2-grama) 88,60% 100% 02:03:42 

8 HVite (2-grama) 83,84% 100% 02:08:38 

9 HVite (2-grama) 82,47% 100% 02:11:46 

10 HVite (2-grama) 84,21% 100% 02:19:31 

Os valores obtidos no Quadro 16 apresentaram melhores resultados, porém longe do WER de 

14%, que é um dos requisitos desse trabalho. Além disso, todas as frases geradas também possuíram 

um ou mais erros. O tempo de treinamento médio foi de 2 horas e 8 minutos para cada configuração. 

5.1.3  Kaldi 

O Quadro 17 apresenta os valores obtidos por cada configuração da biblioteca Kaldi no corpus 

LaPS Benchmark. As especificações de configurações de cada ID estão no APÊNDICE D. Essa 

biblioteca também possui diversas classes que são utilizadas para gerar os valores de saída, e as 

melhores foram representadas na coluna Tipo. O APÊNDICE F apresenta os valores obtidos pelos 

demais tipos utilizados. 

Quadro 17 - Configurações da biblioteca Kaldi e do corpus LaPS Benchmark  

ID Tipo WER SER Duração 

1 MLP 5,05% 41,67% 00:49:17 

2 RNN 2,61% 21,67% 02:24:06 

3 RNN 6,19% 41,67% 14:18:37 

4 RNN 8,14% 51,67% 92:54:37 

5 N/A N/A N/A N/A 

6 tri3b 5,05% 40% 00:23:41 

7 mono0a 7,17% 38,33% 00:45:13 

8 tri1 6,68% 43,33% 00:42:41 

9 tri1 5,37% 31,67% 00:38:46 

10 tri1 6,51% 41,67% 00:40:57 

De acordo com o Quadro 17 pode-se perceber que o uso de RNAs (Redes Neurais Artificiais) 

apresentaram os melhores resultados, entretanto o único problema é o elevado tempo gasto para o 

treinamento. Por isso, a configuração de ID 5 não foi treinada, pois levaria mais de 100 horas. Os 



76 

 

melhores resultados obtidos foram utilizando RNN (Recurrent Neural Network, em português: rede 

neural recorrente) e MLP (Multilayer Perceptron, em português: perceptron multicamadas). Além 

disso, as classes tri3b e tri1 também apresentaram bons resultados. O Quadro 18 apresenta os 

resultados da biblioteca no corpus Constituição Federal. 

Quadro 18 - Configurações da biblioteca Kaldi e do corpus Constituição Federal  

ID Tipo WER SER Duração 

1 MLP 1,44% 46,03% 07:45:17 

2 RNN 0,98% 41,27% 26:38:27 

3 RNN 0,93% 38,89% 166:47:14 

4 N/A N/A N/A N/A 

5 N/A N/A N/A N/A 

6 tri3b 1,48% 46,03% 01:50:37 

7 tri1 1,61% 49,21% 01:54:36 

8 tri1 1,34% 38,89% 02:02:11 

9 tri1 1,75% 46,03% 05:32:35 

10 tri1 1,80% 48,41% 07:09:14 

No Quadro 18 pode-se observar que foram gerados apenas os três treinamentos para as RNAs, 

pois o tempo gasto de treinamento para o ID 3 ultrapassou 150 horas. Por isso, foram selecionadas 

apenas três configurações, e não quatro como nas outras bibliotecas. O uso de RNN e as classes tri3b 

e tri1 apresentaram os melhores resultados das métricas de avaliação. 

5.2 ANÁLISE DO DESEMPENHO EM DESKTOPS 

Os testes foram realizados em apenas um computador desktop, conforme configuração já 

destacada no Quadro 12. Esses testes foram realizados sem conexão com a internet, sem nenhum 

software sendo executado em paralelo e utilizando apenas os arquivos de testes dos corpora. 

O Quadro 19 apresenta os resultados obtidos no corpus LaPS Benchmark. Para o cálculo do 

fator xRT (Real Time Factor, em português: fator em tempo real) utilizou-se a duração total dos 

arquivos de teste do corpus, que é 00:04:36 (276 segundos). Além disso, foram colocados os valores 

da métrica de avaliação WER para facilitar a comparação da análise de desempenho. 

 

 

 



77 

 

Quadro 19 - Desempenho das bibliotecas no corpus LaPS Benchmark 

Biblioteca ID WER Duração xRT Processador Memória 

CMUSphinx 2 9,6% 00:00:11 0,040 Máx.: 100,00% 

Méd.: 97,50% 

Mín.: 86,70% 

Máx.: 0,50% 

Méd.: 0,50% 

Mín.: 0,50% 

CMUSphinx 3 9,1% 00:00:19 0,069 Máx.: 106,70%25 

Méd.: 98,09% 

Mín.: 87,50% 

Máx.: 0,50% 

Méd.: 0,50% 

Mín.: 0,50% 

CMUSphinx 8 6,7% 00:00:36 0,130 Máx.: 106,70% 

Méd.: 98,69% 

Mín.: 87,50% 

Máx.: 0,50% 

Méd.: 0,50% 

Mín.: 0,50% 

CMUSphinx 9 6,2% 00:01:01 0,221 Máx.: 106,70% 

Méd.: 99,20% 

Mín.: 93,30% 

Máx.: 0,50% 

Méd.: 0,50% 

Mín.: 0,50% 

HTK 2 92,18% 00:02:44 0,594 Máx.: 106,70% 

Méd.: 99,17% 

Mín.: 87,50% 

Máx.: 0,60% 

Méd.: 0,60% 

Mín.: 0,50% 

HTK 4 92,35% 00:02:43 0,590 Máx.: 106,70% 

Méd.: 98,68% 

Mín.: 87,50% 

Máx.: 0,60% 

Méd.: 0,60% 

Mín.: 0,50% 

HTK 9 92,83% 00:02:44 0,594 Máx.: 106,70% 

Méd.: 99,00% 

Mín.: 87,50% 

Máx.: 0,60% 

Méd.: 0,60% 

Mín.: 0,50% 

HTK 10 92,18% 00:02:41 0,583 Máx.: 106,70% 

Méd.: 98,79% 

Mín.: 87,50% 

Máx.: 0,60% 

Méd.: 0,60% 

Mín.: 0,50% 

Kaldi 1 5,05% 00:02:18 0,500 Máx.: 100,00% 

Méd.: 98,26% 

Mín.: 80,00% 

Máx.: 0,60% 

Méd.: 0,43% 

Mín.: 0,30% 

Kaldi 2 2,61% 00:03:31 0,764 Máx.: 100,00% 

Méd.: 97,79% 

Mín.: 66,70% 

Máx.: 0,40% 

Méd.: 0,39% 

Mín.: 0,20% 

Kaldi 6 5,05% 00:00:14 0,050 Máx.: 100,00% 

Méd.: 91,92% 

Mín.: 80,00% 

Máx.: 0,20% 

Méd.: 0,20% 

Mín.: 0,20% 

Kaldi 9 5,37% 00:00:19 0,069 Máx.: 100,00% 

Méd.: 96,73% 

Mín.: 80,00% 

Máx.: 0,30% 

Méd.: 0,21% 

Mín.: 0,20% 

Para cada biblioteca foi selecionada a melhor configuração. No Quadro 19 pode-se observar 

que as bibliotecas CMUSphinx e Kaldi possuíram os melhores resultados, porém a biblioteca Kaldi 

                                                 

 

 

 
25 O comando “top”, por padrão, exibe a porcentagem de uma única CPU, isto é, em computadores com vários núcleos 

pode-se ter porcentagens maiores que 100%. 



78 

 

se destacou, pois obteve: (i) o menor percentual WER; (ii) a menor média de uso do processador; e 

(iii) a menor média de uso de memória.  

O Quadro 20 apresenta os resultados de desempenho obtidos utilizando o corpus Constituição 

Federal. Para o cálculo do fator xRT utilizou-se a duração total dos arquivos de teste do corpus, que 

é 00:53:06 (3.186 segundos). 

Quadro 20 - Desempenho das bibliotecas no corpus Constituição Federal  

Biblioteca ID WER Duração xRT Processador Memória 

CMUSphinx 3 3,2% 00:02:29 0,047 Máx.: 106,70% 

Méd.: 99,27% 

Mín.: 86,70% 

Máx.: 0,50% 

Méd.: 0,50% 

Mín.: 0,50% 

CMUSphinx 4 4,6% 00:04:06 0,077 Máx.: 106,70% 

Méd.: 98,35% 

Mín.: 87,50% 

Máx.: 0,50% 

Méd.: 0,50% 

Mín.: 0,50% 

CMUSphinx 8 2,2% 00:04:29 0,084 Máx.: 106,70% 

Méd.: 99,07% 

Mín.: 81,20% 

Máx.: 0,50% 

Méd.: 0,50% 

Mín.: 0,50% 

CMUSphinx 9 2% 00:07:45 0,146 Máx.: 106,70% 

Méd.: 98,92% 

Mín.: 81,20% 

Máx.: 0,50% 

Méd.: 0,50% 

Mín.: 0,50% 

HTK 3 86,17% 01:26:02 1,620 Máx.: 106,70% 

Méd.: 99,14% 

Mín.: 87,50% 

Máx.: 0,70% 

Méd.: 0,70% 

Mín.: 0,50% 

HTK 5 84,97% 01:25:52 1,617 Máx.: 106,70% 

Méd.: 99,20% 

Mín.: 87,50% 

Máx.: 0,70% 

Méd.: 0,70% 

Mín.: 0,50% 

HTK 8 83,84% 01:25:58 1,619 Máx.: 106,70% 

Méd.: 99,10% 

Mín.: 87,50% 

Máx.: 0,70% 

Méd.: 0,70% 

Mín.: 0,50% 

HTK 9 82,47% 01:26:07 1,622 Máx.: 113,30% 

Méd.: 98,52% 

Mín.: 75,00% 

Máx.: 0,70% 

Méd.: 0,70% 

Mín.: 0,50% 

Kaldi 3 0,93% 02:39:45 3,008 Máx.: 100,00% 

Méd.: 98,11% 

Mín.: 81,20% 

Máx.: 1,00% 

Méd.: 0,95% 

Mín.: 0,70% 

Kaldi 6 1,48% 00:01:30 0,028 Máx.: 100,00% 

Méd.: 94,76% 

Mín.: 40,00% 

Máx.: 0,30% 

Méd.: 0,20% 

Mín.: 0,20% 

Kaldi 8 1,34% 00:01:54 0,036 Máx.: 100,00% 

Méd.: 97,50% 

Mín.: 87,50% 

Máx.: 0,40% 

Méd.: 0,37% 

Mín.: 0,30% 

Para esse corpus também foi selecionada a melhor configuração de cada biblioteca. No 

Quadro 20 pode-se observar que as bibliotecas CMUSphinx e Kaldi possuíram os melhores 



79 

 

resultados. Nesse corpus a biblioteca Kaldi também se destacou, pois obteve: (i) o menor percentual 

WER; (ii) o menor valor xRT; (iii) a menor média de uso do processador; e (iv) a menor média de 

uso de memória.  

De acordo com o Quadro 19 e o Quadro 20, as bibliotecas utilizaram mais recursos de 

processamento do que de memória RAM. Além disso, o uso de RNAs apresentou os melhores 

resultados (2,61% corpus LaPS Benchmark e 0,93% corpus Constituição Brasileira), entretanto, 

requer um grande custo computacional, em alguns casos ultrapassando duas horas de processamento, 

comprometendo assim o seu uso em dispositivos móveis. 

A biblioteca Kaldi se destacou nos dois corpora, entretanto, a implementação dessa biblioteca 

em dispositivos móveis não obteve sucesso, como já visto na seção 4.4.2 Por isso, optou-se por utilizar 

a biblioteca CMUSphinx que, de acordo com o Quadro 19 e o Quadro 20, obteve resultados bem 

semelhantes aos da biblioteca Kaldi e um WER inferior a 14%. 

5.3 ANÁLISE DO DESEMPENHO EM DISPOSITIVOS MÓVEIS 

Para os testes em dispositivos móveis utilizou-se a biblioteca CMUSphinx. Os testes foram 

realizados em 11 dispositivos, com diferentes versões de Android (superiores a 4.1) e com diferentes 

configurações de hardware. Em cada dispositivo foi solicitado para: (i) desativar qualquer forma de 

conexão com a internet (wi-fi, dados móveis); (ii) retirar o celular da fonte de alimentação, se o mesmo 

estivesse; (iii) verificar se o dispositivo tinha no mínimo 30% de bateria; e (iv) fechar todos os 

aplicativos abertos.  

Todos os dispositivos móveis testados possuíram um baixo uso de processador inicial e 

memória suficiente para realizar os testes. O Quadro 21 apresenta as configurações dos dispositivos 

móveis utilizados nos testes. A coluna ID é um identificador do dispositivo móvel e servirá como 

referência para os resultados do Quadro 22 e do Quadro 23. 

Quadro 21 - Configuração dos dispositivos móveis utilizados nos testes 

ID Dispositivo Android Configuração de hardware 

1 Samsung SM-T110 4.4.2 Processador: Dual-Core de 1.2 GHz 

Memória RAM: 1 GB 

2 Samsung SM-J200BT 5.1.1 Processador: Quad-Core de 1.3 GHz 

Memória RAM: 1 GB 

3 Quantum Quantum Fly 6.0 Processador: Deca-Core de 2.1 GHz 



80 

 

Memória RAM: 3 GB  

4 Samsung SM-J500M 6.0.1 Processador: Quad-Core de 1.2 GHz  

Memória RAM: 1,5 GB 

5 LGE LG-M700 7.1.1 Processador: Octa-Core de 1.4 GHz  

Memória RAM: 2 GB 

6 Xiaomi Redmi 4X 7.1.2 Processador: Quad-Core de 1.4 GHz 

Memória RAM: 3 GB 

7 Motorola Moto Z (2) 8.0.0 Processador: Octa-Core de 2.35 GHz 

Memória RAM: 6 GB  

8 Motorola XT1635-02 8.0.0 Processador: Octa-Core de 2 GHz 

Memória RAM: 3 GB 

9 Motorola Moto G (5S) 8.1.0 Processador: Octa-Core de 1.4 GHz 

Memória RAM: 2 GB 

10 Samsung SM-J610G 8.1.0 Processador: Quad-Core de 1.4 GHz 

Memória RAM: 3 GB 

11 Xiaomi Mi A2 9.0.0 Processador: Octa-Core de 2.2 GHz 

Memória RAM: 4 GB 

O Quadro 22 apresenta os resultados obtidos durante a execução do corpus LaPS Benchmark 

nos dispositivos móveis. Foram executados todos os arquivos de testes do corpus, com duração de 

00:04:36 (276 segundos). 

Quadro 22 - Desempenho do corpus LaPS Benchmark em dispositivos móveis 

ID Duração xRT Bateria Processador Memória 

1 01:53:27 24,66 0% Máx.: 46% 

Méd.: 32% 

Mín.: 25% 

Máx.: 18,05 MB 

Méd.: 17,49 MB 

Mín.: 17,07 MB 

2 00:01:11 0,257 0% Máx.: 35% 

Méd.: 25% 

Mín.: 22% 

Máx.: 27,41 MB 

Méd.: 27,22 MB 

Mín.: 27,04 MB 

3 00:00:41 0,149 0% Máx.: 49% 

Méd.: 45% 

Mín.: 47% 

Máx.: 81,31 MB 

Méd.: 67,32 MB 

Mín.: 64,63 MB 

4 00:00:46 0,167 1% Máx.: 25% 

Méd.: 25% 

Mín.: 25% 

Máx.: 42,13 MB 

Méd.: 41,45 MB 

Mín.: 40,93 MB 

5 00:00:36 0,130 0% Máx.: 25% 

Méd.: 21% 

Mín.: 20% 

Máx.: 63,17 MB 

Méd.: 63,05 MB 

Mín.: 62,93 MB 

6 00:00:34 0,123 0% Máx.: 30% 

Méd.: 25% 

Mín.: 22% 

Máx.: 50,62 MB 

Méd.: 50,43 MB 

Mín.: 50,27 MB 

7 00:00:28 0,101 0% Máx.: 11% 

Méd.: 6% 

Mín.: 3% 

Máx.: 22,17 MB 

Méd.: 21,98 MB 

Mín.: 21,82 MB 

8 00:00:27 0,978 0% Máx.: 2% Máx.: 53,57 MB 



81 

 

Méd.: 1% 

Mín.: 1% 

Méd.: 53,39 MB 

Mín.: 53,29 MB 

9 00:00:43 0,156 0% Máx.: 33% 

Méd.: 27% 

Mín.: 22% 

Máx.: 49,34 MB 

Méd.: 43,81 MB 

Mín.: 41,90 MB 

10 00:00:43 0,156 0% Máx.: 4% 

Méd.: 3% 

Mín.: 3% 

Máx.: 31,22 MB 

Méd.: 30,96 MB 

Mín.: 30,71 MB 

11 00:00:10 0,036 0% Máx.: 12% 

Méd.: 12% 

Mín.: 12% 

Máx.: 27,40 MB 

Méd.: 27,30 MB 

Mín.: 27,21 MB 

Com base no Quadro 22 pode-se perceber que em todos os dispositivos o uso médio de 

memória foi abaixo de 70 MB e o uso médio de processador foi abaixo de 50%. Pode-se observar 

também que o processamento dos arquivos de teste pela biblioteca não consome recursos da bateria 

do dispositivo.  

Já o Quadro 23 apresenta os resultados obtidos durante a execução do corpus Constituição 

Federal. Na seção 4.4.2 foi descrito que para esse corpus foram utilizados apenas 30 arquivos de 

testes, com duração de 00:12:32 (752 segundos), alterando o cálculo do fator xRT. 

Quadro 23 - Desempenho do corpus Constituição Federal em dispositivos móveis  

ID Duração xRT Bateria Processador Memória 

1 02:44:02 13,08 1% Máx.: 49% 

Méd.: 33% 

Mín.: 24% 

Máx.: 22,46 MB 

Méd.: 21,52 MB 

Mín.: 20,47 MB 

2 00:04:51 0,387 1% Máx.: 25% 

Méd.: 20% 

Mín.: 23% 

Máx.: 36,86 MB 

Méd.: 32,97 MB 

Mín.: 28,13 MB 

3 00:02:55 0,233 1% Máx.: 47% 

Méd.: 46% 

Mín.: 44% 

Máx.: 81,13 MB 

Méd.: 74,97 MB 

Mín.: 68,83 MB 

4 00:05:05 0,406 0% Máx.: 25% 

Méd.: 24% 

Mín.: 24% 

Máx.: 42,53 MB 

Méd.: 38,31 MB 

Mín.: 35,06 MB 

5 00:02:11 0,174 1% Máx.: 39% 

Méd.: 36% 

Mín.: 31% 

Máx.: 65,42 MB 

Méd.: 59,80 MB 

Mín.: 56,02 MB 

6 00:04:00 0,319 1% Máx.: 35% 

Méd.: 25% 

Mín.: 16% 

Máx.: 53,69 MB 

Méd.: 51,55 MB 

Mín.: 48,61 MB 

7 00:00:28 0,037 0% Máx.: 22% 

Méd.: 22% 

Mín.: 22% 

Máx.: 26,67 MB 

Méd.: 26,67 MB 

Mín.: 26,67 MB 



82 

 

8 00:01:36 0,128 1% Máx.: 11% 

Méd.: 9% 

Mín.: 5% 

Máx.: 55,52 MB 

Méd.: 55,47 MB 

Mín.: 55,45 MB 

9 00:01:58 0,157 1% Máx.: 28% 

Méd.: 28% 

Mín.: 28% 

Máx.: 53,10 MB 

Méd.: 53,04 MB 

Mín.: 52,95 MB 

10 00:02:17 0,182 0% Máx.: 20% 

Méd.: 20% 

Mín.: 20% 

Máx.: 33,36 MB 

Méd.: 33,28 MB 

Mín.: 33,21 MB 

11 00:00:32 0,043 0% Máx.: 4% 

Méd.: 4% 

Mín.: 4% 

Máx.: 30,51 MB 

Méd.: 30,51 MB 

Mín.: 30,51 MB 

De acordo com o Quadro 23 também pode-se perceber que em todos os dispositivos: (i) o uso 

médio de memória foi abaixo de 80 MB; (ii) o uso médio de processador foi abaixo de 50%; e (iii) o 

processamento dos arquivos de teste não consumiu recursos da bateria dos dispositivos.  

Haja visto que o valor do xRT é composto pelo tempo de processamento, desenvolveu-se o 

Quadro 24 que apresenta um comparativo entre a relação do processador utilizado com o valor xRT 

obtido para cada corpus.  Esse quadro foi desenvolvido com base nas configurações de hardware dos 

dispositivos (Quadro 21) e com base nos valores do xRT do Quadro 22 e do Quadro 23. 

Quadro 24 - Comparativo entre processador e valor xRT 

Processador xRT LaPS Benchmak xRT Constituição Federal 

Dual-Core de 1.2 GHz 24,66 13,08 

Quad-Core de 1.2 GHz  0,167 0,406 

Quad-Core de 1.3 GHz 0,257 0,387 

Quad-Core de 1.4 GHz 0,123 0,319 

Quad-Core de 1.4 GHz 0,156 0,182 

Octa-Core de 1.4 GHz  0,130 0,174 

Octa-Core de 1.4 GHz 0,156 0,157 

Octa-Core de 2 GHz 0,978 0,128 

Octa-Core de 2.2 GHz 0,036 0,043 

Octa-Core de 2.35 GHz  0,101 0,037 

Deca-Core de 2.1 GHz  0,149 0,233 

Com base no Quadro 24, pode-se observar que os valores do xRT são baixos em quase todos 

os processadores, isto é, praticamente todos possuíram valores abaixo de 1. Entretando, o tempo para 

processamento de cada áudio dos corpora de testes em um processador “Dual-Core de 1.2 GHz” foi 

alto, pois esse processador é antigo e possui somente dois núcleos com apenas 1.2 GHz cada. 



83 

 

5.4 CONSIDERAÇÕES 

Nesse capítulo foram apresentados e discutidos os resultados da análise de desempenho do 

reconhecimento de voz proposto em dispositivos móveis. Para isso foram selecionadas as 

configurações de treinamento que apresentaram as melhores métricas de avaliação, porém algumas 

configurações não foram treinadas. Os motivos para isso foram discutidos, destacando-se o tempo 

elevado para gerar o treinamento nessas configurações. 

A versão para desktop foi útil para encontrar a biblioteca que apresentou o melhor 

desempenho, porém a mesma não pode ser implementada em dispositivos móveis. A solução para 

esse problema foi a substituição da biblioteca Kaldi pela CMUSphinx, visto que as duas apresentaram 

resultados muito próximos. 

Os resultados obtidos na análise de desempenho da versão desktop demonstraram que o uso 

de RNAs, no reconhecimento de voz conínuo, requer um grande custo computacional, em 

contrapartida apresentaram os melhores resultados. O melhor custo-beneficio entre precisão e 

desempenho foram obtidos por meio do uso de HMMs. 

Os testes foram realizados em diversos dispositivos móveis, e com isso pode-se observar que 

em todas as versões do Android testadas a biblioteca realizou com êxito o reconhecimento off-line de 

voz contínuo. Vale destacar que as versões mais recentes do Android realizaram o processamento dos 

arquivos de testes em tempo real, devido as modernas configurações de hardware dos dispositivos 

móveis. 

Foram realizados experimentos com dois corpora de voz, um com vários locutores e o outro 

com apenas um locutor. O corpus com apenas um locutor apresentou os melhores resultados para a 

taxa WER. Sendo assim, pode-se confirmar que realmente a presença de diversos locutores é um fator 

de complexidade do reconhecimento de voz contínuo. 



84 

 

6  CONCLUSÕES 

Essa pesquisa teve como objetivo principal o desenvolvimento do reconhecimento off-line de 

voz contínuo do português brasileiro e a análise do seu desempenho em diversos dispositivos móveis 

com o sistema operacional Android. Visando atender esse objetivo, foram definidos quatro objetivos 

específicos. 

Por meio de uma revisão sistemática da literatura, que compôs o estado da arte, foram 

levantadas as principais técnicas de extração de características do sinal do áudio e de implementação 

dos modelos acústico e de linguagem, que são utilizadas no reconhecimento de voz contínuo. Desse 

modo atendeu-se totalmente o objetivo específico 1. Realizou-se um estudo teórico sobre essas 

técnicas para identificar características importantes para o desenvolvimento do reconhecimento de 

voz proposto. Além disso, por meio da leitura dos artigos também foram selecionadas as bibliotecas 

mais utilizadas para auxiliar na implementação do reconhecimento de voz contínuo, tais como 

CMUSphinx, Kaldi e HTK.  

O objetivo específico 2 tratou de encontrar as melhores configurações de treinamento das 

bibliotecas para obter o melhor custo-benefício entre desempenho e precisão. Para atender esse 

objetivo foram criados 30 arquivos de configurações diferentes. Esses arquivos foram executados 

para os dois corpora utilizados no trabalho, e para cada um foram obtidas as métricas de avaliação. A 

biblioteca Kaldi apresentou três configurações que demandaram um tempo maior de treinamento, e 

por esse motivo foram omitidas dos resultados. Por isso, esse objetivo foi parcialmente atendido. 

As melhores configurações foram selecionadas com base nos valores das métricas de 

avaliação WER (Word Error Rate, em português: taxa de erro de palavras) obtidos nos treinamentos, 

atendendo assim ao objetivo específico 4. Essas configurações foram utilizadas na versão desktop 

visando encontrar a biblioteca que possuía os melhores resultados de desempenho nos testes 

realizados em um computador desktop. A biblioteca Kaldi apresentou os melhores resultados, porém 

não foi possível implementá-la nos dispositivos móveis devido a restrições de permissionamento. Por 

esse motivo utilizou-se a biblioteca CMUSphinx que obteve resultados semelhantes ao Kaldi. A 

biblioteca HTK apresentou os piores resultados, pois o menor valor WER obtido foi maior que 80%, 

sendo muito maior que o WER máximo desejdo de 14% deste trabalho.  



85 

 

A biblioteca CMUSphinx foi executada nos dispositivos móveis por meio de um aplicativo. 

Buscando atender ao objetivo específico 3 foram adicionados, nesse aplicativo, métodos responsáveis 

por capturar o uso do processador, da memória e da bateria enquanto os arquivos de testes dos corpora 

eram executados. Os testes de desempenho foram realizados em diversos dispositivos móveis, com 

diferentes versões de Android e de hardware. Esses testes demonstraram que em configurações de 

hardware com maiores recursos computacionais é possível aplicar essa biblioteca em aplicativos para 

reconhecimento off-line de voz contínuo em tempo real. Já nas configurações de hardware com 

recursos computacionais limitados somente é possível aplicar essa biblioteca em aplicativos que 

realizam transcrições de áudio de entrevistas, por exemplo. Todos os testes foram realizados sem 

conexão com a internet, buscando comprovar que este reconhecimento de voz contínuo desenvolvido 

funciona com êxito em ambientes que não possuem internet. 

Os resultados desses testes foram responsáveis por atender de maneira positiva a hipótese da 

pesquisa de que “é possível aplicar as técnicas mais utilizadas nos dispositivos móveis”, pois a 

biblioteca CMUSphinx executou com êxito as técnicas HMM (Hidden Markov Models, em 

português: modelos ocultos de Markov) e n-grama nos dispositivos móveis. Além disso, o estado da 

arte também destacou o uso das RNA (Redes Neurais Artificiais), que possuíram os melhores 

resultados das métricas de avaliação, destacando os resultados obtidos pelas RNN (Recurrent Neural 

Network, em português: rede neural recorrente). Entretanto, resultou num elevado custo 

computacional para processar os áudios de teste dos corpora. 

A hipótese de que “é possível ter um WER abaixo de 14% para o reconhecimento de voz do 

português brasileiro ao utilizar as técnicas que funcionam corretamente em dispositivos móveis” 

também foi atendida de maneira positiva, visto que o valor da taxa WER das melhores configurações 

da biblioteca CMUSphinx utilizadas no aplicativo foi de: (i) 9,6% para o corpus LaPS Benchmark; e 

(ii) 3,2% para o corpus Constituição Federal. 

6.1 CONTRIBUIÇÕES 

A principal contribuição dessa pesquisa foi o desenvolvimento do reconhecimento off-line de 

voz contínuo para o português brasileiro e sua implementação em computadores desktop e em 

dispositivos móveis. Esse reconhecimento de voz desenvolvido poderá ser utilizado em softwares e 

aplicativos: (i) que auxiliam na comunicação de pessoas com deficiência; (ii) empresariais que 



86 

 

agilizam o trabalho dos funcionários; e (iii) que necessitam desta função em áreas sem conexão com 

a internet.  

Outra contribuição relevante dessa pesquisa foi o desenvolvimento de uma ferramenta para a 

preparação dos modelos acústicos do português brasileiro para as bibliotecas CMUSphinx, HTK 

(Hidden Markov Models Toolkit, em português: kit de ferramentas dos modelos ocultos de Markov) 

e Kaldi. Inicialmente foram utilizados os corpora LaPS Benchmark e Constituição Federal, porém é 

possível preparar os modelos acústicos para qualquer corpus de voz.  

Além disso, pode-se destacar outras contribuições do trabalho: (i) levantamento, por meio de 

uma revisão sistemática da literatura,  das principais técnicas e bibliotecas utilizadas no 

reconhecimento de voz contínuo;  (ii) comparativo entre as configurações de treinamento para cada 

biblioteca visando a melhor métrica de avaliação; (iii) análise de desempenho das bibliotecas em um 

computador desktop; e (iii) análise de desempenho da biblioteca CMUSphinx em diversos 

dispositivos móveis.  

Durante o desenvolvimento dessa pesquisa foram publicados artigos que estão relacionados 

ao tema do projeto. O Quadro 25 apresenta os três artigos que foram aceitos para publicação. 

Quadro 25 - Artigos aceitos para publicação 

Tipo Qualis Ano Autores Título Evento 

Resumo 

Expandido 

B2 2017 Lucas Debatin; 

Aluizio 

Haendchen Filho; 

Rudimar L. S. 

Dazzi 

O Problema do 

Reconhecimento de Voz 

Offline em Dispositivos 

Móveis: em Busca de uma 

Abordagem Racional 

XXIII Simpósio 

Brasileiro de 

Sistemas 

Multimídia e Web 

Artigo 

Completo 

B2 2018 Lucas Debatin; 

Aluizio 

Haendchen Filho; 

Rudimar L. S. 

Dazzi 

Offline Speech 

Recognition Development: 

A Systematic Review of the 

Literature 

XX International 

Conference on 

Enterprise 

Information Systems 

Resumo 

Expandido 

B4 2019 Lucas Debatin; 

Aluizio 

Haendchen Filho; 

Rudimar L. S. 

Dazzi 

Reconhecimento Off-line 

de Voz Contínuo para 

Dispositivos Móveis: Uma 

Análise Comparativa de 

Métricas de Avaliação 

X Computer on the 

Beach 

 



87 

 

6.2 TRABALHOS FUTUROS 

Ao longo do desenvolvimento deste trabalho, puderam ser identificadas algumas 

possibilidades de melhoria e de continuação a partir de futuras pesquisas, as quais incluem: 

• A criação de um novo corpus de voz com vários locutores, para o português brasileiro e 

com no mínimo dez horas de duração, a fim de se obter resultados de desempenho 

fidedignos a um cenário real de aplicação, isto é, sem um vocabulário restrito; 

• A implementação da biblioteca Kaldi em dispositivos móveis sem a necessidade de 

permissão de “superusuário”, para isso serão necessários compilar os arquivos da 

biblioteca de outra maneira; 

• A redução do custo computacional (processamento) exigido pelas RNAs que realizam o 

reconhecimento de voz contínuo para serem aplicadas nos dispositivos móveis. Para isso 

será necessário encontrar e implementar RNAs que possuam um bom desempenho; 

• A análise de desempenho do reconhecimento off-line de voz contínuo em dispositivos 

móveis com o sistema operacional IOS. Para isso, será possível utilizar a mesma biblioteca 

utilizada no Android; 

• A comparação das métricas de avaliação do reconhecimento off-line de voz contínuo 

desenvolvido com as APIs existentes no mercado. Para isso será necessário instalar as 

APIs de reconhecimento de voz contínuo e executar os arquivos de teste dos corpora; 

• O teste do reconhecimento off-line de voz contínuo em sistemas embarcados, a fim de 

obter o desempenho em situações com recursos de processamento e memória limitados. 

 

 

 



88 

 

REFERÊNCIAS 

ABUSHARIAH, M. A. TAMEEM V1.0: speakers and text independent Arabic automatic 

continuous speech recognizer. International Journal of Speech Technology, Nova Iorque, v. 20, 

n. 2, p. 261-280, jun. 2018. 

AGARAP, A. F. M. Deep Learning using Rectified Linear Units (ReLU). 2018. Disponível em: 

<https://arxiv.org/abs/1803.08375>. Acesso em: 28 jun. 2018. 

ALENCAR, V. F. S. Atributos e Domínios de Interpolação Eficientes em Reconhecimento de 

Voz Distribuído. 2005. Dissertação (Mestrado em Engenharia Elétrica) – Departamento de 

Engenharia Elétrica, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro. 

BAUER, M. W.; AARTS, B. A construção do corpus: um princípio para a coleta de dados 

qualitativos. In: BAUER, M. W., GASKELL, G. (Orgs.). Pesquisa qualitativa com texto, imagem 

e som. 11.ed. Petrópolis: Vozes, 2013. p. 39-63. 

BENYON, D. Interação humano-computador. 2. ed. São Paulo: Pearson Prentice Hall, 2011. 

CASA CIVIL. Decreto nº 5.296 de 2 de dezembro de 2004. 2004. Disponível em: 

<http://www.planalto.gov.br/ccivil_03/_ato2004-2006/2004/decreto/d5296.htm>. Acesso em: 11 

mai. 2018.  

CMUSPHINX. Open source speech recognition toolkit. 2019. Disponível em: 

<https://cmusphinx.github.io>. Acesso em: 06 jan. 2019. 

COPPIN, B. Inteligência artificial. Rio de Janeiro: LTC, 2010. 

DAHL, G. E.; YU, D.; DENG, L.; ACERO, A. Context-dependent pre-trained deep neural networks 

for large-vocabulary speech recognition. IEEE Transactions on Audio, Speech, and Language 

Processing, Piscataway, v. 20, n. 1, p. 30-42, jan. 2012. 

DEBATIN, L.; HAENDCHEN FILHO, A.; DAZZI, R. L. S. O Problema do Reconhecimento de 

Voz Offline em Dispositivos Móveis: em Busca de uma Abordagem Racional. In: SIMPÓSIO 

BRASILEIRO DE SISTEMAS MULTIMÍDIA E WEB – WEBMEDIA, 23., 2017, Gramado. 

Anais dos Workshops e Pôsteres do Webmedia. Porto Alegre: Sociedade Brasileira de 

Computação, 2017. p. 229-230. 

DEBATIN, L.; HAENDCHEN FILHO, A.; DAZZI, R. L. S. Offline Speech Recognition 

Development: A Systematic Review of the Literature. In: INTERNATIONAL CONFERENCE ON 

ENTERPRISE INFORMATION SYSTEMS – ICEIS, 20., 2018, Funchal. Proceedings… Setúbal: 

SciTePress, 2018. p. 551-558. 

DIMITRIADIS, D.; BOCCHIERI, E. Use of micro-modulation features in large vocabulary 

continuous speech recognition tasks. IEEE/ACM Transactions on Audio, Speech and Language 

Processing, Piscataway, v. 23, n. 8, p. 1348-1357, ago. 2015. 



89 

 

DINIZ, P. S. R.; SILVA, E. A. B.; NETTO, S. L. Processamento Digital de Sinais: Projeto e 

Análise de Sistemas. 2. ed. Porto Alegre: Bookman, 2014. 

FERREIRA, M. V. G.; SOUZA, J. F. Use of Automatic Speech Recognition Systems for 

Multimedia Applications. In: SIMPÓSIO BRASILEIRO DE SISTEMAS MULTIMÍDIA E WEB – 

WEBMEDIA, 23., 2017, Gramado. Anais dos Workshops e Pôsteres do Webmedia. Porto 

Alegre: Sociedade Brasileira de Computação, 2017. p. 139-176. 

GEORGESCU, A.; CUCU, H.; BURILEANU, C. SpeeD's DNN approach to Romanian speech 

recognition. In: INTERNATIONAL CONFERENCE ON SPEECH TECHNOLOGY AND 

HUMAN-COMPUTER DIALOGUE – SPED, 9., 2017, Bucharest. Proceedings… Piscataway: 

IEEE, 2017. p. 1-8. 

GORDILLO, C. D. A. Reconhecimento de Voz Contínua Combinando os Atributos MFCC e 

PNCC com Métodos de Robustez SS, WD, MAP e FRN. 2013. Dissertação (Mestrado em 

Engenharia Elétrica) – Departamento de Engenharia Elétrica, Pontifícia Universidade Católica do 

Rio de Janeiro, Rio de Janeiro. 

GRAVES, A.; JAITLY, N.; MOHAMED, A. Hybrid speech recognition with Deep Bidirectional 

LSTM. In: IEEE WORKSHOP ON AUTOMATIC SPEECH RECOGNITION AND 

UNDERSTANDING, 8., 2013, Olomouc. Proceedings… Piscataway: IEEE, 2013. p. 273-278. 

GROSSMAN, R. L. The Case for Cloud Computing. IT Professional, Piscataway, v. 11, n. 2, p. 

23-27, mar. 2009. 

HAYKIN, S. Redes Neurais: Princípios e prática. 2.ed. São Paulo: Bookman, 2001. 

HEARST, M. A. ‘Natural’ search user interfaces. Communications of the ACM, New York, v. 54, 

n. 11, p. 60-67, nov. 2011. 

HTK. HTK Speech Recognition Toolkit. 2019. Disponível em: <http://htk.eng.cam.ac.uk>. 

Acesso em: 10 jan. 2019. 

HUANG, X.; DENG, L. An overview of modern speech recognition. In: INDURKHYA, N., 

DAMERAU, F. J. (Ed.). Handbook of Natural Language Processing. 2.ed. Londres: Chapman 

and Hall/CRC, 2010. p. 339-366. 

HUCHE, F. L.; ALLALI, A. A voz: anatomia e fisiologia dos órgãos da voz e da fala. 2. ed. Porto 

Alegre: Artmed, 1999. 

IBGE. Pesquisa nacional por amostra de domicílios. 2016. Disponível em: 

<http://www.ibge.gov.br/>. Acesso em: 11 mai. 2018. 

JURAFSKY, D.; MARTIN, J. H. Speech and Language Processing: An Introduction to Natural 

Language Processing, Computational Linguistics, and Speech Recognition. 2. ed. Upper Saddle 

River: Prentice-Hall, 2008. 

KALDI. Kaldi ASR. 2019. Disponível em: <http://kaldi-asr.org>. Acesso em: 08 jan. 2019. 



90 

 

KIPYATKOVA, I.S.; KARPOV, A.A. A study of neural network Russian language models for 

automatic continuous speech recognition systems. Automation and Remote Control, Nova Iorque, 

v. 78, n. 5, p. 858-867, mai. 2017. 

KITCHENHAM, B.; CHARTERS, S. Guidelines for performing Systematic Literature Reviews 

in Software Engineering. 2007. Disponível em: 

<https://www.elsevier.com/__data/promis_misc/525444systematicreviewsguide.pdf>. Acesso em: 

15 mai. 2018. 

LALEYE, F. A. A; BESACIER, L.; EZIN, E. C.; MOTAMED, C. First automatic fongbe 

continuous speech recognition system: Development of acoustic models and language models. In: 

FEDERATED CONFERENCE ON COMPUTER SCIENCE AND INFORMATION SYSTEMS - 

FEDCSIS, 5., 2016, Gdansk. Proceedings... Piscataway: IEEE, 2016. p. 477-482. 

LEE, K.; HON, H.; REDDY, R. An Overview of the SPHINX Speech Recognition System. IEEE 

Transactions on Acoustic Speech, and Signal Processing, Piscataway, v. 38, n. 1, p. 35-45, jan. 

1990. 

LUGER, G. F. Inteligência artificial. 6. ed. São Paulo: Pearson, 2013. 

MAIA, E. M. No reino da fala: a linguagem e seus sons. 4. ed. São Paulo: Ática, 1999. 

MELO, D. B. Um Sistema de Reconhecimento de Comandos de Voz Utilizando a Rede Neural 

ELM. 2011. Monografia (Bacharelado em Engenharia de Teleinformática) – Departamento de 

Engenharia de Teleinformática, Universidade Federal do Ceará, Fortaleza. 

MIKOLOV, T.; KARAFIAT, M.; BURGET, L.; CERNOCKY, J.; KHU-DANPUR, S. Recurrent 

neural network based language model. In: ANNUAL CONFERENCE OF THE INTERNATIONAL 

SPEECH COMMUNICATION ASSOCIATION – INTERSPEECH, 11., 2010, Makuhari. 

Proceedings… Baixas: ISCA, 2010. p. 1045-1048. 

MÜLLER, D. N. COMFALA - Modelo Computacional do Processo de Compreensão da Fala. 

2006. Tese (Doutorado em Ciência da Computação) – Instituto de Informática, Universidade 

Federal do Rio Grande do Sul, Porto Alegre.  

NAING, H. M. S.; HLAING, A. M.; PA, W. P.; HU, X.; THU, Y. K.; HORI, C.; KAWAI, H. A 

Myanmar large vocabulary continuous speech recognition system. In: ASIA-PACIFIC SIGNAL 

AND INFORMATION PROCESSING ASSOCIATION ANNUAL SUMMIT AND 

CONFERENCE – APSIPA, 3., 2015, Hong Kong. Proceedings... Piscataway: IEEE, 2015. p. 320-

327. 

PAKOCI, E.; POPOVIĆ, B.; PEKAR, D. Improvements in Serbian Speech Recognition Using 

Sequence-Trained Deep neural Networks. In: ARTIFICIAL INTELLIGENCE, KNOWEDGE AND 

DATA ENGINEERING, 2018, St. Petersburg. SPIIRAS Proceedings. St. Petersburg: SPIIRAS, 

2018. p. 53-76. 

PAKOCI, E.; POPOVIĆ, B.; PEKAR, D. Language model optimization for a deep neural network 

based speech recognition system for Serbian. In: INTERNATIONAL CONFERENCE ON 

SPEECH AND COMPUTER, 19., 2017, Hatfield. Proceedings… Nova Iorque: Springer, 2017. p. 

483-492. 



91 

 

PATRA, S. Robust Speaker Identification System. 2007. Disponível em: 

<http://www.serc.iisc.ernet.in/graduation-theses/spatra_dec07.pdf >. Acesso em: 26 mai. 2018. 

PERICO, A.; SHINOHARA, C. S.; SARMENTO, C. D. Sistema de Reconhecimento de Voz para 

Automatização de uma Plataforma Elevatória. 2014. Monografia (Bacharelado em Engenharia 

Industrial Elétrica) – Departamento Acadêmico de Eletrotécnica, Universidade Tecnológica Federal 

do Paraná, Curitiba. 

PHULL, D. K.; KUMAR, G. B. Investigation of Indian English Speech Recognition using CMU 

Sphinx. International Journal of Applied Engineering Research, Delhi, v. 11, n. 6, p. 4167-

4174, 2016. 

PLANNERER, B. An Introduction to Speech Recognition. 2005. Disponível em: 

<https://www.scribd.com/document/52115407/An-Introduction-to-Speech-Recognition-B-

Plannere>. Acesso em: 05 jun. 2018. 

POVEY, D.; GHOSHAL, A.; BOULIANNE, G.; BURGET, L.; GLEMBEK, O.; GOEL, N.; 

HANNEMANN, M.; MOTLICEK, P.; QIAN, Y.; SCHWARZ, P.; SILOVSKY, J.; STEMMER, G.; 

VESELY, K. The Kaldi Speech Recognition Toolkit. In: WORKSHOP ON AUTOMATIC 

SPEECH RECOGNITION AND UNDERSTANDING, 12., 2011, Hawaii. Proceedings… 

Piscataway: IEEE, 2011. p. 1-4. 

RUSSELL, S.; NORVIG, P. Inteligência artificial. 2. ed. Rio de Janeiro: Elsevier, 2004. 

SAK, H.; SENIOR, A.; BEAUFAYS, F. Long Short-Term Memory Recurrent Neural Network 

Architectures for Large Scale Acoustic Modeling. In: ANNUAL CONFERENCE OF THE 

INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION – INTERSPEECH, 15., 2014, 

Singapore. Proceedings… Baixas: ISCA, 2014. p. 338-342. 

SAMPAIO NETO, N. C. Ferramentas e recursos livres para reconhecimento e síntese de voz 

em português brasileiro. 2011. Tese (Doutorado em Engenharia Elétrica) – Instituto de 

Tecnologia, Universidade Federal do Pará, Belém. 

SAUNDADE, M.; KURLE, P. Speech Recognition using Digital Signal Processing. International 

Journal of Electronics, Communication & Soft Computing Science and Engineering, Nova 

Deli, v. 2, n. 6, p. 31-34, 2014. 

SILVA, C. P. A. Um software de reconhecimento de voz para português brasileiro. 2010. 

Dissertação (Mestrado em Engenharia Elétrica) – Instituto de Tecnologia, Universidade Federal do 

Pará, Pará.  

SILVA, E.; BAPTISTA, L.; FERNANDES, H.; KLAUTAU, A. Desenvolvimento de um Sistema 

de Reconhecimento Automático de Voz Contínua com Grande Vocabulário para o Português 

Brasileiro. In: WORKSHOP TIL, 2005, São Leopoldo. Anais do XXV Congresso da Sociedade 

Brasileira de Computação. Porto Alegre: Sociedade Brasileira de Computação, 2005. p. 2258-

2267.   

SILVA, E.; PANTOJA, M.; CELIDÔNIO, J.; KLAUTAU, A. Modelos de linguagem n-grama 

para reconhecimento de voz com grande vocabulário. 2004. Disponível em: 

<http://www.lbd.dcc.ufmg.br/colecoes/til/2004/009.pdf>. Acesso em: 03 fev. 2018. 



92 

 

SILVEIRA, R. C. P. Estudos de fonologia portuguesa. São Paulo: Cortez, 1986. 

SPÖRL, C.; CASTRO, E. G.; LUCHIARI, A. Aplicação de Redes Neurais Artificiais na 

Construção de Modelos de Fragilidade Ambiental. Revista do Departamento de Geografia, v. 21, 

n. 1, p. 113-135, 2011. 

TACHBELIE, M. Y.; ABATE, S. T.; BESACIER, L. Using different acoustic, lexical and language 

modeling units for ASR of an under-resourced language - Amharic. Speech Communication, 

Amsterdam, v. 56, n. 1 p. 181-194, jan. 2014. 

TACHIOKA, Y.; WATANABE, S. Discriminative method for recurrent neural network language 

models. In: IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL 

PROCESSING – ICASSP, 39., 2015, Brisbane. Proceedings… Piscataway: IEEE, 2015. p. 5386-

5390.  

TEVAH, R. T. Implementação de um sistema de reconhecimento de fala contínua com amplo 

vocabulário para o português brasileiro. 2006. Dissertação (Mestrado em Ciências em 

Engenharia Elétrica) – Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia, 

Universidade Federal do Rio de Janeiro, Rio de Janeiro. 

TIWARI, V. MFCC and its applications in speaker recognition. International Journal on 

Emerging Technologies, Viena, v. 1, n. 1 p. 19-22, fev. 2010. 

VEIGA, A. O. Treino não supervisionado de modelos acústicos para reconhecimento de fala. 

2013. Tese (Doutorado em Engenharia Eletrotécnica e de Computadores) – Departamento de 

Engenharia Eletrotécnica e de Computadores, Universidade de Coimbra, Coimbra. 

VITAK, J.; CROUSE, J.; LAROSE, R. Personal Internet use at work: Understanding cyberslacking. 

Computers in Human Behavior, Amsterdam, v. 27, n. 5, p. 1751-1759, set. 2011. 

YU, D.; DENG, L. Automatic Speech Recognition: A Deep Learning Approach. Londres: 

Springer, 2015. 

ZHANG, H.; BAO, F.; GAO, G. Mongolian speech recognition based on deep neural networks. In: 

CHINESE COMPUTATIONAL LINGUISTICS AND NATURAL LANGUAGE PROCESSING 

BASED ON NATURALLY ANNOTATED BIG DATA, 14., 2015, Guangzhou. Proceedings… 

Nova Iorque: Springer, 2015. p. 180-188. 



93 

 

GLOSSÁRIO 

Corpora Plural de corpus. 

Corpus Um conjunto de documentos ou dados sobre determinado assunto. 

Decodificador Localiza a melhor sequência de palavras num conjunto de hipóteses 

possíveis dada a representação de características do sinal de voz. 

Dicionário fonético Lista de palavras possíveis de reconhecer com suas respectivas pronúncias 

expressas em uma sequência de fonemas. 

Fonema Unidades sonoras mais simples da língua, e divide-se em vogais, 

semivogais e consoantes. 

Modelo acústico Componente do sistema de reconhecimento de fala responsável por 

definir, a partir das características extraídas do áudio de entrada, a 

sequência mais provável de palavras ou fonemas. 

Modelo de linguagem Responsável por caracterizar o idioma e condicionar a combinação de 

palavras descartando frases que são gramaticalmente incorretas. 

Retropropagação Algoritmo de aprendizado da RNA que consiste em iniciar na camada de 

saída e propagar o erro retroativamente através das camadas ocultas. 

Supervisionado Esse tipo de treinamento tenta aprender a classificar os dados de 

treinamento que já foram classificados manualmente pelos humanos. 

Voz Som ou conjunto de sons produzidos pelas cordas vocais, e são 

responsáveis pela comunicação entre os seres humanos.  

 



94 

 

APÊNDICE A   – ARTIGOS EXCLUÍDOS NA REVISÃO 

SISTEMÁTICA DA LITERATURA 

O quadro abaixo apresenta os 54 artigos excluídos na revisão sistemática da literatura por não 

pertinência ao escopo da pesquisa. 

Identificação Título Repositório Ano 

(Sem Autor) 2015 IEEE Workshop on Automatic Speech 

Recognition and Understanding, ASRU 2015 - 

Proceedings 

Scopus 2016 

Al-Anzi, F.; AbuZeina, D. Literature Survey of Arabic Speech 

Recognition 

IEEE 2018 

Arisoy, E.; Chen, S. F.; 

Ramabhadran, B.; Sethy, 

A. 

Converting Neural Network Language Models 

into Back-off Language Models for Efficient 

Decoding in Automatic Speech Recognition 

ACM 2014 

Bahdanau, D.; Chorowski, 

J.; Serdyuk, D.; Brakel, P.; 

Bengio, Y. 

End-to-end attention-based large vocabulary 

speech recognition 

IEEE 2016 

Ban, S. M.; Kim, H. S. Instantaneous model adaptation method for 

reverberant speech recognition 

IEEE 2015 

Biagetti, G.; Crippa, P.; 

Falaschetti, L.; Orcioni, S.; 

Turchetti, C. 

An algorithm for automatic words extraction 

from a stream of phones in dictionary-based 

large vocabulary continuous speech 

recognition systems 

Scopus 2016 

Brocki, Ł.; Koržinek, D.; 

Marasek, K. 

Improved factorization of a connectionist 

language model for single-pass real-time 

speech recognition 

Scopus 2014 

Chaloupka, J. Digits to words converter for slavic languages 

in systems of automatic speech recognition 

Scopus 2017 

Chen, L.; Dai, Y.; La, B.; 

Sun, M.; Xiong, Z. 

The Key Technology of Speech Interaction 

Based on Deep Learning 

Scopus 2018 

Chen, N. F.; Sivadas, 

S.; Lim, B. P.; Ngo, H. 

G.; Xu, H.; Pham, V. 

T.; Ma, B.; Li, H. 

Strategies for Vietnamese keyword search IEEE 2014 

Chien, J.; Ku, Y. Bayesian Recurrent Neural Network for 

Language Modeling 

IEEE 2016 

Cucu, H.; Buzo, A.; 

Besacier, L.; Burileanu, C. 

SMT-based ASR domain adaptation methods 

for under-resourced languages: Application to 

Romanian 

Scopus 2014 

Dimitriadis, D.; Bocchieri, 

E. 

Use of micro-modulation features in large 

vocabulary continuous speech recognition 

tasks 

ACM 2015 

Gajecki, L. Architectures of neural networks applied for 

LVCSR language modeling 

ScienceDire

ct 

2014 



95 

 

Gales, M. J. F.; Knill, K. 

M.; Ragni, A. 

Unicode-based graphemic systems for limited 

resource languages 

IEEE 2015 

Gündoğdu, B.; Yusuf, B.; 

Saraçlar, M. 

Joint Learning of Distance Metric and Query 

Model for Posteriorgram-Based Keyword 

Search 

IEEE 2017 

Hu, C. C.; Liu, B.; Shen, J. 

P.; Lane, I. 

Online Incremental Learning for Speaker-

Adaptive Language Models 

Scopus 2018 

Kanda, N.; Lu, X.; Kawai, 

H. 

Minimum Bayes risk training of CTC acoustic 

models in maximum a posteriori based 

decoding framework 

Scopus 2017 

Kipyatkova, I.; Karpov, A. Language models with RNNs for rescoring 

hypotheses of Russian ASR 

Scopus 2016 

Kitaoka, N.; Enami, D.; 

Nakagawa, S. 

Effect of acoustic and linguistic contexts on 

human and machine speech recognition 

ScienceDire

ct 

2014 

Kuamr, A.; Dua, M.; 

Choudhary, A. 

Implementation and performance evaluation of 

continuous Hindi speech recognition 

IEEE 2014 

Kurimo, M.; Enarvi, S.; 

Tilk, O.; Varjokallio, M.; 

Mansikkaniemi, A.; 

Alumäe, T. 

Modeling under-resourced languages for 

speech recognition 

Scopus 2017 

Lee, K.; Park, C.; Kim, I.; 

Kim, N.; Lee, J. 

Applying GPGPU to recurrent neural network 

language model based fast network search in 

the real-time LVCSR 

Scopus 2015 

Liu, Q.; Qian, Y.; Yu, K. Future vector enhanced LSTM language model 

for LVCSR 

Scopus 2018 

Londhe, N.D.; Kshirsagar, 

G.B. 

Continuous speech recognition system for 

chhattisgarhi 

Scopus 2018 

Madhavaraj, A.; 

Ramakrishnan, A. G. 

Design and development of a large 

vocabulary, continuous speech recognition 

system for Tamil 

IEEE 2017 

Mitra, V.; Sivaraman, G.; 

Nam, H.; Espy-Wilson, C.; 

Saltzman, E. 

Articulatory features from deep neural 

networks and their role in speech recognition 

IEEE 2014 

Nguyen, Q. B.; Mai, V. T.; 

Le, Q. T.; Dam, B. Q.; Do, 

V. H. 

Development of a Vietnamese Large 

Vocabulary Continuous Speech Recognition 

System under Noisy Conditions 

ACM 2018 

Nguyen, T. C.; Chaloupka, 

J.; Nouza, J. 

Study on incorporating tone into speech 

recognition of Vietnamese 

Scopus 2015 

Popović, B.; Pakoci, E.; 

Jakovljević, N.; Kočiš, G.; 

Pekar, D. 

Voice assistant application for the Serbian 

language 

IEEE 2015 

Popović, B.; Pakoci, E.; 

Pekar, D. 

A Comparison of Language Model Training 

Techniques in a Continuous Speech 

Recognition System for Serbian 

Scopus 2018 

Sailor, H. B.; Patil, H. A. Novel Unsupervised Auditory Filterbank 

Learning Using Convolutional RBM for 

Speech Recognition 

ACM 2016 



96 

 

Sajjan, S.C.; Vijaya, C. Continuous Speech Recognition of Kannada 

language using triphone modeling 

Scopus 2016 

Sangeetha, J.; Jothilakshmi, 

S. 

Speech translation system for english to 

dravidian languages 

Scopus 2017 

Sangeetha, J.; Jothilakshmi, 

S.; Devendrakumar, R.N. 

Efficient continuous speech recognition 

approaches for dravidian languages 

Scopus 2014 

Schlüter, R.; Doetsch, P.; 

Golik, P.; Kitza, M.; 

Menne, T.; Irie, K.; Tüske, 

Z.; Zeyer, A. 

Automatic speech recognition based on neural 

networks 

Scopus 2016 

Sercu, T.; Puhrsch, 

C.; Kingsbury, B.; LeCun, 

Y. 

Very deep multilingual convolutional neural 

networks for LVCSR 

IEEE 2016 

Shaik, M. A. B.; Tüske, Z.; 

Tahir, M. A.; Nußbaum-

Thom, M.; Schlüter, R.; 

Ney, H. 

RWTH LVCSR systems for Quaero and EU-

bridge: German, Polish, Spanish and 

Portuguese 

Scopus 2014 

Smit, P.; Gangireddy, S. R.; 

Enarvi, S.; Virpioja, S.; 

Kurimo, M. 

Character-based units for unlimited 

vocabulary continuous speech recognition 

Scopus 2018 

Soltau, H.; Liao, H.; Sak, 

H. 

Reducing the computational complexity for 

whole word models 

Scopus 2018 

Sterpu, G. Large Vocabulary Continuous Audio-Visual 

Speech Recognition 

ACM 2018 

Sterpu, G.; Saam, C.; 

Harte, N. 

Attention-based Audio-Visual Fusion for 

Robust Automatic Speech Recognition 

ACM 2018 

Szabó, L.; Mihajlik, P.; 

Balog, A.; Fegyó, T. 

Unified simplified grapheme acoustic 

modeling for medieval Latin LVCSR 

Scopus 2017 

Tachioka, Y.; Watanabe, S. Discriminative method for recurrent neural 

network language models 

IEEE 2015 

Takagi, A.; Konno, K.; 

Kato, M.; Kosaka, T. 

Unsupervised cross-adaptation using language 

model and deep learning based acoustic model 

adaptations 

IEEE 2014 

Triefenbach, F.; 

Demuynck, K.; Martens, J.-

P. 

Large vocabulary continuous speech 

recognition with reservoir-based acoustic 

models 

Scopus 2014 

Tüske, Z.; Irie, K.; 

Schlüter, R.; Ney, H. 

Investigation on log-linear interpolation of 

multi-domain neural network language model 

IEEE 2016 

Van Hout, J.; Mitra, V.; 

Lei, Y.; Vergyri, D.; 

Graciarena, M.; Mandal, 

A.; Franco, H. 

Recent improvements in SRI's keyword 

detection system for noisy audio 

Scopus 2014 

Vanhainen, N.; Salvi, G.  Free acoustic and language models for large 

vocabulary continuous speech recognition in 

swedish 

Scopus 2014 

Wang, H.; Khyuru, K.; Li, 

J.; Li, G.; Dang, J.; Huang, 

L. 

Investigation on acoustic modeling with 

different phoneme set for continuous Lhasa 

Tibetan recognition based on DNN method 

Scopus 2017 



97 

 

Yusuf, B.; Gundogdu, B.; 

Saraclar, M. 

Beyond Posteriorgram: Bottleneck Features 

for Keyword Search 

IEEE 2018 

Zhang, S.; Bao, Y.; Zhou, 

P.; Jiang, H.; Dai, L. 

Improving deep neural networks for LVCSR 

using dropout and shrinking structure 

IEEE 2014 

Zhang, S.; Jiang, H.; 

Xiong, S.; Wei, S.; Dai, L. 

Compact feedforward sequential memory 

networks for large vocabulary continuous 

speech recognition 

Scopus 2016 

Zhang, W.; Fung, P. Discriminatively trained sparse inverse 

covariance matrices for speech recognition 

ACM 2014 



98 

 

APÊNDICE B   – CONFIGURAÇÕES DA BIBLIOTECA 

CMUSPHINX 

O quadro abaixo apresenta as alterações realizadas na configuração padrão, gerando a 

configuração de ID 1 para a biblioteca CMUSphinx.  

$CFG_VERBOSE = 1; 

$CFG_NUM_FILT = 8;  

$CFG_LO_FILT = 26;  

$CFG_HI_FILT = 1360; 

$CFG_LIFTER = "4"; 

$CFG_AGC = 'none'; 

$CFG_DIAGFULL = 'no'; 

$CFG_VTLN_START = 0.16; 

$CFG_VTLN_END = 0.28; 

$CFG_VTLN_STEP = 0.01; 

$CFG_LANGUAGEWEIGHT = "2.3"; 

$CFG_WORDPENALTY = "0.04"; 

$CFG_MMIE_MAX_ITERATIONS = 1; 

$CFG_MMIE_TYPE = "rand"; 

$CFG_MMIE_CONSTE = "0.6"; 

$CFG_STATESPERHMM = 3; 

$CFG_SKIPSTATE = 'no'; 

$CFG_FINAL_NUM_DENSITIES = 2; 

$CFG_FALIGN_CI_MGAU = 'no'; 

$CFG_CI_MGAU = 'no'; 

$CFG_N_TIED_STATES = 40; 

$CFG_LDA_DIMENSION = 5; 

$CFG_CONVERGENCE_RATIO = 0.02; 

$CFG_G2P_MODEL= 'no'; 

$DEC_CFG_VERBOSE = 1; 

$DEC_CFG_LANGUAGEWEIGHT = "10"; 

$DEC_CFG_WORDPENALTY = "0.04"; 

$DEC_CFG_NPART = 1; 

$CFG_DONE = 1; 

O quadro abaixo apresenta as alterações realizadas na configuração padrão, gerando a 

configuração de ID 2 para a biblioteca CMUSphinx.  

$CFG_VERBOSE = 1; 

$CFG_NUM_FILT = 24;  

$CFG_LO_FILT = 78;  

$CFG_HI_FILT = 4080; 

$CFG_LIFTER = "13"; 

$CFG_AGC = 'none'; 

$CFG_DIAGFULL = 'no'; 

$CFG_VTLN_START = 0.48; 

$CFG_VTLN_END = 0.84; 

$CFG_VTLN_STEP = 0.03; 

$CFG_LANGUAGEWEIGHT = "6.9"; 

$CFG_WORDPENALTY = "0.12"; 

$CFG_MMIE_MAX_ITERATIONS = 3; 



99 

 

$CFG_MMIE_TYPE = "rand"; 

$CFG_MMIE_CONSTE = "1.8"; 

$CFG_STATESPERHMM = 3; 

$CFG_SKIPSTATE = 'no'; 

$CFG_FINAL_NUM_DENSITIES = 4; 

$CFG_FALIGN_CI_MGAU = 'no'; 

$CFG_CI_MGAU = 'no'; 

$CFG_N_TIED_STATES = 120; 

$CFG_LDA_DIMENSION = 17; 

$CFG_CONVERGENCE_RATIO = 0.06; 

$CFG_G2P_MODEL= 'no'; 

$DEC_CFG_VERBOSE = 1; 

$DEC_CFG_LANGUAGEWEIGHT = "10"; 

$DEC_CFG_WORDPENALTY = "0.12"; 

$DEC_CFG_NPART = 1; 

$CFG_DONE = 1; 

O quadro abaixo apresenta as alterações realizadas na configuração padrão, gerando a 

configuração de ID 3 para a biblioteca CMUSphinx. 

$CFG_VERBOSE = 1; 

$CFG_NUM_FILT = 40;  

$CFG_LO_FILT = 130;  

$CFG_HI_FILT = 6800; 

$CFG_LIFTER = "22"; 

$CFG_AGC = 'none'; 

$CFG_DIAGFULL = 'no'; 

$CFG_VTLN_START = 0.80; 

$CFG_VTLN_END = 1.40; 

$CFG_VTLN_STEP = 0.05; 

$CFG_LANGUAGEWEIGHT = "11.5"; 

$CFG_WORDPENALTY = "0.2"; 

$CFG_MMIE_MAX_ITERATIONS = 5; 

$CFG_MMIE_TYPE = "rand"; 

$CFG_MMIE_CONSTE = "3.0"; 

$CFG_STATESPERHMM = 3; 

$CFG_SKIPSTATE = 'no'; 

$CFG_FINAL_NUM_DENSITIES = 8; 

$CFG_FALIGN_CI_MGAU = 'no'; 

$CFG_CI_MGAU = 'no'; 

$CFG_N_TIED_STATES = 200; 

$CFG_LDA_DIMENSION = 29; 

$CFG_CONVERGENCE_RATIO = 0.1; 

$CFG_G2P_MODEL= 'no'; 

$DEC_CFG_VERBOSE = 1; 

$DEC_CFG_LANGUAGEWEIGHT = "10"; 

$DEC_CFG_WORDPENALTY = "0.2"; 

$DEC_CFG_NPART = 1; 

$CFG_DONE = 1; 

O quadro abaixo apresenta as alterações realizadas na configuração padrão, gerando a 

configuração de ID 4 para a biblioteca CMUSphinx. 

$CFG_VERBOSE = 2; 

$CFG_NUM_FILT = 56;  



100 

 

$CFG_LO_FILT = 182;  

$CFG_HI_FILT = 8000; 

$CFG_LIFTER = "30"; 

$CFG_AGC = 'none'; 

$CFG_DIAGFULL = 'no'; 

$CFG_VTLN_START = 1.12; 

$CFG_VTLN_END = 1.96; 

$CFG_VTLN_STEP = 0.07; 

$CFG_LANGUAGEWEIGHT = "16.1"; 

$CFG_WORDPENALTY = "0.28"; 

$CFG_MMIE_MAX_ITERATIONS = 7; 

$CFG_MMIE_TYPE = "rand"; 

$CFG_MMIE_CONSTE = "4.2"; 

$CFG_STATESPERHMM = 4; 

$CFG_SKIPSTATE = 'no'; 

$CFG_FINAL_NUM_DENSITIES = 12; 

$CFG_FALIGN_CI_MGAU = 'no'; 

$CFG_CI_MGAU = 'no'; 

$CFG_N_TIED_STATES = 280; 

$CFG_LDA_DIMENSION = 40; 

$CFG_CONVERGENCE_RATIO = 0.14; 

$CFG_G2P_MODEL= 'no'; 

$DEC_CFG_VERBOSE = 2; 

$DEC_CFG_LANGUAGEWEIGHT = "14"; 

$DEC_CFG_WORDPENALTY = "0.28"; 

$DEC_CFG_NPART = 2; 

$CFG_DONE = 2; 

O quadro abaixo apresenta as alterações realizadas na configuração padrão, gerando a 

configuração de ID 5 para a biblioteca CMUSphinx. 

$CFG_VERBOSE = 3; 

$CFG_NUM_FILT = 72;  

$CFG_LO_FILT = 234;  

$CFG_HI_FILT = 8000; 

$CFG_LIFTER = "39"; 

$CFG_AGC = 'none'; 

$CFG_DIAGFULL = 'no'; 

$CFG_VTLN_START = 1.44; 

$CFG_VTLN_END = 2.52; 

$CFG_VTLN_STEP = 0.09; 

$CFG_LANGUAGEWEIGHT = "20.7"; 

$CFG_WORDPENALTY = "0.36"; 

$CFG_MMIE_MAX_ITERATIONS = 9; 

$CFG_MMIE_TYPE = "rand"; 

$CFG_MMIE_CONSTE = "5.4"; 

$CFG_STATESPERHMM = 5; 

$CFG_SKIPSTATE = 'no'; 

$CFG_FINAL_NUM_DENSITIES = 14; 

$CFG_FALIGN_CI_MGAU = 'no'; 

$CFG_CI_MGAU = 'no'; 

$CFG_N_TIED_STATES = 360; 

$CFG_LDA_DIMENSION = 52; 

$CFG_CONVERGENCE_RATIO = 0.18; 

$CFG_G2P_MODEL= 'no'; 

$DEC_CFG_VERBOSE = 3; 

$DEC_CFG_LANGUAGEWEIGHT = "18"; 



101 

 

$DEC_CFG_WORDPENALTY = "0.36"; 

$DEC_CFG_NPART = 3; 

$CFG_DONE = 3; 

O quadro abaixo apresenta as alterações realizadas na configuração padrão, gerando a 

configuração de ID 6 para a biblioteca CMUSphinx. 

$CFG_VERBOSE = 1; 

$CFG_NUM_FILT = 8;  

$CFG_LO_FILT = 26;  

$CFG_HI_FILT = 1360; 

$CFG_LIFTER = "4"; 

$CFG_AGC = 'max'; 

$CFG_DIAGFULL = 'yes'; 

$CFG_VTLN_START = 0.16; 

$CFG_VTLN_END = 0.28; 

$CFG_VTLN_STEP = 0.01; 

$CFG_LANGUAGEWEIGHT = "2.3"; 

$CFG_WORDPENALTY = "0.04"; 

$CFG_MMIE_MAX_ITERATIONS = 1; 

$CFG_MMIE_TYPE = "best"; 

$CFG_MMIE_CONSTE = "0.6"; 

$CFG_STATESPERHMM = 3; 

$CFG_SKIPSTATE = 'yes'; 

$CFG_FINAL_NUM_DENSITIES = 2; 

$CFG_FALIGN_CI_MGAU = 'yes'; 

$CFG_CI_MGAU = 'yes'; 

$CFG_N_TIED_STATES = 40; 

$CFG_LDA_DIMENSION = 5; 

$CFG_CONVERGENCE_RATIO = 0.02; 

$CFG_G2P_MODEL= 'yes'; 

$DEC_CFG_VERBOSE = 1; 

$DEC_CFG_LANGUAGEWEIGHT = "10"; 

$DEC_CFG_WORDPENALTY = "0.04"; 

$DEC_CFG_NPART = 1; 

$CFG_DONE = 1; 

O quadro abaixo apresenta as alterações realizadas na configuração padrão, gerando a 

configuração de ID 7 para a biblioteca CMUSphinx. 

$CFG_VERBOSE = 1; 

$CFG_NUM_FILT = 24;  

$CFG_LO_FILT = 78;  

$CFG_HI_FILT = 4080; 

$CFG_LIFTER = "13"; 

$CFG_AGC = 'max'; 

$CFG_DIAGFULL = 'yes'; 

$CFG_VTLN_START = 0.48; 

$CFG_VTLN_END = 0.84; 

$CFG_VTLN_STEP = 0.03; 

$CFG_LANGUAGEWEIGHT = "6.9"; 

$CFG_WORDPENALTY = "0.12"; 

$CFG_MMIE_MAX_ITERATIONS = 3; 

$CFG_MMIE_TYPE = "best"; 

$CFG_MMIE_CONSTE = "1.8"; 



102 

 

$CFG_STATESPERHMM = 3; 

$CFG_SKIPSTATE = 'yes'; 

$CFG_FINAL_NUM_DENSITIES = 4; 

$CFG_FALIGN_CI_MGAU = 'yes'; 

$CFG_CI_MGAU = 'yes'; 

$CFG_N_TIED_STATES = 120; 

$CFG_LDA_DIMENSION = 17; 

$CFG_CONVERGENCE_RATIO = 0.06; 

$CFG_G2P_MODEL= 'yes'; 

$DEC_CFG_VERBOSE = 1; 

$DEC_CFG_LANGUAGEWEIGHT = "10"; 

$DEC_CFG_WORDPENALTY = "0.12"; 

$DEC_CFG_NPART = 1; 

$CFG_DONE = 1; 

O quadro abaixo apresenta as alterações realizadas na configuração padrão, gerando a 

configuração de ID 8 para a biblioteca CMUSphinx. 

$CFG_VERBOSE = 1; 

$CFG_NUM_FILT = 40;  

$CFG_LO_FILT = 130;  

$CFG_HI_FILT = 6800; 

$CFG_LIFTER = "22"; 

$CFG_AGC = 'max'; 

$CFG_DIAGFULL = 'yes'; 

$CFG_VTLN_START = 0.80; 

$CFG_VTLN_END = 1.40; 

$CFG_VTLN_STEP = 0.05; 

$CFG_LANGUAGEWEIGHT = "11.5"; 

$CFG_WORDPENALTY = "0.2"; 

$CFG_MMIE_MAX_ITERATIONS = 5; 

$CFG_MMIE_TYPE = "best"; 

$CFG_MMIE_CONSTE = "3.0"; 

$CFG_STATESPERHMM = 3; 

$CFG_SKIPSTATE = 'yes'; 

$CFG_FINAL_NUM_DENSITIES = 8; 

$CFG_FALIGN_CI_MGAU = 'yes'; 

$CFG_CI_MGAU = 'yes'; 

$CFG_N_TIED_STATES = 200; 

$CFG_LDA_DIMENSION = 29; 

$CFG_CONVERGENCE_RATIO = 0.1; 

$CFG_G2P_MODEL= 'yes'; 

$DEC_CFG_VERBOSE = 1; 

$DEC_CFG_LANGUAGEWEIGHT = "10"; 

$DEC_CFG_WORDPENALTY = "0.2"; 

$DEC_CFG_NPART = 1; 

$CFG_DONE = 1; 

O quadro abaixo apresenta as alterações realizadas na configuração padrão, gerando a 

configuração de ID 9 para a biblioteca CMUSphinx. 

$CFG_VERBOSE = 2; 

$CFG_NUM_FILT = 56;  

$CFG_LO_FILT = 182;  

$CFG_HI_FILT = 8000; 



103 

 

$CFG_LIFTER = "30"; 

$CFG_AGC = 'max'; 

$CFG_DIAGFULL = 'yes'; 

$CFG_VTLN_START = 1.12; 

$CFG_VTLN_END = 1.96; 

$CFG_VTLN_STEP = 0.07; 

$CFG_LANGUAGEWEIGHT = "16.1"; 

$CFG_WORDPENALTY = "0.28"; 

$CFG_MMIE_MAX_ITERATIONS = 7; 

$CFG_MMIE_TYPE = "best"; 

$CFG_MMIE_CONSTE = "4.2"; 

$CFG_STATESPERHMM = 4; 

$CFG_SKIPSTATE = 'yes'; 

$CFG_FINAL_NUM_DENSITIES = 12; 

$CFG_FALIGN_CI_MGAU = 'yes'; 

$CFG_CI_MGAU = 'yes'; 

$CFG_N_TIED_STATES = 280; 

$CFG_LDA_DIMENSION = 40; 

$CFG_CONVERGENCE_RATIO = 0.14; 

$CFG_G2P_MODEL= 'yes'; 

$DEC_CFG_VERBOSE = 2; 

$DEC_CFG_LANGUAGEWEIGHT = "14"; 

$DEC_CFG_WORDPENALTY = "0.28"; 

$DEC_CFG_NPART = 2; 

$CFG_DONE = 2; 

O quadro abaixo apresenta as alterações realizadas na configuração padrão, gerando a 

configuração de ID 10 para a biblioteca CMUSphinx. 

$CFG_VERBOSE = 3; 

$CFG_NUM_FILT = 72;  

$CFG_LO_FILT = 234;  

$CFG_HI_FILT = 8000; 

$CFG_LIFTER = "39"; 

$CFG_AGC = 'max'; 

$CFG_DIAGFULL = 'yes'; 

$CFG_VTLN_START = 1.44; 

$CFG_VTLN_END = 2.52; 

$CFG_VTLN_STEP = 0.09; 

$CFG_LANGUAGEWEIGHT = "20.7"; 

$CFG_WORDPENALTY = "0.36"; 

$CFG_MMIE_MAX_ITERATIONS = 9; 

$CFG_MMIE_TYPE = "best"; 

$CFG_MMIE_CONSTE = "5.4"; 

$CFG_STATESPERHMM = 5; 

$CFG_SKIPSTATE = 'yes'; 

$CFG_FINAL_NUM_DENSITIES = 14; 

$CFG_FALIGN_CI_MGAU = 'yes'; 

$CFG_CI_MGAU = 'yes'; 

$CFG_N_TIED_STATES = 360; 

$CFG_LDA_DIMENSION = 52; 

$CFG_CONVERGENCE_RATIO = 0.18; 

$CFG_G2P_MODEL= 'yes'; 

$DEC_CFG_VERBOSE = 3; 

$DEC_CFG_LANGUAGEWEIGHT = "18"; 

$DEC_CFG_WORDPENALTY = "0.36"; 

$DEC_CFG_NPART = 3; 



104 

 

$CFG_DONE = 3; 

 



105 

 

APÊNDICE C   – CONFIGURAÇÕES DA BIBLIOTECA HTK 

O quadro abaixo apresenta as alterações realizadas na configuração padrão, gerando a 

configuração de ID 1 para a biblioteca HTK. 

HCompV -C confs/hcomp.conf -f 0.002 -m -S mfc_train.list -M hmms0 

hmms0/proto.hmm 

HERest -I phones0.mlf -t 50.0 30.0 200 -S mfc_train.list -H hmms0/macros -H 

hmms0/hmmdefs -M hmms1 hmmlist.txt 

HERest -I phones0.mlf -t 50.0 30.0 200 -S mfc_train.list -H hmms1/macros -H 

hmms1/hmmdefs -M hmms2 hmmlist.txt 

HERest -I phones0.mlf -t 50.0 30.0 200 -S mfc_train.list -H hmms2/macros -H 

hmms2/hmmdefs -M hmms3 hmmlist.txt 

HERest -I phonesp.mlf -t 50.0 30.0 200 -S mfc_train.list -H hmms5/macros -H 

hmms5/hmmdefs -M hmms6 hmmlist.txt 

HERest -I phonesp.mlf -t 50.0 30.0 200 -S mfc_train.list -H hmms6/macros -H 

hmms6/hmmdefs -M hmms7 hmmlist.txt 

HERest -I phonesp.mlf -t 50.0 30.0 200 -S mfc_train.list -H hmms7/macros -H 

hmms7/hmmdefs -M hmms8 hmmlist.txt 

HERest -I phonesp.mlf -t 50.0 30.0 200 -S mfc_train.list -H hmms8/macros -H 

hmms8/hmmdefs -M hmms9 hmmlist.txt 

HERest -I phonesp.mlf -t 50.0 30.0 200 -S mfc_train.list -H hmms9/macros -H 

hmms9/hmmdefs -M hmms10 hmmlist.txt 

HERest -I phonesp.mlf -t 50.0 30.0 200 -S mfc_train.list -H hmms10/macros -H 

hmms10/hmmdefs -M hmms11 hmmlist.txt 

HERest -I phonesp.mlf -t 50.0 30.0 200 -S mfc_train.list -H hmms11/macros -H 

hmms11/hmmdefs -M hmms12 hmmlist.txt 

HERest -I phonesp.mlf -t 50.0 30.0 200 -S mfc_train.list -H hmms12/macros -H 

hmms12/hmmdefs -M hmms13 hmmlist.txt 

HERest -I phonesp.mlf -t 50.0 30.0 200 -S mfc_train.list -H hmms13/macros -H 

hmms13/hmmdefs -M hmms14 hmmlist.txt 

HERest -B -I wintri.mlf -t 50.0 30.0 200.0 -s stats -S mfc_train.list -H 

hmms18/macros -H hmms18/hmmdefs -M hmms19 trifone 

HERest -B -I wintri.mlf -t 50.0 30.0 200.0 -s stats -S mfc_train.list -H 

hmms19/macros -H hmms19/hmmdefs -M hmms20 trifone 

HERest -B -I wintri.mlf -t 50.0 30.0 200.0 -s stats -S mfc_train.list -H 

hmms20/macros -H hmms20/hmmdefs -M hmms21 trifone 

HERest -B -I wintri.mlf -t 50.0 30.0 200.0 -s stats -S mfc_train.list -H 

hmms21/macros -H hmms21/hmmdefs -M hmms22 trifone 

HERest -B -I wintri.mlf -t 50.0 30.0 200.0 -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -B -I wintri.mlf -t 50.0 30.0 200.0 -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -B -I wintri.mlf -t 50.0 30.0 200.0 -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -B -I wintri.mlf -t 50.0 30.0 200.0 -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -u tmvw -I wintri.mlf -t 50 30 200 -S mfc_train.list -H 2G/macros -H 

2G/hmmdefs -M hmms tiedlist 

HERest -u tmvw -I wintri.mlf -t 50 30 200 -S mfc_train.list -H hmms/macros -H 

hmms/hmmdefs -M 2G tiedlist 

HERest -u tmvw -I wintri.mlf -t 50 30 200 -S mfc_train.list -H $i"G"/macros -H 

$i"G"/hmmdefs -M hmms tiedlist 

HERest -u tmvw -I wintri.mlf -t 50 30 200 -S mfc_train.list -H hmms/macros -H 

hmms/hmmdefs -M $i"G" tiedlist 



106 

 

 
# ----> Arquivo: hcopy-wav.conf 

TARGETRATE = 100000.0 

SAVECOMPRESSED = T 

SAVEWITHCRC = T 

WINDOWSIZE = 250000.0 

USEHAMMING = T 

PREEMCOEF = 0.97 

CEPLIFTER = 22 

ENORMALISE = T 

SOURCERATE = 227  

ZMEANSOURCE = T 

HPARM: CMNTCONST = 0.995 

HPARM: CMNRESETONSTOP = F 

HPARM: CMNMINFRAMES = 12 

HREC:FORCEOUT = T 

HLM:UPPERCASELM=T 

HLM:RAWMITFORMAT=F 

AREC: NTOKS=3 

AREC: NGSCALE=15.0 

AREC: WORDPEN=-20.0 

AREC: GENBEAM=250.0 

AREC: WORDBEAM=230.0 

AREC: NBEAM=250.0 

 

# ----> Arquivo: hvite.conf 

ALLOWCXTEXP = T  

FORCECXTEXP = T 

ALLOWXWRDEXP = T 

CFWORDBOUNDARY = FALSE 

O quadro abaixo apresenta as alterações realizadas na configuração padrão, gerando a 

configuração de ID 2 para a biblioteca HTK. 

HCompV -C confs/hcomp.conf -f 0.006 -m -S mfc_train.list -M hmms0 

hmms0/proto.hmm 

HERest -I phones0.mlf -t 150.0 90.0 600 -S mfc_train.list -H hmms0/macros -H 

hmms0/hmmdefs -M hmms1 hmmlist.txt   

HERest -I phones0.mlf -t 150.0 90.0 600 -S mfc_train.list -H hmms1/macros -H 

hmms1/hmmdefs -M hmms2 hmmlist.txt 

HERest -I phones0.mlf -t 150.0 90.0 600 -S mfc_train.list -H hmms2/macros -H 

hmms2/hmmdefs -M hmms3 hmmlist.txt 

HERest -I phonesp.mlf -t 150.0 90.0 600 -S mfc_train.list -H hmms5/macros -H 

hmms5/hmmdefs -M hmms6 hmmlist.txt 

HERest -I phonesp.mlf -t 150.0 90.0 600 -S mfc_train.list -H hmms6/macros -H 

hmms6/hmmdefs -M hmms7 hmmlist.txt 

HERest -I phonesp.mlf -t 150.0 90.0 600 -S mfc_train.list -H hmms7/macros -H 

hmms7/hmmdefs -M hmms8 hmmlist.txt 

HERest -I phonesp.mlf -t 150.0 90.0 600 -S mfc_train.list -H hmms8/macros -H 

hmms8/hmmdefs -M hmms9 hmmlist.txt 

HERest -I phonesp.mlf -t 150.0 90.0 600 -S mfc_train.list -H hmms9/macros -H 

hmms9/hmmdefs -M hmms10 hmmlist.txt 

HERest -I phonesp.mlf -t 150.0 90.0 600 -S mfc_train.list -H hmms10/macros -H 

hmms10/hmmdefs -M hmms11 hmmlist.txt 

HERest -I phonesp.mlf -t 150.0 90.0 600 -S mfc_train.list -H hmms11/macros -H 

hmms11/hmmdefs -M hmms12 hmmlist.txt 



107 

 

HERest -I phonesp.mlf -t 150.0 90.0 600 -S mfc_train.list -H hmms12/macros -H 

hmms12/hmmdefs -M hmms13 hmmlist.txt 

HERest -I phonesp.mlf -t 150.0 90.0 600 -S mfc_train.list -H hmms13/macros -H 

hmms13/hmmdefs -M hmms14 hmmlist.txt 

HERest -B -I wintri.mlf -t 150.0 90.0 600.0 -s stats -S mfc_train.list -H 

hmms18/macros -H hmms18/hmmdefs -M hmms19 trifone 

HERest -B -I wintri.mlf -t 150.0 90.0 600.0 -s stats -S mfc_train.list -H 

hmms19/macros -H hmms19/hmmdefs -M hmms20 trifone 

HERest -B -I wintri.mlf -t 150.0 90.0 600.0 -s stats -S mfc_train.list -H 

hmms20/macros -H hmms20/hmmdefs -M hmms21 trifone 

HERest -B -I wintri.mlf -t 150.0 90.0 600.0 -s stats -S mfc_train.list -H 

hmms21/macros -H hmms21/hmmdefs -M hmms22 trifone 

HERest -B -I wintri.mlf -t 150.0 90.0 600.0  -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -B -I wintri.mlf -t 150.0 90.0 600.0  -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -B -I wintri.mlf -t 150.0 90.0 600.0  -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -B -I wintri.mlf -t 150.0 90.0 600.0  -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -u tmvw -I wintri.mlf -t 150 90 600 -S mfc_train.list -H 2G/macros -H 

2G/hmmdefs -M hmms tiedlist 

HERest -u tmvw -I wintri.mlf -t 150 90 600 -S mfc_train.list -H hmms/macros -H 

hmms/hmmdefs -M 2G tiedlist 

HERest -u tmvw -I wintri.mlf -t 150 90 600 -S mfc_train.list -H $i"G"/macros -

H $i"G"/hmmdefs -M hmms tiedlist 

HERest -u tmvw -I wintri.mlf -t 150 90 600 -S mfc_train.list -H hmms/macros -H 

hmms/hmmdefs -M $i"G" tiedlist 

 

# ----> Arquivo: hcopy-wav.conf 

TARGETRATE = 100000.0 

SAVECOMPRESSED = T 

SAVEWITHCRC = T 

WINDOWSIZE = 250000.0 

USEHAMMING = T 

PREEMCOEF = 0.97 

CEPLIFTER = 22 

ENORMALISE = T 

SOURCERATE = 227  

ZMEANSOURCE = T 

HPARM: CMNTCONST = 0.995 

HPARM: CMNRESETONSTOP = F 

HPARM: CMNMINFRAMES = 12 

HREC:FORCEOUT = T 

HLM:UPPERCASELM=T 

HLM:RAWMITFORMAT=F 

AREC: NTOKS=3 

AREC: NGSCALE=15.0 

AREC: WORDPEN=-20.0 

AREC: GENBEAM=250.0 

AREC: WORDBEAM=230.0 

AREC: NBEAM=250.0 

 

# ----> Arquivo: hvite.conf 

ALLOWCXTEXP = T  

FORCECXTEXP = T 

ALLOWXWRDEXP = T 

CFWORDBOUNDARY = FALSE 



108 

 

O quadro abaixo apresenta as alterações realizadas na configuração padrão, gerando a 

configuração de ID 3 para a biblioteca HTK. 

HCompV -C confs/hcomp.conf -f 0.01 -m -S mfc_train.list -M hmms0 

hmms0/proto.hmm 

HERest -I phones0.mlf -t 250.0 150.0 1000 -S mfc_train.list -H hmms0/macros -H 

hmms0/hmmdefs -M hmms1 hmmlist.txt   

HERest -I phones0.mlf -t 250.0 150.0 1000 -S mfc_train.list -H hmms1/macros -H 

hmms1/hmmdefs -M hmms2 hmmlist.txt 

HERest -I phones0.mlf -t 250.0 150.0 1000 -S mfc_train.list -H hmms2/macros -H 

hmms2/hmmdefs -M hmms3 hmmlist.txt 

HERest -I phonesp.mlf -t 250.0 150.0 1000 -S mfc_train.list -H hmms5/macros -H 

hmms5/hmmdefs -M hmms6 hmmlist.txt 

HERest -I phonesp.mlf -t 250.0 150.0 1000 -S mfc_train.list -H hmms6/macros -H 

hmms6/hmmdefs -M hmms7 hmmlist.txt 

HERest -I phonesp.mlf -t 250.0 150.0 1000 -S mfc_train.list -H hmms7/macros -H 

hmms7/hmmdefs -M hmms8 hmmlist.txt 

HERest -I phonesp.mlf -t 250.0 150.0 1000 -S mfc_train.list -H hmms8/macros -H 

hmms8/hmmdefs -M hmms9 hmmlist.txt 

HERest -I phonesp.mlf -t 250.0 150.0 1000 -S mfc_train.list -H hmms9/macros -H 

hmms9/hmmdefs -M hmms10 hmmlist.txt 

HERest -I phonesp.mlf -t 250.0 150.0 1000 -S mfc_train.list -H hmms10/macros -

H hmms10/hmmdefs -M hmms11 hmmlist.txt 

HERest -I phonesp.mlf -t 250.0 150.0 1000 -S mfc_train.list -H hmms11/macros -

H hmms11/hmmdefs -M hmms12 hmmlist.txt 

HERest -I phonesp.mlf -t 250.0 150.0 1000 -S mfc_train.list -H hmms12/macros -

H hmms12/hmmdefs -M hmms13 hmmlist.txt 

HERest -I phonesp.mlf -t 250.0 150.0 1000 -S mfc_train.list -H hmms13/macros -

H hmms13/hmmdefs -M hmms14 hmmlist.txt 

HERest -B -I wintri.mlf -t 250.0 150.0 1000.0 -s stats -S mfc_train.list -H 

hmms18/macros -H hmms18/hmmdefs -M hmms19 trifone 

HERest -B -I wintri.mlf -t 250.0 150.0 1000.0 -s stats -S mfc_train.list -H 

hmms19/macros -H hmms19/hmmdefs -M hmms20 trifone 

HERest -B -I wintri.mlf -t 250.0 150.0 1000.0 -s stats -S mfc_train.list -H 

hmms20/macros -H hmms20/hmmdefs -M hmms21 trifone 

HERest -B -I wintri.mlf -t 250.0 150.0 1000.0 -s stats -S mfc_train.list -H 

hmms21/macros -H hmms21/hmmdefs -M hmms22 trifone 

HERest -B -I wintri.mlf -t 250.0 150.0 1000.0  -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -B -I wintri.mlf -t 250.0 150.0 1000.0  -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -B -I wintri.mlf -t 250.0 150.0 1000.0  -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -B -I wintri.mlf -t 250.0 150.0 1000.0  -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -u tmvw -I wintri.mlf -t 250 150 1000 -S mfc_train.list -H 2G/macros -H 

2G/hmmdefs -M hmms tiedlist 

HERest -u tmvw -I wintri.mlf -t 250 150 1000 -S mfc_train.list -H hmms/macros 

-H hmms/hmmdefs -M 2G tiedlist 

HERest -u tmvw -I wintri.mlf -t 250 150 1000 -S mfc_train.list -H $i"G"/macros 

-H $i"G"/hmmdefs -M hmms tiedlist 

HERest -u tmvw -I wintri.mlf -t 250 150 1000 -S mfc_train.list -H hmms/macros 

-H hmms/hmmdefs -M $i"G" tiedlist 

 

# ----> Arquivo: hcopy-wav.conf 

TARGETRATE = 100000.0 

SAVECOMPRESSED = T 



109 

 

SAVEWITHCRC = T 

WINDOWSIZE = 250000.0 

USEHAMMING = T 

PREEMCOEF = 0.97 

CEPLIFTER = 22 

ENORMALISE = T 

SOURCERATE = 227  

ZMEANSOURCE = T 

HPARM: CMNTCONST = 0.995 

HPARM: CMNRESETONSTOP = F 

HPARM: CMNMINFRAMES = 12 

HREC:FORCEOUT = T 

HLM:UPPERCASELM=T 

HLM:RAWMITFORMAT=F 

AREC: NTOKS=3 

AREC: NGSCALE=15.0 

AREC: WORDPEN=-20.0 

AREC: GENBEAM=250.0 

AREC: WORDBEAM=230.0 

AREC: NBEAM=250.0 

 

# ----> Arquivo: hvite.conf 

ALLOWCXTEXP = T  

FORCECXTEXP = T 

ALLOWXWRDEXP = T 

CFWORDBOUNDARY = FALSE 

O quadro abaixo apresenta as alterações realizadas na configuração padrão, gerando a 

configuração de ID 4 para a biblioteca HTK. 

HCompV -C confs/hcomp.conf -f 0.014 -m -S mfc_train.list -M hmms0 

hmms0/proto.hmm 

HERest -I phones0.mlf -t 350.0 210.0 1400 -S mfc_train.list -H hmms0/macros -H 

hmms0/hmmdefs -M hmms1 hmmlist.txt   

HERest -I phones0.mlf -t 350.0 210.0 1400 -S mfc_train.list -H hmms1/macros -H 

hmms1/hmmdefs -M hmms2 hmmlist.txt 

HERest -I phones0.mlf -t 350.0 210.0 1400 -S mfc_train.list -H hmms2/macros -H 

hmms2/hmmdefs -M hmms3 hmmlist.txt 

HERest -I phonesp.mlf -t 350.0 210.0 1400 -S mfc_train.list -H hmms5/macros -H 

hmms5/hmmdefs -M hmms6 hmmlist.txt 

HERest -I phonesp.mlf -t 350.0 210.0 1400 -S mfc_train.list -H hmms6/macros -H 

hmms6/hmmdefs -M hmms7 hmmlist.txt 

HERest -I phonesp.mlf -t 350.0 210.0 1400 -S mfc_train.list -H hmms7/macros -H 

hmms7/hmmdefs -M hmms8 hmmlist.txt 

HERest -I phonesp.mlf -t 350.0 210.0 1400 -S mfc_train.list -H hmms8/macros -H 

hmms8/hmmdefs -M hmms9 hmmlist.txt 

HERest -I phonesp.mlf -t 350.0 210.0 1400 -S mfc_train.list -H hmms9/macros -H 

hmms9/hmmdefs -M hmms10 hmmlist.txt 

HERest -I phonesp.mlf -t 350.0 210.0 1400 -S mfc_train.list -H hmms10/macros -

H hmms10/hmmdefs -M hmms11 hmmlist.txt 

HERest -I phonesp.mlf -t 350.0 210.0 1400 -S mfc_train.list -H hmms11/macros -

H hmms11/hmmdefs -M hmms12 hmmlist.txt 

HERest -I phonesp.mlf -t 350.0 210.0 1400 -S mfc_train.list -H hmms12/macros -

H hmms12/hmmdefs -M hmms13 hmmlist.txt 

HERest -I phonesp.mlf -t 350.0 210.0 1400 -S mfc_train.list -H hmms13/macros -

H hmms13/hmmdefs -M hmms14 hmmlist.txt 



110 

 

HERest -B -I wintri.mlf -t 350.0 210.0 1400.0 -s stats -S mfc_train.list -H 

hmms18/macros -H hmms18/hmmdefs -M hmms19 trifone 

HERest -B -I wintri.mlf -t 350.0 210.0 1400.0 -s stats -S mfc_train.list -H 

hmms19/macros -H hmms19/hmmdefs -M hmms20 trifone 

HERest -B -I wintri.mlf -t 350.0 210.0 1400.0 -s stats -S mfc_train.list -H 

hmms20/macros -H hmms20/hmmdefs -M hmms21 trifone 

HERest -B -I wintri.mlf -t 350.0 210.0 1400.0 -s stats -S mfc_train.list -H 

hmms21/macros -H hmms21/hmmdefs -M hmms22 trifone 

HERest -B -I wintri.mlf -t 350.0 210.0 1400.0  -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -B -I wintri.mlf -t 350.0 210.0 1400.0  -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -B -I wintri.mlf -t 350.0 210.0 1400.0  -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -B -I wintri.mlf -t 350.0 210.0 1400.0  -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -u tmvw -I wintri.mlf -t 350 210 1400 -S mfc_train.list -H 2G/macros -H 

2G/hmmdefs -M hmms tiedlist 

HERest -u tmvw -I wintri.mlf -t 350 210 1400 -S mfc_train.list -H hmms/macros 

-H hmms/hmmdefs -M 2G tiedlist 

HERest -u tmvw -I wintri.mlf -t 350 210 1400 -S mfc_train.list -H $i"G"/macros 

-H $i"G"/hmmdefs -M hmms tiedlist 

HERest -u tmvw -I wintri.mlf -t 350 210 1400 -S mfc_train.list -H hmms/macros 

-H hmms/hmmdefs -M $i"G" tiedlist 

 

# ----> Arquivo: hcopy-wav.conf 

TARGETRATE = 100000.0 

SAVECOMPRESSED = T 

SAVEWITHCRC = T 

WINDOWSIZE = 250000.0 

USEHAMMING = T 

PREEMCOEF = 0.97 

CEPLIFTER = 22 

ENORMALISE = T 

SOURCERATE = 227  

ZMEANSOURCE = T 

HPARM: CMNTCONST = 0.995 

HPARM: CMNRESETONSTOP = F 

HPARM: CMNMINFRAMES = 12 

HREC:FORCEOUT = T 

HLM:UPPERCASELM=T 

HLM:RAWMITFORMAT=F 

AREC: NTOKS=3 

AREC: NGSCALE=15.0 

AREC: WORDPEN=-20.0 

AREC: GENBEAM=250.0 

AREC: WORDBEAM=230.0 

AREC: NBEAM=250.0 

 

# ----> Arquivo: hvite.conf 

ALLOWCXTEXP = T  

FORCECXTEXP = T 

ALLOWXWRDEXP = T 

CFWORDBOUNDARY = FALSE 

O quadro abaixo apresenta as alterações realizadas na configuração padrão, gerando a 

configuração de ID 5 para a biblioteca HTK. 



111 

 

HCompV -C confs/hcomp.conf -f 0.018 -m -S mfc_train.list -M hmms0 

hmms0/proto.hmm 

HERest -I phones0.mlf -t 450.0 270.0 1800 -S mfc_train.list -H hmms0/macros -H 

hmms0/hmmdefs -M hmms1 hmmlist.txt   

echo "HERest - 2a reestimação ..." 

HERest -I phones0.mlf -t 450.0 270.0 1800 -S mfc_train.list -H hmms1/macros -H 

hmms1/hmmdefs -M hmms2 hmmlist.txt 

HERest -I phones0.mlf -t 450.0 270.0 1800 -S mfc_train.list -H hmms2/macros -H 

hmms2/hmmdefs -M hmms3 hmmlist.txt 

HERest -I phonesp.mlf -t 450.0 270.0 1800 -S mfc_train.list -H hmms5/macros -H 

hmms5/hmmdefs -M hmms6 hmmlist.txt 

HERest -I phonesp.mlf -t 450.0 270.0 1800 -S mfc_train.list -H hmms6/macros -H 

hmms6/hmmdefs -M hmms7 hmmlist.txt 

HERest -I phonesp.mlf -t 450.0 270.0 1800 -S mfc_train.list -H hmms7/macros -H 

hmms7/hmmdefs -M hmms8 hmmlist.txt 

HERest -I phonesp.mlf -t 450.0 270.0 1800 -S mfc_train.list -H hmms8/macros -H 

hmms8/hmmdefs -M hmms9 hmmlist.txt 

HERest -I phonesp.mlf -t 450.0 270.0 1800 -S mfc_train.list -H hmms9/macros -H 

hmms9/hmmdefs -M hmms10 hmmlist.txt 

HERest -I phonesp.mlf -t 450.0 270.0 1800 -S mfc_train.list -H hmms10/macros -

H hmms10/hmmdefs -M hmms11 hmmlist.txt 

HERest -I phonesp.mlf -t 450.0 270.0 1800 -S mfc_train.list -H hmms11/macros -

H hmms11/hmmdefs -M hmms12 hmmlist.txt 

HERest -I phonesp.mlf -t 450.0 270.0 1800 -S mfc_train.list -H hmms12/macros -

H hmms12/hmmdefs -M hmms13 hmmlist.txt 

HERest -I phonesp.mlf -t 450.0 270.0 1800 -S mfc_train.list -H hmms13/macros -

H hmms13/hmmdefs -M hmms14 hmmlist.txt 

HERest -B -I wintri.mlf -t 450.0 270.0 1800.0 -s stats -S mfc_train.list -H 

hmms18/macros -H hmms18/hmmdefs -M hmms19 trifone 

HERest -B -I wintri.mlf -t 450.0 270.0 1800.0 -s stats -S mfc_train.list -H 

hmms19/macros -H hmms19/hmmdefs -M hmms20 trifone 

HERest -B -I wintri.mlf -t 450.0 270.0 1800.0 -s stats -S mfc_train.list -H 

hmms20/macros -H hmms20/hmmdefs -M hmms21 trifone 

HERest -B -I wintri.mlf -t 450.0 270.0 1800.0 -s stats -S mfc_train.list -H 

hmms21/macros -H hmms21/hmmdefs -M hmms22 trifone 

HERest -B -I wintri.mlf -t 450.0 270.0 1800.0  -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -B -I wintri.mlf -t 450.0 270.0 1800.0  -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -B -I wintri.mlf -t 450.0 270.0 1800.0  -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -B -I wintri.mlf -t 450.0 270.0 1800.0  -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -u tmvw -I wintri.mlf -t 450 270 1800 -S mfc_train.list -H 2G/macros -H 

2G/hmmdefs -M hmms tiedlist 

HERest -u tmvw -I wintri.mlf -t 450 270 1800 -S mfc_train.list -H hmms/macros 

-H hmms/hmmdefs -M 2G tiedlist 

HERest -u tmvw -I wintri.mlf -t 450 270 1800 -S mfc_train.list -H $i"G"/macros 

-H $i"G"/hmmdefs -M hmms tiedlist 

HERest -u tmvw -I wintri.mlf -t 450 270 1800 -S mfc_train.list -H hmms/macros 

-H hmms/hmmdefs -M $i"G" tiedlist 

 

# ----> Arquivo: hcopy-wav.conf 

TARGETRATE = 100000.0 

SAVECOMPRESSED = T 

SAVEWITHCRC = T 

WINDOWSIZE = 250000.0 

USEHAMMING = T 

PREEMCOEF = 0.97 



112 

 

CEPLIFTER = 22 

ENORMALISE = T 

SOURCERATE = 227  

ZMEANSOURCE = T 

HPARM: CMNTCONST = 0.995 

HPARM: CMNRESETONSTOP = F 

HPARM: CMNMINFRAMES = 12 

HREC:FORCEOUT = T 

HLM:UPPERCASELM=T 

HLM:RAWMITFORMAT=F 

AREC: NTOKS=3 

AREC: NGSCALE=15.0 

AREC: WORDPEN=-20.0 

AREC: GENBEAM=250.0 

AREC: WORDBEAM=230.0 

AREC: NBEAM=250.0 

 

# ----> Arquivo: hvite.conf 

ALLOWCXTEXP = T  

FORCECXTEXP = T 

ALLOWXWRDEXP = T 

CFWORDBOUNDARY = FALSE 

O quadro abaixo apresenta as alterações realizadas na configuração padrão, gerando a 

configuração de ID 6 para a biblioteca HTK. 

HCompV -C confs/hcomp.conf -f 0.002 -m -S mfc_train.list -M hmms0 

hmms0/proto.hmm 

HERest -I phones0.mlf -t 50.0 30.0 200 -S mfc_train.list -H hmms0/macros -H 

hmms0/hmmdefs -M hmms1 hmmlist.txt 

HERest -I phones0.mlf -t 50.0 30.0 200 -S mfc_train.list -H hmms1/macros -H 

hmms1/hmmdefs -M hmms2 hmmlist.txt 

HERest -I phones0.mlf -t 50.0 30.0 200 -S mfc_train.list -H hmms2/macros -H 

hmms2/hmmdefs -M hmms3 hmmlist.txt 

HERest -I phonesp.mlf -t 50.0 30.0 200 -S mfc_train.list -H hmms5/macros -H 

hmms5/hmmdefs -M hmms6 hmmlist.txt 

HERest -I phonesp.mlf -t 50.0 30.0 200 -S mfc_train.list -H hmms6/macros -H 

hmms6/hmmdefs -M hmms7 hmmlist.txt 

HERest -I phonesp.mlf -t 50.0 30.0 200 -S mfc_train.list -H hmms7/macros -H 

hmms7/hmmdefs -M hmms8 hmmlist.txt 

HERest -I phonesp.mlf -t 50.0 30.0 200 -S mfc_train.list -H hmms8/macros -H 

hmms8/hmmdefs -M hmms9 hmmlist.txt 

HERest -I phonesp.mlf -t 50.0 30.0 200 -S mfc_train.list -H hmms9/macros -H 

hmms9/hmmdefs -M hmms10 hmmlist.txt 

HERest -I phonesp.mlf -t 50.0 30.0 200 -S mfc_train.list -H hmms10/macros -H 

hmms10/hmmdefs -M hmms11 hmmlist.txt 

HERest -I phonesp.mlf -t 50.0 30.0 200 -S mfc_train.list -H hmms11/macros -H 

hmms11/hmmdefs -M hmms12 hmmlist.txt 

HERest -I phonesp.mlf -t 50.0 30.0 200 -S mfc_train.list -H hmms12/macros -H 

hmms12/hmmdefs -M hmms13 hmmlist.txt 

HERest -I phonesp.mlf -t 50.0 30.0 200 -S mfc_train.list -H hmms13/macros -H 

hmms13/hmmdefs -M hmms14 hmmlist.txt 

HERest -B -I wintri.mlf -t 50.0 30.0 200.0 -s stats -S mfc_train.list -H 

hmms18/macros -H hmms18/hmmdefs -M hmms19 trifone 

HERest -B -I wintri.mlf -t 50.0 30.0 200.0 -s stats -S mfc_train.list -H 

hmms19/macros -H hmms19/hmmdefs -M hmms20 trifone 



113 

 

HERest -B -I wintri.mlf -t 50.0 30.0 200.0 -s stats -S mfc_train.list -H 

hmms20/macros -H hmms20/hmmdefs -M hmms21 trifone 

HERest -B -I wintri.mlf -t 50.0 30.0 200.0 -s stats -S mfc_train.list -H 

hmms21/macros -H hmms21/hmmdefs -M hmms22 trifone 

HERest -B -I wintri.mlf -t 50.0 30.0 200.0 -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -B -I wintri.mlf -t 50.0 30.0 200.0 -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -B -I wintri.mlf -t 50.0 30.0 200.0 -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -B -I wintri.mlf -t 50.0 30.0 200.0 -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -u tmvw -I wintri.mlf -t 50 30 200 -S mfc_train.list -H 2G/macros -H 

2G/hmmdefs -M hmms tiedlist 

HERest -u tmvw -I wintri.mlf -t 50 30 200 -S mfc_train.list -H hmms/macros -H 

hmms/hmmdefs -M 2G tiedlist 

HERest -u tmvw -I wintri.mlf -t 50 30 200 -S mfc_train.list -H $i"G"/macros -H 

$i"G"/hmmdefs -M hmms tiedlist 

HERest -u tmvw -I wintri.mlf -t 50 30 200 -S mfc_train.list -H hmms/macros -H 

hmms/hmmdefs -M $i"G" tiedlist 

 
# ----> Arquivo: hcopy-wav.conf 

TARGETRATE = 20000.0 

SAVECOMPRESSED = F 

SAVEWITHCRC = F 

WINDOWSIZE = 50000.0 

USEHAMMING = F 

PREEMCOEF = 0.1 

CEPLIFTER = 2 

ENORMALISE = F 

SOURCERATE  = 45  

ZMEANSOURCE = F 

HPARM: CMNTCONST = 0.199 

HPARM: CMNRESETONSTOP = T 

HPARM: CMNMINFRAMES = 2 

HREC:FORCEOUT = F 

HLM:UPPERCASELM=F 

HLM:RAWMITFORMAT=T 

AREC: NTOKS=1 

AREC: NGSCALE=3.0 

AREC: WORDPEN=-4.0 

AREC: GENBEAM=50.0 

AREC: WORDBEAM=46.0 

AREC: NBEAM=50.0 

 

# ----> Arquivo: hvite.conf 

ALLOWCXTEXP = F  

FORCECXTEXP = F 

ALLOWXWRDEXP = F 

CFWORDBOUNDARY = TRUE 

O quadro abaixo apresenta as alterações realizadas na configuração padrão, gerando a 

configuração de ID 7 para a biblioteca HTK. 



114 

 

HCompV -C confs/hcomp.conf -f 0.006 -m -S mfc_train.list -M hmms0 

hmms0/proto.hmm 

HERest -I phones0.mlf -t 150.0 90.0 600 -S mfc_train.list -H hmms0/macros -H 

hmms0/hmmdefs -M hmms1 hmmlist.txt   

HERest -I phones0.mlf -t 150.0 90.0 600 -S mfc_train.list -H hmms1/macros -H 

hmms1/hmmdefs -M hmms2 hmmlist.txt 

HERest -I phones0.mlf -t 150.0 90.0 600 -S mfc_train.list -H hmms2/macros -H 

hmms2/hmmdefs -M hmms3 hmmlist.txt 

HERest -I phonesp.mlf -t 150.0 90.0 600 -S mfc_train.list -H hmms5/macros -H 

hmms5/hmmdefs -M hmms6 hmmlist.txt 

HERest -I phonesp.mlf -t 150.0 90.0 600 -S mfc_train.list -H hmms6/macros -H 

hmms6/hmmdefs -M hmms7 hmmlist.txt 

HERest -I phonesp.mlf -t 150.0 90.0 600 -S mfc_train.list -H hmms7/macros -H 

hmms7/hmmdefs -M hmms8 hmmlist.txt 

HERest -I phonesp.mlf -t 150.0 90.0 600 -S mfc_train.list -H hmms8/macros -H 

hmms8/hmmdefs -M hmms9 hmmlist.txt 

HERest -I phonesp.mlf -t 150.0 90.0 600 -S mfc_train.list -H hmms9/macros -H 

hmms9/hmmdefs -M hmms10 hmmlist.txt 

HERest -I phonesp.mlf -t 150.0 90.0 600 -S mfc_train.list -H hmms10/macros -H 

hmms10/hmmdefs -M hmms11 hmmlist.txt 

HERest -I phonesp.mlf -t 150.0 90.0 600 -S mfc_train.list -H hmms11/macros -H 

hmms11/hmmdefs -M hmms12 hmmlist.txt 

HERest -I phonesp.mlf -t 150.0 90.0 600 -S mfc_train.list -H hmms12/macros -H 

hmms12/hmmdefs -M hmms13 hmmlist.txt 

HERest -I phonesp.mlf -t 150.0 90.0 600 -S mfc_train.list -H hmms13/macros -H 

hmms13/hmmdefs -M hmms14 hmmlist.txt 

HERest -B -I wintri.mlf -t 150.0 90.0 600.0 -s stats -S mfc_train.list -H 

hmms18/macros -H hmms18/hmmdefs -M hmms19 trifone 

HERest -B -I wintri.mlf -t 150.0 90.0 600.0 -s stats -S mfc_train.list -H 

hmms19/macros -H hmms19/hmmdefs -M hmms20 trifone 

HERest -B -I wintri.mlf -t 150.0 90.0 600.0 -s stats -S mfc_train.list -H 

hmms20/macros -H hmms20/hmmdefs -M hmms21 trifone 

HERest -B -I wintri.mlf -t 150.0 90.0 600.0 -s stats -S mfc_train.list -H 

hmms21/macros -H hmms21/hmmdefs -M hmms22 trifone 

HERest -B -I wintri.mlf -t 150.0 90.0 600.0  -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -B -I wintri.mlf -t 150.0 90.0 600.0  -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -B -I wintri.mlf -t 150.0 90.0 600.0  -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -B -I wintri.mlf -t 150.0 90.0 600.0  -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -u tmvw -I wintri.mlf -t 150 90 600 -S mfc_train.list -H 2G/macros -H 

2G/hmmdefs -M hmms tiedlist 

HERest -u tmvw -I wintri.mlf -t 150 90 600 -S mfc_train.list -H hmms/macros -H 

hmms/hmmdefs -M 2G tiedlist 

HERest -u tmvw -I wintri.mlf -t 150 90 600 -S mfc_train.list -H $i"G"/macros -

H $i"G"/hmmdefs -M hmms tiedlist 

HERest -u tmvw -I wintri.mlf -t 150 90 600 -S mfc_train.list -H hmms/macros -H 

hmms/hmmdefs -M $i"G" tiedlist 

 

# ----> Arquivo: hcopy-wav.conf 

TARGETRATE = 60000.0 

SAVECOMPRESSED = F 

SAVEWITHCRC = F 

WINDOWSIZE = 150000.0 

USEHAMMING = F 

PREEMCOEF = 0.3 

CEPLIFTER = 12 



115 

 

ENORMALISE = F 

SOURCERATE = 136  

ZMEANSOURCE = F 

HPARM: CMNTCONST = 0.597 

HPARM: CMNRESETONSTOP = T 

HPARM: CMNMINFRAMES = 7 

HREC:FORCEOUT = F 

HLM:UPPERCASELM=F 

HLM:RAWMITFORMAT=T 

AREC: NTOKS=2 

AREC: NGSCALE=9.0 

AREC: WORDPEN=-12.0 

AREC: GENBEAM=150.0 

AREC: WORDBEAM=138.0 

AREC: NBEAM=150.0 

 

# ----> Arquivo: hvite.conf 

ALLOWCXTEXP = F  

FORCECXTEXP = F 

ALLOWXWRDEXP = F 

CFWORDBOUNDARY = TRUE 

O quadro abaixo apresenta as alterações realizadas na configuração padrão, gerando a 

configuração de ID 8 para a biblioteca HTK. 

HCompV -C confs/hcomp.conf -f 0.01 -m -S mfc_train.list -M hmms0 

hmms0/proto.hmm 

HERest -I phones0.mlf -t 250.0 150.0 1000 -S mfc_train.list -H hmms0/macros -H 

hmms0/hmmdefs -M hmms1 hmmlist.txt   

HERest -I phones0.mlf -t 250.0 150.0 1000 -S mfc_train.list -H hmms1/macros -H 

hmms1/hmmdefs -M hmms2 hmmlist.txt 

HERest -I phones0.mlf -t 250.0 150.0 1000 -S mfc_train.list -H hmms2/macros -H 

hmms2/hmmdefs -M hmms3 hmmlist.txt 

HERest -I phonesp.mlf -t 250.0 150.0 1000 -S mfc_train.list -H hmms5/macros -H 

hmms5/hmmdefs -M hmms6 hmmlist.txt 

HERest -I phonesp.mlf -t 250.0 150.0 1000 -S mfc_train.list -H hmms6/macros -H 

hmms6/hmmdefs -M hmms7 hmmlist.txt 

HERest -I phonesp.mlf -t 250.0 150.0 1000 -S mfc_train.list -H hmms7/macros -H 

hmms7/hmmdefs -M hmms8 hmmlist.txt 

HERest -I phonesp.mlf -t 250.0 150.0 1000 -S mfc_train.list -H hmms8/macros -H 

hmms8/hmmdefs -M hmms9 hmmlist.txt 

HERest -I phonesp.mlf -t 250.0 150.0 1000 -S mfc_train.list -H hmms9/macros -H 

hmms9/hmmdefs -M hmms10 hmmlist.txt 

HERest -I phonesp.mlf -t 250.0 150.0 1000 -S mfc_train.list -H hmms10/macros -

H hmms10/hmmdefs -M hmms11 hmmlist.txt 

HERest -I phonesp.mlf -t 250.0 150.0 1000 -S mfc_train.list -H hmms11/macros -

H hmms11/hmmdefs -M hmms12 hmmlist.txt 

HERest -I phonesp.mlf -t 250.0 150.0 1000 -S mfc_train.list -H hmms12/macros -

H hmms12/hmmdefs -M hmms13 hmmlist.txt 

HERest -I phonesp.mlf -t 250.0 150.0 1000 -S mfc_train.list -H hmms13/macros -

H hmms13/hmmdefs -M hmms14 hmmlist.txt 

HERest -B -I wintri.mlf -t 250.0 150.0 1000.0 -s stats -S mfc_train.list -H 

hmms18/macros -H hmms18/hmmdefs -M hmms19 trifone 

HERest -B -I wintri.mlf -t 250.0 150.0 1000.0 -s stats -S mfc_train.list -H 

hmms19/macros -H hmms19/hmmdefs -M hmms20 trifone 

HERest -B -I wintri.mlf -t 250.0 150.0 1000.0 -s stats -S mfc_train.list -H 

hmms20/macros -H hmms20/hmmdefs -M hmms21 trifone 



116 

 

HERest -B -I wintri.mlf -t 250.0 150.0 1000.0 -s stats -S mfc_train.list -H 

hmms21/macros -H hmms21/hmmdefs -M hmms22 trifone 

HERest -B -I wintri.mlf -t 250.0 150.0 1000.0  -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -B -I wintri.mlf -t 250.0 150.0 1000.0  -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -B -I wintri.mlf -t 250.0 150.0 1000.0  -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -B -I wintri.mlf -t 250.0 150.0 1000.0  -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -u tmvw -I wintri.mlf -t 250 150 1000 -S mfc_train.list -H 2G/macros -H 

2G/hmmdefs -M hmms tiedlist 

HERest -u tmvw -I wintri.mlf -t 250 150 1000 -S mfc_train.list -H hmms/macros 

-H hmms/hmmdefs -M 2G tiedlist 

HERest -u tmvw -I wintri.mlf -t 250 150 1000 -S mfc_train.list -H $i"G"/macros 

-H $i"G"/hmmdefs -M hmms tiedlist 

HERest -u tmvw -I wintri.mlf -t 250 150 1000 -S mfc_train.list -H hmms/macros 

-H hmms/hmmdefs -M $i"G" tiedlist 

 

# ----> Arquivo: hcopy-wav.conf 

TARGETRATE = 100000.0 

SAVECOMPRESSED = F 

SAVEWITHCRC = F 

WINDOWSIZE = 250000.0 

USEHAMMING = F 

PREEMCOEF = 0.5 

CEPLIFTER = 22 

ENORMALISE = F 

SOURCERATE = 227  

ZMEANSOURCE = F 

HPARM: CMNTCONST = 0.995 

HPARM: CMNRESETONSTOP = T 

HPARM: CMNMINFRAMES = 12 

HREC:FORCEOUT = F 

HLM:UPPERCASELM=F 

HLM:RAWMITFORMAT=T 

AREC: NTOKS=3 

AREC: NGSCALE=15.0 

AREC: WORDPEN=-20.0 

AREC: GENBEAM=250.0 

AREC: WORDBEAM=230.0 

AREC: NBEAM=250.0 

 

# ----> Arquivo: hvite.conf 

ALLOWCXTEXP = F  

FORCECXTEXP = F 

ALLOWXWRDEXP = F 

CFWORDBOUNDARY = TRUE 

O quadro abaixo apresenta as alterações realizadas na configuração padrão, gerando a 

configuração de ID 9 para a biblioteca HTK. 

HCompV -C confs/hcomp.conf -f 0.014 -m -S mfc_train.list -M hmms0 

hmms0/proto.hmm 

HERest -I phones0.mlf -t 350.0 210.0 1400 -S mfc_train.list -H hmms0/macros -H 

hmms0/hmmdefs -M hmms1 hmmlist.txt   



117 

 

HERest -I phones0.mlf -t 350.0 210.0 1400 -S mfc_train.list -H hmms1/macros -H 

hmms1/hmmdefs -M hmms2 hmmlist.txt 

HERest -I phones0.mlf -t 350.0 210.0 1400 -S mfc_train.list -H hmms2/macros -H 

hmms2/hmmdefs -M hmms3 hmmlist.txt 

HERest -I phonesp.mlf -t 350.0 210.0 1400 -S mfc_train.list -H hmms5/macros -H 

hmms5/hmmdefs -M hmms6 hmmlist.txt 

HERest -I phonesp.mlf -t 350.0 210.0 1400 -S mfc_train.list -H hmms6/macros -H 

hmms6/hmmdefs -M hmms7 hmmlist.txt 

HERest -I phonesp.mlf -t 350.0 210.0 1400 -S mfc_train.list -H hmms7/macros -H 

hmms7/hmmdefs -M hmms8 hmmlist.txt 

HERest -I phonesp.mlf -t 350.0 210.0 1400 -S mfc_train.list -H hmms8/macros -H 

hmms8/hmmdefs -M hmms9 hmmlist.txt 

HERest -I phonesp.mlf -t 350.0 210.0 1400 -S mfc_train.list -H hmms9/macros -H 

hmms9/hmmdefs -M hmms10 hmmlist.txt 

HERest -I phonesp.mlf -t 350.0 210.0 1400 -S mfc_train.list -H hmms10/macros -

H hmms10/hmmdefs -M hmms11 hmmlist.txt 

HERest -I phonesp.mlf -t 350.0 210.0 1400 -S mfc_train.list -H hmms11/macros -

H hmms11/hmmdefs -M hmms12 hmmlist.txt 

HERest -I phonesp.mlf -t 350.0 210.0 1400 -S mfc_train.list -H hmms12/macros -

H hmms12/hmmdefs -M hmms13 hmmlist.txt 

HERest -I phonesp.mlf -t 350.0 210.0 1400 -S mfc_train.list -H hmms13/macros -

H hmms13/hmmdefs -M hmms14 hmmlist.txt 

HERest -B -I wintri.mlf -t 350.0 210.0 1400.0 -s stats -S mfc_train.list -H 

hmms18/macros -H hmms18/hmmdefs -M hmms19 trifone 

HERest -B -I wintri.mlf -t 350.0 210.0 1400.0 -s stats -S mfc_train.list -H 

hmms19/macros -H hmms19/hmmdefs -M hmms20 trifone 

HERest -B -I wintri.mlf -t 350.0 210.0 1400.0 -s stats -S mfc_train.list -H 

hmms20/macros -H hmms20/hmmdefs -M hmms21 trifone 

HERest -B -I wintri.mlf -t 350.0 210.0 1400.0 -s stats -S mfc_train.list -H 

hmms21/macros -H hmms21/hmmdefs -M hmms22 trifone 

HERest -B -I wintri.mlf -t 350.0 210.0 1400.0  -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -B -I wintri.mlf -t 350.0 210.0 1400.0  -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -B -I wintri.mlf -t 350.0 210.0 1400.0  -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -B -I wintri.mlf -t 350.0 210.0 1400.0  -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -u tmvw -I wintri.mlf -t 350 210 1400 -S mfc_train.list -H 2G/macros -H 

2G/hmmdefs -M hmms tiedlist 

HERest -u tmvw -I wintri.mlf -t 350 210 1400 -S mfc_train.list -H hmms/macros 

-H hmms/hmmdefs -M 2G tiedlist 

HERest -u tmvw -I wintri.mlf -t 350 210 1400 -S mfc_train.list -H $i"G"/macros 

-H $i"G"/hmmdefs -M hmms tiedlist 

HERest -u tmvw -I wintri.mlf -t 350 210 1400 -S mfc_train.list -H hmms/macros 

-H hmms/hmmdefs -M $i"G" tiedlist 

 

# ----> Arquivo: hcopy-wav.conf 

TARGETRATE = 140000.0 

SAVECOMPRESSED = F 

SAVEWITHCRC = F 

WINDOWSIZE = 350000.0 

USEHAMMING = F 

PREEMCOEF = 0.7 

CEPLIFTER = 32 

ENORMALISE = F 

SOURCERATE = 317  

ZMEANSOURCE = F 

HPARM: CMNTCONST = 1.393 



118 

 

HPARM:  CMNRESETONSTOP = T 

HPARM:  CMNMINFRAMES = 16 

HREC:FORCEOUT = F 

HLM:UPPERCASELM=F 

HLM:RAWMITFORMAT=T 

AREC: NTOKS=4 

AREC: NGSCALE=21.0 

AREC: WORDPEN=-28.0 

AREC: GENBEAM=350.0 

AREC: WORDBEAM=322.0 

AREC: NBEAM=350.0 

 

# ----> Arquivo: hvite.conf 

ALLOWCXTEXP = F  

FORCECXTEXP = F 

ALLOWXWRDEXP = F 

CFWORDBOUNDARY = TRUE 

O quadro abaixo apresenta as alterações realizadas na configuração padrão, gerando a 

configuração de ID 10 para a biblioteca HTK. 

HCompV -C confs/hcomp.conf -f 0.018 -m -S mfc_train.list -M hmms0 

hmms0/proto.hmm 

HERest -I phones0.mlf -t 450.0 270.0 1800 -S mfc_train.list -H hmms0/macros -H 

hmms0/hmmdefs -M hmms1 hmmlist.txt   

echo "HERest - 2a reestimação ..." 

HERest -I phones0.mlf -t 450.0 270.0 1800 -S mfc_train.list -H hmms1/macros -H 

hmms1/hmmdefs -M hmms2 hmmlist.txt 

HERest -I phones0.mlf -t 450.0 270.0 1800 -S mfc_train.list -H hmms2/macros -H 

hmms2/hmmdefs -M hmms3 hmmlist.txt 

HERest -I phonesp.mlf -t 450.0 270.0 1800 -S mfc_train.list -H hmms5/macros -H 

hmms5/hmmdefs -M hmms6 hmmlist.txt 

HERest -I phonesp.mlf -t 450.0 270.0 1800 -S mfc_train.list -H hmms6/macros -H 

hmms6/hmmdefs -M hmms7 hmmlist.txt 

HERest -I phonesp.mlf -t 450.0 270.0 1800 -S mfc_train.list -H hmms7/macros -H 

hmms7/hmmdefs -M hmms8 hmmlist.txt 

HERest -I phonesp.mlf -t 450.0 270.0 1800 -S mfc_train.list -H hmms8/macros -H 

hmms8/hmmdefs -M hmms9 hmmlist.txt 

HERest -I phonesp.mlf -t 450.0 270.0 1800 -S mfc_train.list -H hmms9/macros -H 

hmms9/hmmdefs -M hmms10 hmmlist.txt 

HERest -I phonesp.mlf -t 450.0 270.0 1800 -S mfc_train.list -H hmms10/macros -

H hmms10/hmmdefs -M hmms11 hmmlist.txt 

HERest -I phonesp.mlf -t 450.0 270.0 1800 -S mfc_train.list -H hmms11/macros -

H hmms11/hmmdefs -M hmms12 hmmlist.txt 

HERest -I phonesp.mlf -t 450.0 270.0 1800 -S mfc_train.list -H hmms12/macros -

H hmms12/hmmdefs -M hmms13 hmmlist.txt 

HERest -I phonesp.mlf -t 450.0 270.0 1800 -S mfc_train.list -H hmms13/macros -

H hmms13/hmmdefs -M hmms14 hmmlist.txt 

HERest -B -I wintri.mlf -t 450.0 270.0 1800.0 -s stats -S mfc_train.list -H 

hmms18/macros -H hmms18/hmmdefs -M hmms19 trifone 

HERest -B -I wintri.mlf -t 450.0 270.0 1800.0 -s stats -S mfc_train.list -H 

hmms19/macros -H hmms19/hmmdefs -M hmms20 trifone 

HERest -B -I wintri.mlf -t 450.0 270.0 1800.0 -s stats -S mfc_train.list -H 

hmms20/macros -H hmms20/hmmdefs -M hmms21 trifone 

HERest -B -I wintri.mlf -t 450.0 270.0 1800.0 -s stats -S mfc_train.list -H 

hmms21/macros -H hmms21/hmmdefs -M hmms22 trifone 



119 

 

HERest -B -I wintri.mlf -t 450.0 270.0 1800.0  -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -B -I wintri.mlf -t 450.0 270.0 1800.0  -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -B -I wintri.mlf -t 450.0 270.0 1800.0  -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -B -I wintri.mlf -t 450.0 270.0 1800.0  -S mfc_train.list -H 

hmmsTree/macros -H hmmsTree/hmmdefs -M hmmsTree tiedlist 

HERest -u tmvw -I wintri.mlf -t 450 270 1800 -S mfc_train.list -H 2G/macros -H 

2G/hmmdefs -M hmms tiedlist 

HERest -u tmvw -I wintri.mlf -t 450 270 1800 -S mfc_train.list -H hmms/macros 

-H hmms/hmmdefs -M 2G tiedlist 

HERest -u tmvw -I wintri.mlf -t 450 270 1800 -S mfc_train.list -H $i"G"/macros 

-H $i"G"/hmmdefs -M hmms tiedlist 

HERest -u tmvw -I wintri.mlf -t 450 270 1800 -S mfc_train.list -H hmms/macros 

-H hmms/hmmdefs -M $i"G" tiedlist 

 

# ----> Arquivo: hcopy-wav.conf 

TARGETRATE = 180000.0 

SAVECOMPRESSED = F 

SAVEWITHCRC = F 

WINDOWSIZE = 450000.0 

USEHAMMING = F 

PREEMCOEF = 0.97 

CEPLIFTER = 42 

ENORMALISE = F 

SOURCERATE = 408  

ZMEANSOURCE = F 

HPARM: CMNTCONST = 1.791 

HPARM:  CMNRESETONSTOP = T 

HPARM:  CMNMINFRAMES = 21 

HREC:FORCEOUT = F 

HLM:UPPERCASELM=F 

HLM:RAWMITFORMAT=T 

AREC: NTOKS=5 

AREC: NGSCALE=27.0 

AREC: WORDPEN=-36.0 

AREC: GENBEAM=450.0 

AREC: WORDBEAM=414.0 

AREC: NBEAM=450.0 

 

# ----> Arquivo: hvite.conf 

ALLOWCXTEXP = F  

FORCECXTEXP = F 

ALLOWXWRDEXP = F 

CFWORDBOUNDARY = TRUE 

 

 

 

 



120 

 

APÊNDICE D   – CONFIGURAÇÕES DA BIBLIOTECA KALDI 

O quadro abaixo apresenta as alterações realizadas na configuração padrão, gerando a 

configuração de ID 1 para a biblioteca Kaldi. 

lm_order=2 

steps/train_deltas.sh --cmd "$train_cmd" 600 8000 data/train data/lang 

exp/mono0a_ali exp/tri1 || exit 1; 

steps/train_deltas.sh --cmd "$train_cmd" 1000 12000 data/train data/lang 

exp/tri1_ali exp/tri2a || exit 1; 

steps/train_lda_mllt.sh --cmd "$train_cmd" --splice-opts "--left-context=2 --

right-context=2" 1300 15000 data/train data/lang exp/tri2a_ali exp/tri2b 

|| exit 1; 

steps/train_sat.sh --cmd "$train_cmd" 1500 20000 data/train data/lang 

exp/tri2b_ali exp/tri3b || exit 1; 

steps/decode_fmllr.sh --cmd "$decode_cmd" --nj $nj --num-threads 1 

exp/tri3b/graph data/test exp/tri3b/decode || exit 1; 

O quadro abaixo apresenta as alterações realizadas na configuração padrão, gerando a 

configuração de ID 2 para a biblioteca Kaldi. 

lm_order=2 

steps/train_deltas.sh --cmd "$train_cmd" 1800 24000 data/train data/lang 

exp/mono0a_ali exp/tri1 || exit 1; 

steps/train_deltas.sh --cmd "$train_cmd" 3000 36000 data/train data/lang 

exp/tri1_ali exp/tri2a || exit 1; 

steps/train_lda_mllt.sh --cmd "$train_cmd" --splice-opts "--left-context=3 --

right-context=3" 3900 45000 data/train data/lang exp/tri2a_ali exp/tri2b 

|| exit 1; 

steps/train_sat.sh --cmd "$train_cmd" 4500 60000 data/train data/lang 

exp/tri2b_ali exp/tri3b || exit 1; 

steps/decode_fmllr.sh --cmd "$decode_cmd" --nj $nj --num-threads 2 

exp/tri3b/graph data/test exp/tri3b/decode || exit 1; 

O quadro abaixo apresenta as alterações realizadas na configuração padrão, gerando a 

configuração de ID 3 para a biblioteca Kaldi. 

lm_order=3 

steps/train_deltas.sh --cmd "$train_cmd" 3000 40000 data/train data/lang 

exp/mono0a_ali exp/tri1 || exit 1; 

steps/train_deltas.sh --cmd "$train_cmd" 5000 60000 data/train data/lang 

exp/tri1_ali exp/tri2a || exit 1; 

steps/train_lda_mllt.sh --cmd "$train_cmd" --splice-opts "--left-context=5 --

right-context=5" 6500 75000 data/train data/lang exp/tri2a_ali exp/tri2b 

|| exit 1; 

steps/train_sat.sh --cmd "$train_cmd" 7500 100000 data/train data/lang 

exp/tri2b_ali exp/tri3b || exit 1; 

steps/decode_fmllr.sh --cmd "$decode_cmd" --nj $nj --num-threads 3 

exp/tri3b/graph data/test exp/tri3b/decode || exit 1; 



121 

 

O quadro abaixo apresenta as alterações realizadas na configuração padrão, gerando a 

configuração de ID 4 para a biblioteca Kaldi. 

lm_order=3 

steps/train_deltas.sh --cmd "$train_cmd" 4200 56000 data/train data/lang 

exp/mono0a_ali exp/tri1 || exit 1; 

steps/train_deltas.sh --cmd "$train_cmd" 7000 84000 data/train data/lang 

exp/tri1_ali exp/tri2a || exit 1; 

steps/train_lda_mllt.sh --cmd "$train_cmd" --splice-opts "--left-context=7 --

right-context=7" 9100 105000 data/train data/lang exp/tri2a_ali exp/tri2b 

|| exit 1; 

steps/train_sat.sh --cmd "$train_cmd" 10500 140000 data/train data/lang 

exp/tri2b_ali exp/tri3b || exit 1; 

steps/decode_fmllr.sh --cmd "$decode_cmd" --nj $nj --num-threads 4 

exp/tri3b/graph data/test exp/tri3b/decode || exit 1; 

O quadro abaixo apresenta as alterações realizadas na configuração padrão, gerando a 

configuração de ID 5 para a biblioteca Kaldi. 

lm_order=4 

steps/train_deltas.sh --cmd "$train_cmd" 5400 72000 data/train data/lang 

exp/mono0a_ali exp/tri1 || exit 1; 

steps/train_deltas.sh --cmd "$train_cmd" 9000 108000 data/train data/lang 

exp/tri1_ali exp/tri2a || exit 1; 

steps/train_lda_mllt.sh --cmd "$train_cmd" --splice-opts "--left-context=9 --

right-context=9" 11700 135000 data/train data/lang exp/tri2a_ali 

exp/tri2b || exit 1; 

steps/train_sat.sh --cmd "$train_cmd" 13500 180000 data/train data/lang 

exp/tri2b_ali exp/tri3b || exit 1; 

steps/decode_fmllr.sh --cmd "$decode_cmd" --nj $nj --num-threads 5 

exp/tri3b/graph data/test exp/tri3b/decode || exit 1; 

O quadro abaixo apresenta as alterações realizadas na configuração padrão, gerando a 

configuração de ID 6 para a biblioteca Kaldi. 

lm_order=2 

steps/train_deltas.sh --cmd "$train_cmd" 600 8000 data/train data/lang 

exp/mono0a_ali exp/tri1 || exit 1; 

steps/train_deltas.sh --cmd "$train_cmd" 1000 12000 data/train data/lang 

exp/tri1_ali exp/tri2a || exit 1; 

steps/train_lda_mllt.sh --cmd "$train_cmd" --splice-opts "--left-context=2 --

right-context=2" 1300 15000 data/train data/lang exp/tri2a_ali exp/tri2b 

|| exit 1; 

steps/train_sat.sh --cmd "$train_cmd" 1500 20000 data/train data/lang 

exp/tri2b_ali exp/tri3b || exit 1; 

steps/decode_fmllr.sh --cmd "$decode_cmd" --nj $nj --num-threads 1 

exp/tri3b/graph data/test exp/tri3b/decode || exit 1; 

 

# REDES NEURAIS  

# ---> Ivector 

min_seg_len=0.31 

steps/train_lda_mllt.sh --cmd "$train_cmd" --num-iters 1 --mllt-iters "1 3 5" 

--splice-opts "--left-context=2 --right-context=2" 600 2000 



122 

 

$temp_data_root/${train_set}_hires data/lang $gmm_dir 

exp/nnet3${nnet3_affix}/tri5 

steps/online/nnet2/train_diag_ubm.sh --cmd "$train_cmd" --nj $nj --num-frames 

44537 --num-threads $num_threads_ubm 

${temp_data_root}/${train_set}_sp_hires_subset 32 

exp/nnet3${nnet3_affix}/tri5 exp/nnet3${nnet3_affix}/diag_ubm 

utils/data/modify_speaker_info.sh --utts-per-spk-max 1 

data/${train_set}_sp_hires_comb 

${temp_data_root}/${train_set}_sp_hires_comb_max2 

 

# ---> RNN 

cell_dim=256 

hidden_dim=256 

recurrent_projection_dim=32 

non_recurrent_projection_dim=32 

chunk_width=4 

chunk_left_context=8 

chunk_right_context=8 

num_epochs=1 

initial_effective_lrate=0.0003 

final_effective_lrate=0.00003 

momentum=0.1 

num_chunk_per_minibatch=20 

samples_per_iter=4000 

extra_left_context=10 

extra_right_context=10 

lstm_opts="decay-time=4 cell-dim=$cell_dim" 

fast-lstmp-layer name=lstm1-forward input=lda delay=-1 $lstm_opts 

fast-lstmp-layer name=lstm1-backward input=lda delay=1 $lstm_opts 

output-layer name=output output-delay=$label_delay dim=$num_targets max-

change=0.3 

steps/nnet3/train_rnn.py --stage=$train_stage \ 

    --cmd="$decode_cmd" \ 

    --feat.online-ivector-dir=$train_ivector_dir \ 

    --feat.cmvn-opts="--norm-means=false --norm-vars=false" \ 

    --trainer.srand=$srand \ 

    --trainer.num-epochs=$num_epochs \ 

    --trainer.samples-per-iter=$samples_per_iter \ 

    --trainer.optimization.num-jobs-final=1 \ 

    --trainer.optimization.initial-effective-lrate=$initial_effective_lrate \ 

    --trainer.optimization.final-effective-lrate=$final_effective_lrate \ 

    --trainer.optimization.shrink-value 0.198 \ 

    --trainer.rnn.num-chunk-per-minibatch=$num_chunk_per_minibatch \ 

    --trainer.optimization.momentum=$momentum \ 

    --egs.opts " --nj 3 " \ 

    --egs.chunk-width=$chunk_width \ 

    --egs.chunk-left-context=$chunk_left_context \ 

    --egs.chunk-right-context=$chunk_right_context \ 

    --egs.chunk-left-context-initial=0 \ 

    --egs.chunk-right-context-final=0 \ 

    --egs.dir="$common_egs_dir" \ 

    --cleanup.remove-egs=$remove_egs \ 

    --cleanup.preserve-model-interval=20 \ 

    --use-gpu=no \ 

    --feat-dir=$train_data_dir \ 

    --ali-dir=$ali_dir \ 

    --lang=data/lang \ 

    --dir=$dir || exit 1; 

 



123 

 

# ---> DNN 

relu_dim=150 

relu-renorm-layer name=tdnn1 dim=250 

relu-renorm-layer name=tdnn2 dim=250 input=Append(-1,2) 

relu-renorm-layer name=tdnn3 dim=250 

output-layer name=output dim=$num_targets max-change=0.3 

steps/nnet3/train_dnn.py --stage $train_stage \ 

    --cmd="$decode_cmd" \ 

    --feat.online-ivector-dir ${train_ivector_dir} \ 

    --feat.cmvn-opts="--norm-means=false --norm-vars=false" \ 

    --trainer.num-epochs 1 \ 

    --trainer.optimization.num-jobs-final 1 \ 

    --trainer.optimization.initial-effective-lrate 0.0017 \ 

    --trainer.optimization.final-effective-lrate 0.00017 \ 

    --trainer.samples-per-iter 80000 \ 

    --egs.dir "$common_egs_dir" \ 

    --egs.stage "$egs_stage" \ 

    --cleanup.remove-egs $remove_egs \ 

    --cleanup.preserve-model-interval 10 \ 

    --feat-dir=$train_data_dir \ 

    --ali-dir $ali_dir \ 

    --lang data/lang \ 

    --use-gpu=no \ 

    --dir=$dir || exit 1; 

steps/nnet3/decode.sh --nj $nj --cmd "$decode_cmd" --acwt 0.2 --post-decode-

acwt 2.0 --scoring-opts "--min-lmwt 1 " --num-threads $num_threads --

online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_test_hires 

${graph_dir} data/test_hires ${dir}/decode_test || exit 1 

 

# ---> RNN+HMM 

min_seg_len=0.31 

chunk_left_context=8  

label_delay=1  

xent_regularize=0.02  

extra_left_context=10  

extra_right_context=0  

frames_per_chunk=30  

fast-lstmp-layer name=lstm1 cell-dim=128 recurrent-projection-dim=32 non-

recurrent-projection-dim=32 delay=-1 

output-layer name=output input=lstm1 output-delay=$label_delay include-log-

softmax=false dim=$num_targets max-change=0.3 

output-layer name=output-xent input=lstm1 output-delay=$label_delay 

dim=$num_targets learning-rate-factor=$learning_rate_factor max-

change=0.3 

steps/nnet3/chain/train.py --stage $train_stage \ 

    --cmd "$decode_cmd" \ 

    --feat.online-ivector-dir $train_ivector_dir \ 

    --feat.cmvn-opts "--norm-means=false --norm-vars=false" \ 

    --chain.xent-regularize $xent_regularize \ 

    --chain.leaky-hmm-coefficient 0.02 \ 

    --chain.l2-regularize 0.00005 \ 

    --chain.apply-deriv-weights false \ 

    --chain.lm-opts="--num-extra-lm-states=400" \ 

    --egs.dir "$common_egs_dir" \ 

    --egs.opts "--frames-overlap-per-eg 0" \ 

    --egs.chunk-width "$frames_per_chunk" \ 

    --egs.chunk-left-context "$chunk_left_context" \ 

    --egs.chunk-right-context "$chunk_right_context" \ 

    --trainer.num-chunk-per-minibatch 32 \ 



124 

 

    --trainer.frames-per-iter 300000 \ 

    --trainer.max-param-change 0.4 \ 

    --trainer.num-epochs 1 \ 

    --trainer.deriv-truncate-margin 2 \ 

    --trainer.optimization.shrink-value 0.198 \ 

    --trainer.optimization.num-jobs-final 1 \ 

    --trainer.optimization.initial-effective-lrate 0.001 \ 

    --trainer.optimization.final-effective-lrate 0.0001 \ 

    --trainer.optimization.momentum 0.0 \ 

    --cleanup.remove-egs true \ 

    --feat-dir $train_data_dir \ 

    --tree-dir $tree_dir \ 

    --lat-dir $lat_dir \ 

    --dir $dir 

utils/mkgraph.sh --self-loop-scale 0.2 data/lang $dir $dir/graph 

steps/nnet3/decode.sh --num-threads 1 --nj $decode_nj --cmd "$decode_cmd" \ 

    --acwt 0.2 --post-decode-acwt 2.0 \ 

    --extra-left-context $extra_left_context  \ 

    --extra-right-context $extra_right_context  \ 

    --frames-per-chunk "$frames_per_chunk" \ 

    --online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${dset}_hires \ 

    --scoring-opts "--min-lmwt 1 " \ 

    $dir/graph data/${dset}_hires $dir/decode_${dset} || exit 1; 

 

# ---> DNN+HMM 

min_seg_len=0.31 

xent_regularize=0.02 

relu-renorm-layer name=tdnn1 dim=90 

relu-renorm-layer name=tdnn2 input=Append(-1,0,1) dim=90 

relu-renorm-layer name=prefinal-chain input=tdnn2 dim=90 target-rms=0.1 

output-layer name=output include-log-softmax=false dim=$num_targets max-

change=0.3 

relu-renorm-layer name=prefinal-xent input=tdnn2 dim=90 target-rms=0.1 

output-layer name=output-xent dim=$num_targets learning-rate-

factor=$learning_rate_factor max-change=0.3 

steps/nnet3/chain/train.py --stage $train_stage \ 

    --cmd "$decode_cmd" \ 

    --feat.online-ivector-dir $train_ivector_dir \ 

    --feat.cmvn-opts "--norm-means=false --norm-vars=false" \ 

    --chain.xent-regularize $xent_regularize \ 

    --chain.leaky-hmm-coefficient 0.02 \ 

    --chain.l2-regularize 0.00005 \ 

    --chain.apply-deriv-weights false \ 

    --chain.lm-opts="--num-extra-lm-states=400" \ 

    --egs.dir "$common_egs_dir" \ 

    --egs.opts "--frames-overlap-per-eg 0" \ 

    --egs.chunk-width 30 \ 

    --trainer.num-chunk-per-minibatch 32 \ 

    --trainer.frames-per-iter 300000 \ 

    --trainer.num-epochs 1 \ 

    --trainer.optimization.num-jobs-final 1 \ 

    --trainer.optimization.initial-effective-lrate 0.001 \ 

    --trainer.optimization.final-effective-lrate 0.0001 \ 

    --trainer.max-param-change 0.4 \ 

    --cleanup.remove-egs true \ 

    --feat-dir $train_data_dir \ 

    --tree-dir $tree_dir \ 

    --lat-dir $lat_dir \ 

    --dir $dir 



125 

 

utils/mkgraph.sh --self-loop-scale 0.2 data/lang $dir $dir/graph 

steps/nnet3/decode.sh --num-threads 1 --nj $decode_nj --cmd "$decode_cmd" \ 

     --acwt 0.2 --post-decode-acwt 2.0 \ 

     --online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${dset}_hires \ 

     --scoring-opts "--min-lmwt 1 " \ 

     $dir/graph data/${dset}_hires $dir/decode_${dset} || exit 1; 

O quadro abaixo apresenta as alterações realizadas na configuração padrão, gerando a 

configuração de ID 7 para a biblioteca Kaldi. 

lm_order=2 

steps/train_deltas.sh --cmd "$train_cmd" 1800 24000 data/train data/lang 

exp/mono0a_ali exp/tri1 || exit 1; 

steps/train_deltas.sh --cmd "$train_cmd" 3000 36000 data/train data/lang 

exp/tri1_ali exp/tri2a || exit 1; 

steps/train_lda_mllt.sh --cmd "$train_cmd" --splice-opts "--left-context=3 --

right-context=3" 3900 45000 data/train data/lang exp/tri2a_ali exp/tri2b 

|| exit 1; 

steps/train_sat.sh --cmd "$train_cmd" 4500 60000 data/train data/lang 

exp/tri2b_ali exp/tri3b || exit 1; 

steps/decode_fmllr.sh --cmd "$decode_cmd" --nj $nj --num-threads 2 

exp/tri3b/graph data/test exp/tri3b/decode || exit 1; 

 

# REDES NEURAIS  

# ---> Ivector 

min_seg_len=0.93 

steps/train_lda_mllt.sh --cmd "$train_cmd" --num-iters 4 --mllt-iters "2 4 6" 

--splice-opts "--left-context=3 --right-context=3" 1800 6000 

$temp_data_root/${train_set}_hires data/lang $gmm_dir 

exp/nnet3${nnet3_affix}/tri5 

steps/online/nnet2/train_diag_ubm.sh --cmd "$train_cmd" --nj $nj --num-frames 

133613 --num-threads $num_threads_ubm 

${temp_data_root}/${train_set}_sp_hires_subset 98 

exp/nnet3${nnet3_affix}/tri5 exp/nnet3${nnet3_affix}/diag_ubm 

utils/data/modify_speaker_info.sh --utts-per-spk-max 2 

data/${train_set}_sp_hires_comb 

${temp_data_root}/${train_set}_sp_hires_comb_max2 

 

# ---> RNN 

cell_dim=512 

hidden_dim=512 

recurrent_projection_dim=64 

non_recurrent_projection_dim=64 

chunk_width=12 

chunk_left_context=24 

chunk_right_context=24 

num_epochs=3 

initial_effective_lrate=0.0123 

final_effective_lrate=0.00123 

momentum=0.3  

num_chunk_per_minibatch=60 

samples_per_iter=12000 

extra_left_context=30 

extra_right_context=30 

lstm_opts="decay-time=12 cell-dim=$cell_dim" 

fast-lstmp-layer name=lstm1-forward input=lda delay=-1 $lstm_opts 

fast-lstmp-layer name=lstm1-backward input=lda delay=1 $lstm_opts 



126 

 

fast-lstmp-layer name=lstm2-forward input=Append(lstm1-forward, lstm1-

backward) delay=-2 $lstm_opts 

fast-lstmp-layer name=lstm2-backward input=Append(lstm1-forward, lstm1-

backward) delay=2 $lstm_opts 

output-layer name=output output-delay=$label_delay dim=$num_targets max-

change=0.9 

steps/nnet3/train_rnn.py --stage=$train_stage \ 

    --cmd="$decode_cmd" \ 

    --feat.online-ivector-dir=$train_ivector_dir \ 

    --feat.cmvn-opts="--norm-means=false --norm-vars=false" \ 

    --trainer.srand=$srand \ 

    --trainer.num-epochs=$num_epochs \ 

    --trainer.samples-per-iter=$samples_per_iter \ 

    --trainer.optimization.num-jobs-final=1 \ 

    --trainer.optimization.initial-effective-lrate=$initial_effective_lrate \ 

    --trainer.optimization.final-effective-lrate=$final_effective_lrate \ 

    --trainer.optimization.shrink-value 0.594 \ 

    --trainer.rnn.num-chunk-per-minibatch=$num_chunk_per_minibatch \ 

    --trainer.optimization.momentum=$momentum \ 

    --egs.opts " --nj 3 " \ 

    --egs.chunk-width=$chunk_width \ 

    --egs.chunk-left-context=$chunk_left_context \ 

    --egs.chunk-right-context=$chunk_right_context \ 

    --egs.chunk-left-context-initial=0 \ 

    --egs.chunk-right-context-final=0 \ 

    --egs.dir="$common_egs_dir" \ 

    --cleanup.remove-egs=$remove_egs \ 

    --cleanup.preserve-model-interval=60 \ 

    --use-gpu=no \ 

    --feat-dir=$train_data_dir \ 

    --ali-dir=$ali_dir \ 

    --lang=data/lang \ 

    --dir=$dir || exit 1; 

 

# ---> DNN 

relu_dim=450 

relu-renorm-layer name=tdnn1 dim=748 

relu-renorm-layer name=tdnn2 dim=748 input=Append(-1,2) 

relu-renorm-layer name=tdnn3 dim=748 input=Append(-3,3) 

relu-renorm-layer name=tdnn4 dim=748 

output-layer name=output dim=$num_targets max-change=0.9 

steps/nnet3/train_dnn.py --stage=$train_stage \ 

    --cmd="$decode_cmd" \ 

    --feat.online-ivector-dir ${train_ivector_dir} \ 

    --feat.cmvn-opts="--norm-means=false --norm-vars=false" \ 

    --trainer.num-epochs 2 \ 

    --trainer.optimization.num-jobs-final 1 \ 

    --trainer.optimization.initial-effective-lrate 0.0697 \ 

    --trainer.optimization.final-effective-lrate 0.00697 \ 

    --trainer.samples-per-iter 240000 \ 

    --egs.dir "$common_egs_dir" \ 

    --egs.stage "$egs_stage" \ 

    --cleanup.remove-egs $remove_egs \ 

    --cleanup.preserve-model-interval 30 \ 

    --feat-dir=$train_data_dir \ 

    --ali-dir $ali_dir \ 

    --lang data/lang \ 

    --use-gpu=no \ 

    --dir=$dir || exit 1; 



127 

 

steps/nnet3/decode.sh --nj $nj --cmd "$decode_cmd" --acwt 0.6 --post-decode-

acwt 6.0 --scoring-opts "--min-lmwt 3 " --num-threads $num_threads --

online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_test_hires 

${graph_dir} data/test_hires ${dir}/decode_test || exit 1 

 

# ---> RNN+HMM 

min_seg_len=0.93 

chunk_left_context=24 

label_delay=3 

xent_regularize=0.06 

extra_left_context=30 

extra_right_context=10 

frames_per_chunk=90 

fast-lstmp-layer name=lstm1 cell-dim=256 recurrent-projection-dim=64 non-

recurrent-projection-dim=64 delay=-3 

fast-lstmp-layer name=lstm2 cell-dim=256 recurrent-projection-dim=64 non-

recurrent-projection-dim=64 delay=-3 

output-layer name=output input=lstm2 output-delay=$label_delay include-log-

softmax=false dim=$num_targets max-change=0.9 

output-layer name=output-xent input=lstm2 output-delay=$label_delay 

dim=$num_targets learning-rate-factor=$learning_rate_factor max-

change=0.9 

steps/nnet3/chain/train.py --stage $train_stage \ 

    --cmd "$decode_cmd" \ 

    --feat.online-ivector-dir $train_ivector_dir \ 

    --feat.cmvn-opts "--norm-means=false --norm-vars=false" \ 

    --chain.xent-regularize $xent_regularize \ 

    --chain.leaky-hmm-coefficient 0.06 \ 

    --chain.l2-regularize 0.00205 \ 

    --chain.apply-deriv-weights false \ 

    --chain.lm-opts="--num-extra-lm-states=1200" \ 

    --egs.dir "$common_egs_dir" \ 

    --egs.opts "--frames-overlap-per-eg 0" \ 

    --egs.chunk-width "$frames_per_chunk" \ 

    --egs.chunk-left-context "$chunk_left_context" \ 

    --egs.chunk-right-context "$chunk_right_context" \ 

    --trainer.num-chunk-per-minibatch 64 \ 

    --trainer.frames-per-iter 900000 \ 

    --trainer.max-param-change 1.2 \ 

    --trainer.num-epochs 2 \ 

    --trainer.deriv-truncate-margin 6 \ 

    --trainer.optimization.shrink-value 0.594 \ 

    --trainer.optimization.num-jobs-final 1 \ 

    --trainer.optimization.initial-effective-lrate 0.041 \ 

    --trainer.optimization.final-effective-lrate 0.0041 \ 

    --trainer.optimization.momentum 0.0 \ 

    --cleanup.remove-egs true \ 

    --feat-dir $train_data_dir \ 

    --tree-dir $tree_dir \ 

    --lat-dir $lat_dir \ 

    --dir $dir 

utils/mkgraph.sh --self-loop-scale 0.6 data/lang $dir $dir/graph 

steps/nnet3/decode.sh --num-threads 1 --nj $decode_nj --cmd "$decode_cmd" \ 

    --acwt 0.6 --post-decode-acwt 6.0 \ 

    --extra-left-context $extra_left_context  \ 

    --extra-right-context $extra_right_context  \ 

    --frames-per-chunk "$frames_per_chunk" \ 

    --online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${dset}_hires \ 

    --scoring-opts "--min-lmwt 3 " \ 



128 

 

    $dir/graph data/${dset}_hires $dir/decode_${dset} || exit 1; 

 

# ---> DNN+HMM 

min_seg_len=0.93 

xent_regularize=0.06 

relu-renorm-layer name=tdnn1 dim=270 

relu-renorm-layer name=tdnn2 input=Append(-1,0,1) dim=270 

relu-renorm-layer name=tdnn3 input=Append(-1,0,1,2) dim=270 

relu-renorm-layer name=tdnn4 input=Append(-3,0,3) dim=270 

relu-renorm-layer name=prefinal-chain input=tdnn4 dim=270 target-rms=0.3 

output-layer name=output include-log-softmax=false dim=$num_targets max-

change=0.9 

relu-renorm-layer name=prefinal-xent input=tdnn4 dim=270 target-rms=0.3 

output-layer name=output-xent dim=$num_targets learning-rate-

factor=$learning_rate_factor max-change=0.9 

steps/nnet3/chain/train.py --stage $train_stage \ 

    --cmd "$decode_cmd" \ 

    --feat.online-ivector-dir $train_ivector_dir \ 

    --feat.cmvn-opts "--norm-means=false --norm-vars=false" \ 

    --chain.xent-regularize $xent_regularize \ 

    --chain.leaky-hmm-coefficient 0.06 \ 

    --chain.l2-regularize 0.00205 \ 

    --chain.apply-deriv-weights false \ 

    --chain.lm-opts="--num-extra-lm-states=1200" \ 

    --egs.dir "$common_egs_dir" \ 

    --egs.opts "--frames-overlap-per-eg 0" \ 

    --egs.chunk-width 90 \ 

    --trainer.num-chunk-per-minibatch 64 \ 

    --trainer.frames-per-iter 900000 \ 

    --trainer.num-epochs 2 \ 

    --trainer.optimization.num-jobs-final 1 \ 

    --trainer.optimization.initial-effective-lrate 0.041 \ 

    --trainer.optimization.final-effective-lrate 0.0041 \ 

    --trainer.max-param-change 1.2 \ 

    --cleanup.remove-egs true \ 

    --feat-dir $train_data_dir \ 

    --tree-dir $tree_dir \ 

    --lat-dir $lat_dir \ 

    --dir $dir 

utils/mkgraph.sh --self-loop-scale 0.6 data/lang $dir $dir/graph 

steps/nnet3/decode.sh --num-threads 1 --nj $decode_nj --cmd "$decode_cmd" \ 

    --acwt 0.6 --post-decode-acwt 6.0 \ 

    --online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${dset}_hires \ 

    --scoring-opts "--min-lmwt 3 " \ 

    $dir/graph data/${dset}_hires $dir/decode_${dset} || exit 1; 

O quadro abaixo apresenta as alterações realizadas na configuração padrão, gerando a 

configuração de ID 8 para a biblioteca Kaldi. 

lm_order=3 

steps/train_deltas.sh --cmd "$train_cmd" 3000 40000 data/train data/lang 

exp/mono0a_ali exp/tri1 || exit 1; 

steps/train_deltas.sh --cmd "$train_cmd" 5000 60000 data/train data/lang 

exp/tri1_ali exp/tri2a || exit 1; 

steps/train_lda_mllt.sh --cmd "$train_cmd" --splice-opts "--left-context=5 --

right-context=5" 6500 75000 data/train data/lang exp/tri2a_ali exp/tri2b 

|| exit 1; 



129 

 

steps/train_sat.sh --cmd "$train_cmd" 7500 100000 data/train data/lang 

exp/tri2b_ali exp/tri3b || exit 1; 

steps/decode_fmllr.sh --cmd "$decode_cmd" --nj $nj --num-threads 3 

exp/tri3b/graph data/test exp/tri3b/decode || exit 1; 

 

# REDES NEURAIS  

# ---> Ivector 

min_seg_len=1.55 

steps/train_lda_mllt.sh --cmd "$train_cmd" --num-iters 7 --mllt-iters "3 5 7" 

--splice-opts "--left-context=4 --right-context=4" 3000 10000 

$temp_data_root/${train_set}_hires data/lang $gmm_dir 

exp/nnet3${nnet3_affix}/tri5 

steps/online/nnet2/train_diag_ubm.sh --cmd "$train_cmd" --nj $nj --num-frames 

222689 --num-threads $num_threads_ubm 

${temp_data_root}/${train_set}_sp_hires_subset 162 

exp/nnet3${nnet3_affix}/tri5 exp/nnet3${nnet3_affix}/diag_ubm 

utils/data/modify_speaker_info.sh --utts-per-spk-max 3 

data/${train_set}_sp_hires_comb 

${temp_data_root}/${train_set}_sp_hires_comb_max2 

 

# ---> RNN 

cell_dim=1024 

hidden_dim=1024 

recurrent_projection_dim=128 

non_recurrent_projection_dim=128 

chunk_width=20 

chunk_left_context=40 

chunk_right_context=40 

num_epochs=6 

initial_effective_lrate=0.0243 

final_effective_lrate=0.00243 

momentum=0.5 

num_chunk_per_minibatch=100 

samples_per_iter=20000 

extra_left_context=50 

extra_right_context=50 

lstm_opts="decay-time=20 cell-dim=$cell_dim" 

fast-lstmp-layer name=lstm1-forward input=lda delay=-1 $lstm_opts 

fast-lstmp-layer name=lstm1-backward input=lda delay=1 $lstm_opts 

fast-lstmp-layer name=lstm2-forward input=Append(lstm1-forward, lstm1-

backward) delay=-2 $lstm_opts 

fast-lstmp-layer name=lstm2-backward input=Append(lstm1-forward, lstm1-

backward) delay=2 $lstm_opts 

fast-lstmp-layer name=lstm3-forward input=Append(lstm2-forward, lstm2-

backward) delay=-3 $lstm_opts 

fast-lstmp-layer name=lstm3-backward input=Append(lstm2-forward, lstm2-

backward) delay=3 $lstm_opts 

output-layer name=output output-delay=$label_delay dim=$num_targets max-

change=1.5 

steps/nnet3/train_rnn.py --stage=$train_stage \ 

    --cmd="$decode_cmd" \ 

    --feat.online-ivector-dir=$train_ivector_dir \ 

    --feat.cmvn-opts="--norm-means=false --norm-vars=false" \ 

    --trainer.srand=$srand \ 

    --trainer.num-epochs=$num_epochs \ 

    --trainer.samples-per-iter=$samples_per_iter \ 

    --trainer.optimization.num-jobs-final=1 \ 

    --trainer.optimization.initial-effective-lrate=$initial_effective_lrate \ 

    --trainer.optimization.final-effective-lrate=$final_effective_lrate \ 



130 

 

    --trainer.optimization.shrink-value 0.99 \ 

    --trainer.rnn.num-chunk-per-minibatch=$num_chunk_per_minibatch \ 

    --trainer.optimization.momentum=$momentum \ 

    --egs.opts " --nj 3 " \ 

    --egs.chunk-width=$chunk_width \ 

    --egs.chunk-left-context=$chunk_left_context \ 

    --egs.chunk-right-context=$chunk_right_context \ 

    --egs.chunk-left-context-initial=0 \ 

    --egs.chunk-right-context-final=0 \ 

    --egs.dir="$common_egs_dir" \ 

    --cleanup.remove-egs=$remove_egs \ 

    --cleanup.preserve-model-interval=100 \ 

    --use-gpu=no \ 

    --feat-dir=$train_data_dir \ 

    --ali-dir=$ali_dir \ 

    --lang=data/lang \ 

    --dir=$dir  || exit 1; 

 

# ---> DNN 

relu_dim=750 

relu-renorm-layer name=tdnn1 dim=1248 

relu-renorm-layer name=tdnn2 dim=1248 input=Append(-1,2) 

relu-renorm-layer name=tdnn3 dim=1248 input=Append(-3,3) 

relu-renorm-layer name=tdnn4 dim=1248 input=Append(-3,3) 

relu-renorm-layer name=tdnn5 dim=1248 input=Append(-7,2) 

relu-renorm-layer name=tdnn6 dim=1248 

output-layer name=output dim=$num_targets max-change=1.5 

steps/nnet3/train_dnn.py --stage=$train_stage \ 

    --cmd="$decode_cmd" \ 

    --feat.online-ivector-dir ${train_ivector_dir} \ 

    --feat.cmvn-opts="--norm-means=false --norm-vars=false" \ 

    --trainer.num-epochs 3 \ 

    --trainer.optimization.num-jobs-final 1 \ 

    --trainer.optimization.initial-effective-lrate 0.1317 \ 

    --trainer.optimization.final-effective-lrate 0.01317 \ 

    --trainer.samples-per-iter 400000 \ 

    --egs.dir "$common_egs_dir" \ 

    --egs.stage "$egs_stage" \ 

    --cleanup.remove-egs $remove_egs \ 

    --cleanup.preserve-model-interval 50 \ 

    --feat-dir=$train_data_dir \ 

    --ali-dir $ali_dir \ 

    --lang data/lang \ 

    --use-gpu=no \ 

    --dir=$dir || exit 1; 

steps/nnet3/decode.sh --nj $nj --cmd "$decode_cmd" --acwt 1.0 --post-decode-

acwt 10.0 --scoring-opts "--min-lmwt 5 " --num-threads $num_threads --

online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_test_hires 

${graph_dir} data/test_hires ${dir}/decode_test || exit 1 

 

# ---> RNN+HMM 

min_seg_len=1.55 

chunk_left_context=40 

label_delay=5 

xent_regularize=0.1 

extra_left_context=50 

extra_right_context=20 

frames_per_chunk=150 



131 

 

fast-lstmp-layer name=lstm1 cell-dim=512 recurrent-projection-dim=128 non-

recurrent-projection-dim=128 delay=-5 

fast-lstmp-layer name=lstm2 cell-dim=512 recurrent-projection-dim=128 non-

recurrent-projection-dim=128 delay=-5 

fast-lstmp-layer name=lstm3 cell-dim=512 recurrent-projection-dim=128 non-

recurrent-projection-dim=128 delay=-5 

output-layer name=output input=lstm3 output-delay=$label_delay include-log-

softmax=false dim=$num_targets max-change=1.5 

output-layer name=output-xent input=lstm3 output-delay=$label_delay 

dim=$num_targets learning-rate-factor=$learning_rate_factor max-

change=1.5 

steps/nnet3/chain/train.py --stage $train_stage \ 

    --cmd "$decode_cmd" \ 

    --feat.online-ivector-dir $train_ivector_dir \ 

    --feat.cmvn-opts "--norm-means=false --norm-vars=false" \ 

    --chain.xent-regularize $xent_regularize \ 

    --chain.leaky-hmm-coefficient 0.1 \ 

    --chain.l2-regularize 0.00405 \ 

    --chain.apply-deriv-weights false \ 

    --chain.lm-opts="--num-extra-lm-states=2000" \ 

    --egs.dir "$common_egs_dir" \ 

    --egs.opts "--frames-overlap-per-eg 0" \ 

    --egs.chunk-width "$frames_per_chunk" \ 

    --egs.chunk-left-context "$chunk_left_context" \ 

    --egs.chunk-right-context "$chunk_right_context" \ 

    --trainer.num-chunk-per-minibatch 128 \ 

    --trainer.frames-per-iter 1500000 \ 

    --trainer.max-param-change 2.0 \ 

    --trainer.num-epochs 4 \ 

    --trainer.deriv-truncate-margin 10 \ 

    --trainer.optimization.shrink-value 0.99 \ 

    --trainer.optimization.num-jobs-final 1 \ 

    --trainer.optimization.initial-effective-lrate 0.081 \ 

    --trainer.optimization.final-effective-lrate 0.0081 \ 

    --trainer.optimization.momentum 0.0 \ 

    --cleanup.remove-egs true \ 

    --feat-dir $train_data_dir \ 

    --tree-dir $tree_dir \ 

    --lat-dir $lat_dir \ 

    --dir $dir 

utils/mkgraph.sh --self-loop-scale 1.0 data/lang $dir $dir/graph 

steps/nnet3/decode.sh --num-threads 1 --nj $decode_nj --cmd "$decode_cmd" \ 

    --acwt 1.0 --post-decode-acwt 10.0 \ 

    --extra-left-context $extra_left_context  \ 

    --extra-right-context $extra_right_context  \ 

    --frames-per-chunk "$frames_per_chunk" \ 

    --online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${dset}_hires \ 

    --scoring-opts "--min-lmwt 5 " \ 

    $dir/graph data/${dset}_hires $dir/decode_${dset} || exit 1; 

 

# ---> DNN+HMM 

min_seg_len=1.55 

xent_regularize=0.1 

relu-renorm-layer name=tdnn1 dim=450 

relu-renorm-layer name=tdnn2 input=Append(-1,0,1) dim=450 

relu-renorm-layer name=tdnn3 input=Append(-1,0,1,2) dim=450 

relu-renorm-layer name=tdnn4 input=Append(-3,0,3) dim=450 

relu-renorm-layer name=tdnn5 input=Append(-3,0,3) dim=450 

relu-renorm-layer name=tdnn6 input=Append(-6,-3,0) dim=450 



132 

 

relu-renorm-layer name=prefinal-chain input=tdnn6 dim=450 target-rms=0.5 

output-layer name=output include-log-softmax=false dim=$num_targets max-

change=1.5 

relu-renorm-layer name=prefinal-xent input=tdnn6 dim=450 target-rms=0.5 

output-layer name=output-xent dim=$num_targets learning-rate-

factor=$learning_rate_factor max-change=1.5 

steps/nnet3/chain/train.py --stage $train_stage \ 

    --cmd "$decode_cmd" \ 

    --feat.online-ivector-dir $train_ivector_dir \ 

    --feat.cmvn-opts "--norm-means=false --norm-vars=false" \ 

    --chain.xent-regularize $xent_regularize \ 

    --chain.leaky-hmm-coefficient 0.1 \ 

    --chain.l2-regularize 0.00405 \ 

    --chain.apply-deriv-weights false \ 

    --chain.lm-opts="--num-extra-lm-states=2000" \ 

    --egs.dir "$common_egs_dir" \ 

    --egs.opts "--frames-overlap-per-eg 0" \ 

    --egs.chunk-width 150 \ 

    --trainer.num-chunk-per-minibatch 128 \ 

    --trainer.frames-per-iter 1500000 \ 

    --trainer.num-epochs 4 \ 

    --trainer.optimization.num-jobs-final 1 \ 

    --trainer.optimization.initial-effective-lrate 0.081 \ 

    --trainer.optimization.final-effective-lrate 0.0081 \ 

    --trainer.max-param-change 2.0 \ 

    --cleanup.remove-egs true \ 

    --feat-dir $train_data_dir \ 

    --tree-dir $tree_dir \ 

    --lat-dir $lat_dir \ 

    --dir $dir 

utils/mkgraph.sh --self-loop-scale 1.0 data/lang $dir $dir/graph 

steps/nnet3/decode.sh --num-threads 1 --nj $decode_nj --cmd "$decode_cmd" \ 

    --acwt 1.0 --post-decode-acwt 10.0 \ 

    --online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${dset}_hires \ 

    --scoring-opts "--min-lmwt 5 " \ 

    $dir/graph data/${dset}_hires $dir/decode_${dset} || exit 1; 

O quadro abaixo apresenta as alterações realizadas na configuração padrão, gerando a 

configuração de ID 9 para a biblioteca Kaldi. 

lm_order=3 

steps/train_deltas.sh --cmd "$train_cmd" 4200 56000 data/train data/lang 

exp/mono0a_ali exp/tri1 || exit 1; 

steps/train_deltas.sh --cmd "$train_cmd" 7000 84000 data/train data/lang 

exp/tri1_ali exp/tri2a || exit 1; 

steps/train_lda_mllt.sh --cmd "$train_cmd" --splice-opts "--left-context=7 --

right-context=7" 9100 105000 data/train data/lang exp/tri2a_ali exp/tri2b 

|| exit 1; 

steps/train_sat.sh --cmd "$train_cmd" 10500 140000 data/train data/lang 

exp/tri2b_ali exp/tri3b || exit 1; 

steps/decode_fmllr.sh --cmd "$decode_cmd" --nj $nj --num-threads 4 

exp/tri3b/graph data/test exp/tri3b/decode || exit 1; 

 

# REDES NEURAIS  

# ---> Ivector 

min_seg_len=2.17 



133 

 

steps/train_lda_mllt.sh --cmd "$train_cmd" --num-iters 9 --mllt-iters "4 6 8" 

--splice-opts "--left-context=5 --right-context=5" 4200 14000 

$temp_data_root/${train_set}_hires data/lang $gmm_dir 

exp/nnet3${nnet3_affix}/tri5 

steps/online/nnet2/train_diag_ubm.sh --cmd "$train_cmd" --nj $nj --num-frames 

311764 --num-threads $num_threads_ubm 

${temp_data_root}/${train_set}_sp_hires_subset 226 

exp/nnet3${nnet3_affix}/tri5 exp/nnet3${nnet3_affix}/diag_ubm 

utils/data/modify_speaker_info.sh --utts-per-spk-max 4 

data/${train_set}_sp_hires_comb 

${temp_data_root}/${train_set}_sp_hires_comb_max2 

 

# ---> RNN 

cell_dim=2048 

hidden_dim=2048 

recurrent_projection_dim=256  

non_recurrent_projection_dim=256 

chunk_width=28 

chunk_left_context=56 

chunk_right_context=56 

num_epochs=8 

initial_effective_lrate=0.0363 

final_effective_lrate=0.00363 

momentum=0.7 

num_chunk_per_minibatch=140 

samples_per_iter=28000 

extra_left_context=70 

extra_right_context=70 

lstm_opts="decay-time=28 cell-dim=$cell_dim" 

fast-lstmp-layer name=lstm1-forward input=lda delay=-1 $lstm_opts 

fast-lstmp-layer name=lstm1-backward input=lda delay=1 $lstm_opts 

fast-lstmp-layer name=lstm2-forward input=Append(lstm1-forward, lstm1-

backward) delay=-2 $lstm_opts 

fast-lstmp-layer name=lstm2-backward input=Append(lstm1-forward, lstm1-

backward) delay=2 $lstm_opts 

fast-lstmp-layer name=lstm3-forward input=Append(lstm2-forward, lstm2-

backward) delay=-3 $lstm_opts 

fast-lstmp-layer name=lstm3-backward input=Append(lstm2-forward, lstm2-

backward) delay=3 $lstm_opts 

fast-lstmp-layer name=lstm4-forward input=Append(lstm3-forward, lstm3-

backward) delay=-4 $lstm_opts 

fast-lstmp-layer name=lstm4-backward input=Append(lstm3-forward, lstm3-

backward) delay=4 $lstm_opts 

output-layer name=output output-delay=$label_delay dim=$num_targets max-

change=2.1 

steps/nnet3/train_rnn.py --stage=$train_stage \ 

    --cmd="$decode_cmd" \ 

    --feat.online-ivector-dir=$train_ivector_dir \ 

    --feat.cmvn-opts="--norm-means=false --norm-vars=false" \ 

    --trainer.srand=$srand \ 

    --trainer.num-epochs=$num_epochs \ 

    --trainer.samples-per-iter=$samples_per_iter \ 

    --trainer.optimization.num-jobs-final=1 \ 

    --trainer.optimization.initial-effective-lrate=$initial_effective_lrate \ 

    --trainer.optimization.final-effective-lrate=$final_effective_lrate \ 

    --trainer.optimization.shrink-value 1.386 \ 

    --trainer.rnn.num-chunk-per-minibatch=$num_chunk_per_minibatch \ 

    --trainer.optimization.momentum=$momentum \ 

    --egs.opts " --nj 3 " \ 



134 

 

    --egs.chunk-width=$chunk_width \ 

    --egs.chunk-left-context=$chunk_left_context \ 

    --egs.chunk-right-context=$chunk_right_context \ 

    --egs.chunk-left-context-initial=0 \ 

    --egs.chunk-right-context-final=0 \ 

    --egs.dir="$common_egs_dir" \ 

    --cleanup.remove-egs=$remove_egs \ 

    --cleanup.preserve-model-interval=140 \ 

    --use-gpu=no \ 

    --feat-dir=$train_data_dir \ 

    --ali-dir=$ali_dir \ 

    --lang=data/lang \ 

    --dir=$dir || exit 1; 

 

# ---> DNN 

relu_dim=1050 

relu-renorm-layer name=tdnn1 dim=1748 

relu-renorm-layer name=tdnn2 dim=1748 input=Append(-1,2) 

relu-renorm-layer name=tdnn3 dim=1748 input=Append(-3,3) 

relu-renorm-layer name=tdnn4 dim=1748 input=Append(-3,3) 

relu-renorm-layer name=tdnn5 dim=1748 input=Append(-3,3) 

relu-renorm-layer name=tdnn6 dim=1748 input=Append(-3,3) 

relu-renorm-layer name=tdnn7 dim=1748 input=Append(-7,2) 

relu-renorm-layer name=tdnn8 dim=1748 

output-layer name=output dim=$num_targets max-change=2.1 

steps/nnet3/train_dnn.py --stage=$train_stage \ 

    --cmd="$decode_cmd" \ 

    --feat.online-ivector-dir ${train_ivector_dir} \ 

    --feat.cmvn-opts="--norm-means=false --norm-vars=false" \ 

    --trainer.num-epochs 4 \ 

    --trainer.optimization.num-jobs-final 1 \ 

    --trainer.optimization.initial-effective-lrate 0.2057 \ 

    --trainer.optimization.final-effective-lrate 0.02057 \ 

    --egs.dir "$common_egs_dir" \ 

    --egs.stage "$egs_stage" \ 

    --cleanup.remove-egs $remove_egs \ 

    --cleanup.preserve-model-interval 70 \ 

    --feat-dir=$train_data_dir \ 

    --ali-dir $ali_dir \ 

    --lang data/lang \ 

    --use-gpu=no \ 

    --dir=$dir || exit 1; 

steps/nnet3/decode.sh --nj $nj --cmd "$decode_cmd" --acwt 1.4 --post-decode-

acwt 14.0 --scoring-opts "--min-lmwt 7 " --num-threads $num_threads --

online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_test_hires 

${graph_dir} data/test_hires ${dir}/decode_test || exit 1 

 

# ---> RNN+HMM 

min_seg_len=2.17 

chunk_left_context=56 

chunk_right_context=10 

label_delay=7 

xent_regularize=0.14 

extra_left_context=70 

extra_right_context=30 

frames_per_chunk=210 

fast-lstmp-layer name=lstm1 cell-dim=1024 recurrent-projection-dim=256 non-

recurrent-projection-dim=256 delay=-7 



135 

 

fast-lstmp-layer name=lstm2 cell-dim=1024 recurrent-projection-dim=256 non-

recurrent-projection-dim=256 delay=-7 

fast-lstmp-layer name=lstm3 cell-dim=1024 recurrent-projection-dim=256 non-

recurrent-projection-dim=256 delay=-7 

fast-lstmp-layer name=lstm4 cell-dim=1024 recurrent-projection-dim=256 non-

recurrent-projection-dim=256 delay=-7 

output-layer name=output input=lstm4 output-delay=$label_delay include-log-

softmax=false dim=$num_targets max-change=2.1 

output-layer name=output-xent input=lstm4 output-delay=$label_delay 

dim=$num_targets learning-rate-factor=$learning_rate_factor max-

change=2.1 

steps/nnet3/chain/train.py --stage $train_stage \ 

    --cmd "$decode_cmd" \ 

    --feat.online-ivector-dir $train_ivector_dir \ 

    --feat.cmvn-opts "--norm-means=false --norm-vars=false" \ 

    --chain.xent-regularize $xent_regularize \ 

    --chain.leaky-hmm-coefficient 0.14 \ 

    --chain.l2-regularize 0.00605 \ 

    --chain.apply-deriv-weights false \ 

    --chain.lm-opts="--num-extra-lm-states=2800" \ 

    --egs.dir "$common_egs_dir" \ 

    --egs.opts "--frames-overlap-per-eg 0" \ 

    --egs.chunk-width "$frames_per_chunk" \ 

    --egs.chunk-left-context "$chunk_left_context" \ 

    --egs.chunk-right-context "$chunk_right_context" \ 

    --trainer.num-chunk-per-minibatch 256 \ 

    --trainer.frames-per-iter 2100000 \ 

    --trainer.max-param-change 2.8 \ 

    --trainer.num-epochs 5 \ 

    --trainer.deriv-truncate-margin 14 \ 

    --trainer.optimization.shrink-value 1.386 \ 

    --trainer.optimization.num-jobs-final 1 \ 

    --trainer.optimization.initial-effective-lrate 0.121 \ 

    --trainer.optimization.final-effective-lrate 0.0121 \ 

    --trainer.optimization.momentum 0.0 \ 

    --cleanup.remove-egs true \ 

    --feat-dir $train_data_dir \ 

    --tree-dir $tree_dir \ 

    --lat-dir $lat_dir \ 

    --dir $dir 

utils/mkgraph.sh --self-loop-scale 1.4 data/lang $dir $dir/graph 

steps/nnet3/decode.sh --num-threads 1 --nj $decode_nj --cmd "$decode_cmd" \ 

    --acwt 1.4 --post-decode-acwt 14.0 \ 

    --extra-left-context $extra_left_context  \ 

    --extra-right-context $extra_right_context  \ 

    --frames-per-chunk "$frames_per_chunk" \ 

    --online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${dset}_hires \ 

    --scoring-opts "--min-lmwt 7 " \ 

    $dir/graph data/${dset}_hires $dir/decode_${dset} || exit 1; 

 

# ---> DNN+HMM 

min_seg_len=2.17 

xent_regularize=0.14  

relu-renorm-layer name=tdnn1 dim=630 

relu-renorm-layer name=tdnn2 input=Append(-1,0,1) dim=630 

relu-renorm-layer name=tdnn3 input=Append(-1,0,1,2) dim=630 

relu-renorm-layer name=tdnn4 input=Append(-3,0,3) dim=630 

relu-renorm-layer name=tdnn5 input=Append(-3,0,3) dim=630 

relu-renorm-layer name=tdnn6 input=Append(-3,0,3) dim=630 



136 

 

relu-renorm-layer name=tdnn7 input=Append(-3,0,3) dim=630 

relu-renorm-layer name=tdnn8 input=Append(-6,-3,0) dim=630 

relu-renorm-layer name=prefinal-chain input=tdnn8 dim=630 target-rms=0.7 

output-layer name=output include-log-softmax=false dim=$num_targets max-

change=2.1 

relu-renorm-layer name=prefinal-xent input=tdnn8 dim=630 target-rms=0.7 

output-layer name=output-xent dim=$num_targets learning-rate-

factor=$learning_rate_factor max-change=2.1 

steps/nnet3/chain/train.py --stage $train_stage \ 

    --cmd "$decode_cmd" \ 

    --feat.online-ivector-dir $train_ivector_dir \ 

    --feat.cmvn-opts "--norm-means=false --norm-vars=false" \ 

    --chain.xent-regularize $xent_regularize \ 

    --chain.leaky-hmm-coefficient 0.14 \ 

    --chain.l2-regularize 0.00605 \ 

    --chain.apply-deriv-weights false \ 

    --chain.lm-opts="--num-extra-lm-states=2800" \ 

    --egs.dir "$common_egs_dir" \ 

    --egs.opts "--frames-overlap-per-eg 0" \ 

    --egs.chunk-width 210 \ 

    --trainer.num-chunk-per-minibatch 256 \ 

    --trainer.frames-per-iter 2100000 \ 

    --trainer.num-epochs 5 \ 

    --trainer.optimization.num-jobs-final 1 \ 

    --trainer.optimization.initial-effective-lrate 0.121 \ 

    --trainer.optimization.final-effective-lrate 0.0121 \ 

    --trainer.max-param-change 2.8 \ 

    --cleanup.remove-egs true \ 

    --feat-dir $train_data_dir \ 

    --tree-dir $tree_dir \ 

    --lat-dir $lat_dir \ 

    --dir $dir 

utils/mkgraph.sh --self-loop-scale 1.4 data/lang $dir $dir/graph 

steps/nnet3/decode.sh --num-threads 1 --nj $decode_nj --cmd "$decode_cmd" \ 

    --acwt 1.4 --post-decode-acwt 14.0 \ 

    --online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${dset}_hires \ 

    --scoring-opts "--min-lmwt 7 " \ 

    $dir/graph data/${dset}_hires $dir/decode_${dset} || exit 1; 

O quadro abaixo apresenta as alterações realizadas na configuração padrão, gerando a 

configuração de ID 10 para a biblioteca Kaldi. 

lm_order=4 

steps/train_deltas.sh --cmd "$train_cmd" 5400 72000 data/train data/lang 

exp/mono0a_ali exp/tri1 || exit 1; 

steps/train_deltas.sh --cmd "$train_cmd" 9000 108000 data/train data/lang 

exp/tri1_ali exp/tri2a || exit 1; 

steps/train_lda_mllt.sh --cmd "$train_cmd" --splice-opts "--left-context=9 --

right-context=9" 11700 135000 data/train data/lang exp/tri2a_ali 

exp/tri2b || exit 1; 

steps/train_sat.sh --cmd "$train_cmd" 13500 180000 data/train data/lang 

exp/tri2b_ali exp/tri3b || exit 1; 

steps/decode_fmllr.sh --cmd "$decode_cmd" --nj $nj --num-threads 5 

exp/tri3b/graph data/test exp/tri3b/decode || exit 1; 

 

# REDES NEURAIS  

# ---> Ivector 



137 

 

min_seg_len=2.79 

steps/train_lda_mllt.sh --cmd "$train_cmd" --num-iters 12 --mllt-iters "5 7 9" 

--splice-opts "--left-context=6 --right-context=6" 5400 18000 

$temp_data_root/${train_set}_hires data/lang $gmm_dir 

exp/nnet3${nnet3_affix}/tri5 

steps/online/nnet2/train_diag_ubm.sh --cmd "$train_cmd" --nj $nj --num-frames 

400840 --num-threads $num_threads_ubm 

${temp_data_root}/${train_set}_sp_hires_subset 292 

exp/nnet3${nnet3_affix}/tri5 exp/nnet3${nnet3_affix}/diag_ubm 

utils/data/modify_speaker_info.sh --utts-per-spk-max 5 

data/${train_set}_sp_hires_comb 

${temp_data_root}/${train_set}_sp_hires_comb_max2 

 

# ---> RNN 

cell_dim=4096 

hidden_dim=4096 

recurrent_projection_dim=512 

non_recurrent_projection_dim=512 

chunk_width=36  

chunk_left_context=72 

chunk_right_context=72  

num_epochs=10 

initial_effective_lrate=0.0543 

final_effective_lrate=0.00543 

momentum=0.9 

num_chunk_per_minibatch=180 

samples_per_iter=36000 

extra_left_context=90 

extra_right_context=90 

lstm_opts="decay-time=36 cell-dim=$cell_dim" 

fast-lstmp-layer name=lstm1-forward input=lda delay=-1 $lstm_opts 

fast-lstmp-layer name=lstm1-backward input=lda delay=1 $lstm_opts 

fast-lstmp-layer name=lstm2-forward input=Append(lstm1-forward, lstm1-

backward) delay=-2 $lstm_opts 

fast-lstmp-layer name=lstm2-backward input=Append(lstm1-forward, lstm1-

backward) delay=2 $lstm_opts 

fast-lstmp-layer name=lstm3-forward input=Append(lstm2-forward, lstm2-

backward) delay=-3 $lstm_opts 

fast-lstmp-layer name=lstm3-backward input=Append(lstm2-forward, lstm2-

backward) delay=3 $lstm_opts 

fast-lstmp-layer name=lstm4-forward input=Append(lstm3-forward, lstm3-

backward) delay=-4 $lstm_opts 

fast-lstmp-layer name=lstm4-backward input=Append(lstm3-forward, lstm3-

backward) delay=4 $lstm_opts 

fast-lstmp-layer name=lstm5-forward input=Append(lstm4-forward, lstm4-

backward) delay=-5 $lstm_opts 

fast-lstmp-layer name=lstm5-backward input=Append(lstm4-forward, lstm4-

backward) delay=5 $lstm_opts 

output-layer name=output output-delay=$label_delay dim=$num_targets max-

change=2.7 

steps/nnet3/train_rnn.py --stage=$train_stage \ 

    --cmd="$decode_cmd" \ 

    --feat.online-ivector-dir=$train_ivector_dir \ 

    --feat.cmvn-opts="--norm-means=false --norm-vars=false" \ 

    --trainer.srand=$srand \ 

    --trainer.num-epochs=$num_epochs \ 

    --trainer.samples-per-iter=$samples_per_iter \ 

    --trainer.optimization.num-jobs-final=1 \ 

    --trainer.optimization.initial-effective-lrate=$initial_effective_lrate \ 



138 

 

    --trainer.optimization.final-effective-lrate=$final_effective_lrate \ 

    --trainer.optimization.shrink-value 1.782 \ 

    --trainer.rnn.num-chunk-per-minibatch=$num_chunk_per_minibatch \ 

    --trainer.optimization.momentum=$momentum \ 

    --egs.opts " --nj 3 " \ 

    --egs.chunk-width=$chunk_width \ 

    --egs.chunk-left-context=$chunk_left_context \ 

    --egs.chunk-right-context=$chunk_right_context \ 

    --egs.chunk-left-context-initial=0 \ 

    --egs.chunk-right-context-final=0 \ 

    --egs.dir="$common_egs_dir" \ 

    --cleanup.remove-egs=$remove_egs \ 

    --cleanup.preserve-model-interval=180 \ 

    --use-gpu=no \ 

    --feat-dir=$train_data_dir \ 

    --ali-dir=$ali_dir \ 

    --lang=data/lang \ 

    --dir=$dir  || exit 1; 

 

# ---> DNN 

relu_dim=1350 

relu-renorm-layer name=tdnn1 dim=2246 

relu-renorm-layer name=tdnn2 dim=2246 input=Append(-1,2) 

relu-renorm-layer name=tdnn3 dim=2246 input=Append(-3,3) 

relu-renorm-layer name=tdnn4 dim=2246 input=Append(-3,3) 

relu-renorm-layer name=tdnn5 dim=2746 input=Append(-3,3) 

relu-renorm-layer name=tdnn6 dim=2746 input=Append(-3,3) 

relu-renorm-layer name=tdnn7 dim=2746 input=Append(-3,3) 

relu-renorm-layer name=tdnn8 dim=2246 input=Append(-7,2) 

relu-renorm-layer name=tdnn9 dim=2246 

output-layer name=output dim=$num_targets max-change=2.7 

steps/nnet3/train_dnn.py --stage=$train_stage \ 

    --cmd="$decode_cmd" \ 

    --feat.online-ivector-dir ${train_ivector_dir} \ 

    --feat.cmvn-opts="--norm-means=false --norm-vars=false" \ 

    --trainer.num-epochs 5 \ 

    --trainer.optimization.num-jobs-final 1 \ 

    --trainer.optimization.initial-effective-lrate 0.3077 \ 

    --trainer.optimization.final-effective-lrate 0.03077 \ 

    --egs.dir "$common_egs_dir" \ 

    --egs.stage "$egs_stage" \ 

    --cleanup.remove-egs $remove_egs \ 

    --cleanup.preserve-model-interval 90 \ 

    --feat-dir=$train_data_dir \ 

    --ali-dir $ali_dir \ 

    --lang data/lang \ 

    --use-gpu=no \ 

    --dir=$dir || exit 1; 

steps/nnet3/decode.sh --nj $nj --cmd "$decode_cmd" --acwt 1.8 --post-decode-

acwt 18.0 --scoring-opts "--min-lmwt 9 " --num-threads $num_threads --

online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_test_hires 

${graph_dir} data/test_hires ${dir}/decode_test || exit 1 

 

# ---> RNN+HMM 

min_seg_len=2.79 

chunk_left_context=72 

chunk_right_context=20 

label_delay=9 

xent_regularize=0.18 



139 

 

extra_left_context=90 

extra_right_context=40 

frames_per_chunk=270 

fast-lstmp-layer name=lstm1 cell-dim=2048 recurrent-projection-dim=512 non-

recurrent-projection-dim=512 delay=-9 

fast-lstmp-layer name=lstm2 cell-dim=2048 recurrent-projection-dim=512 non-

recurrent-projection-dim=512 delay=-9 

fast-lstmp-layer name=lstm3 cell-dim=2048 recurrent-projection-dim=512 non-

recurrent-projection-dim=512 delay=-9 

fast-lstmp-layer name=lstm4 cell-dim=2048 recurrent-projection-dim=512 non-

recurrent-projection-dim=512 delay=-9 

fast-lstmp-layer name=lstm5 cell-dim=2048 recurrent-projection-dim=512 non-

recurrent-projection-dim=512 delay=-9 

output-layer name=output input=lstm5 output-delay=$label_delay include-log-

softmax=false dim=$num_targets max-change=2.7 

output-layer name=output-xent input=lstm5 output-delay=$label_delay 

dim=$num_targets learning-rate-factor=$learning_rate_factor max-

change=2.7 

steps/nnet3/chain/train.py --stage $train_stage \ 

    --cmd "$decode_cmd" \ 

    --feat.online-ivector-dir $train_ivector_dir \ 

    --feat.cmvn-opts "--norm-means=false --norm-vars=false" \ 

    --chain.xent-regularize $xent_regularize \ 

    --chain.leaky-hmm-coefficient 0.18 \ 

    --chain.l2-regularize 0.00905 \ 

    --chain.apply-deriv-weights false \ 

    --chain.lm-opts="--num-extra-lm-states=3600" \ 

    --egs.dir "$common_egs_dir" \ 

    --egs.opts "--frames-overlap-per-eg 0" \ 

    --egs.chunk-width "$frames_per_chunk" \ 

    --egs.chunk-left-context "$chunk_left_context" \ 

    --egs.chunk-right-context "$chunk_right_context" \ 

    --trainer.num-chunk-per-minibatch 512 \ 

    --trainer.frames-per-iter 2700000 \ 

    --trainer.max-param-change 3.6 \ 

    --trainer.num-epochs 7 \ 

    --trainer.deriv-truncate-margin 18 \ 

    --trainer.optimization.shrink-value 1.782 \ 

    --trainer.optimization.num-jobs-final 1 \ 

    --trainer.optimization.initial-effective-lrate 0.181 \ 

    --trainer.optimization.final-effective-lrate 0.0181 \ 

    --trainer.optimization.momentum 0.0 \ 

    --cleanup.remove-egs true \ 

    --feat-dir $train_data_dir \ 

    --tree-dir $tree_dir \ 

    --lat-dir $lat_dir \ 

    --dir $dir 

utils/mkgraph.sh --self-loop-scale 1.8 data/lang $dir $dir/graph 

steps/nnet3/decode.sh --num-threads 1 --nj $decode_nj --cmd "$decode_cmd" \ 

    --acwt 1.8 --post-decode-acwt 18.0 \ 

    --extra-left-context $extra_left_context  \ 

    --extra-right-context $extra_right_context  \ 

    --frames-per-chunk "$frames_per_chunk" \ 

    --online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${dset}_hires \ 

    --scoring-opts "--min-lmwt 9 " \ 

    $dir/graph data/${dset}_hires $dir/decode_${dset} || exit 1; 

 

# ---> DNN+HMM 

min_seg_len=2.79 



140 

 

xent_regularize=0.18 

relu-renorm-layer name=tdnn1 dim=810 

relu-renorm-layer name=tdnn2 input=Append(-1,0,1) dim=810 

relu-renorm-layer name=tdnn3 input=Append(-1,0,1,2) dim=810 

relu-renorm-layer name=tdnn4 input=Append(-3,0,3) dim=810 

relu-renorm-layer name=tdnn5 input=Append(-3,0,3) dim=810 

relu-renorm-layer name=tdnn6 input=Append(-3,0,3) dim=810 

relu-renorm-layer name=tdnn7 input=Append(-3,0,3) dim=810 

relu-renorm-layer name=tdnn8 input=Append(-3,0,3) dim=810 

relu-renorm-layer name=tdnn9 input=Append(-3,0,3) dim=810 

relu-renorm-layer name=tdnn10 input=Append(-6,-3,0) dim=810 

relu-renorm-layer name=prefinal-chain input=tdnn10 dim=810 target-rms=0.9 

output-layer name=output include-log-softmax=false dim=$num_targets max-

change=2.7 

relu-renorm-layer name=prefinal-xent input=tdnn10 dim=810 target-rms=0.9 

output-layer name=output-xent dim=$num_targets learning-rate-

factor=$learning_rate_factor max-change=2.7 

steps/nnet3/chain/train.py --stage $train_stage \ 

    --cmd "$decode_cmd" \ 

    --feat.online-ivector-dir $train_ivector_dir \ 

    --feat.cmvn-opts "--norm-means=false --norm-vars=false" \ 

    --chain.xent-regularize $xent_regularize \ 

    --chain.leaky-hmm-coefficient 0.18 \ 

    --chain.l2-regularize 0.00905 \ 

    --chain.apply-deriv-weights false \ 

    --chain.lm-opts="--num-extra-lm-states=3600" \ 

    --egs.dir "$common_egs_dir" \ 

    --egs.opts "--frames-overlap-per-eg 0" \ 

    --egs.chunk-width 270 \ 

    --trainer.num-chunk-per-minibatch 512 \ 

    --trainer.frames-per-iter 2700000 \ 

    --trainer.num-epochs 7 \ 

    --trainer.optimization.num-jobs-final 1 \ 

    --trainer.optimization.initial-effective-lrate 0.181 \ 

    --trainer.optimization.final-effective-lrate 0.0181 \ 

    --trainer.max-param-change 3.6 \ 

    --cleanup.remove-egs true \ 

    --feat-dir $train_data_dir \ 

    --tree-dir $tree_dir \ 

    --lat-dir $lat_dir \ 

    --dir $dir 

utils/mkgraph.sh --self-loop-scale 1.8 data/lang $dir $dir/graph 

steps/nnet3/decode.sh --num-threads 1 --nj $decode_nj --cmd "$decode_cmd" \ 

    --acwt 1.8 --post-decode-acwt 18.0 \ 

    --online-ivector-dir exp/nnet3${nnet3_affix}/ivectors_${dset}_hires \ 

    --scoring-opts "--min-lmwt 9 " \ 

    $dir/graph data/${dset}_hires $dir/decode_${dset} || exit 1; 

 



141 

 

APÊNDICE E   – DEMAIS TIPOS DA BIBLIOTECA HTK 

O quadro abaixo apresenta os valores obtidos pelos demais tipos da biblioteca HTK para o 

corpus LaPS Benchmark.  

ID Tipo WER SER 

1 HVite (trifone) 99,02% 100% 

1 HLRescore (3-grama) 94,95% 100% 

2 HVite (trifone) 98,37% 100% 

2 HLRescore (3-grama) 92,02% 100% 

3 HVite (trifone) 97,88% 100% 

3 HLRescore (3-grama) 93,65% 100% 

4 HVite (trifone) 98,05% 100% 

4 HLRescore (3-grama) 92,51% 100% 

5 HVite (trifone) 98,05% 100% 

5 HLRescore (3-grama) 93,49% 100% 

6 HVite (trifone) 98,37% 100% 

6 HLRescore (3-grama) 95,60% 100% 

7 HVite (trifone) 98,53% 100% 

7 HLRescore (3-grama) 93,316% 100% 

8 HVite (trifone) 98,53% 100% 

8 HLRescore (3-grama) 92,83% 100% 

9 HVite (trifone) 98,37% 100% 

9 HLRescore (3-grama) 92,83% 100% 

10 HVite (trifone) 97,56% 100% 

10 HLRescore (3-grama) 92,18% 100% 

O quadro abaixo apresenta os valores obtidos pelos demais tipos da biblioteca HTK para o 

corpus Constituição Federal. 

ID Tipo WER SER 

1 HVite (trifone) 97,02% 100% 

1 HLRescore (3-grama) 92,08% 100% 

2 HVite (trifone) 96,96% 100% 

2 HLRescore (3-grama) 89,98% 100% 

3 HVite (trifone) 96,38% 100% 

3 HLRescore (3-grama) 86,51% 100% 

4 HVite (trifone) 96,34% 100% 

4 HLRescore (3-grama) 86,74% 100% 

5 HVite (trifone) 96,04% 100% 

5 HLRescore (3-grama) 85,42% 100% 

6 HVite (trifone) 98,43% 100% 

6 HLRescore (3-grama) 93,93% 100% 

7 HVite (trifone) 97,13% 100% 



142 

 

7 HLRescore (3-grama) 89,20% 100% 

8 HVite (trifone) 96,13% 100% 

8 HLRescore (3-grama) 84,45% 100% 

9 HVite (trifone) 95,97% 100% 

9 HLRescore (3-grama) 82,86% 100% 

10 HVite (trifone) 97,16% 100% 

10 HLRescore (3-grama) 84,45% 100% 



143 

 

APÊNDICE F   – DEMAIS TIPOS DA BIBLIOTECA KALDI 

O quadro abaixo apresenta os valores obtidos pelos demais tipos da biblioteca Kaldi para o 

corpus LaPS Benchmark.  

ID Tipo WER SER 

1 RNN 96,42% 100% 

1 MLP-HMM 99,67% 100% 

1 RNN-HMM 73,62% 98,33% 

2 MLP 46,09% 96,67% 

2 MLP-HMM 4,89% 28,33% 

2 RNN-HMM 6,68% 36,67% 

3 MLP 58,63% 98,33% 

3 MLP-HMM 7,49% 36,67% 

3 RNN-HMM 8,96% 41,67% 

4 MLP 64,66% 96,67% 

4 MLP-HMM 12,70% 53,33% 

4 RNN-HMM 100% 100% 

5 N/A N/A N/A 

5 N/A N/A N/A 

5 N/A N/A N/A 

6 mono0a 7,17% 38,33% 

6 tri1 6,03% 38,33% 

6 tri2a 8,31% 46,67% 

6 tri2b 7% 46,67% 

7 tri1 8,31% 40% 

7 tri2a 7,98% 38,33% 

7 tri2b 8,14% 50% 

7 tri3b 8,14% 46,67% 

8 mono0a 6,84% 36,67% 

8 tri2a 7,17% 40% 

8 tri2b 11,89% 61,67% 

8 tri3b 7,82% 45% 

9 mono0a 6,84% 36,67% 

9 tri2a 5,54% 36,67% 

9 tri2b 12,05% 51,67% 

9 tri3b 6,68% 41,67% 

10 mono0a 6,84% 36,67% 

10 tri2a 7,33% 41,67% 

10 tri2b 12,05% 60% 

10 tri3b 9,61% 50% 

O quadro abaixo apresenta os valores obtidos pelos demais tipos da biblioteca Kaldi para o 

corpus Constituição Federal.  



144 

 

ID Tipo WER SER 

1 RNN 6,12% 88,89% 

1 MLP-HMM 72,78% 100% 

1 RNN-HMM 2,22% 61,11% 

2 MLP 5,17% 80,16% 

2 MLP-HMM 1,06% 40,48% 

2 RNN-HMM 1,24% 46,03% 

3 MLP 7,68% 90,48% 

3 MLP-HMM 1,22% 43,65% 

3 RNN-HMM 1,19% 46,03% 

4 N/A N/A N/A 

4 N/A N/A N/A 

4 N/A N/A N/A 

5 N/A N/A N/A 

5 N/A N/A N/A 

5 N/A N/A N/A 

6 mono0a 3,65% 79,37% 

6 tri1 1,95% 53,97% 

6 tri2a 1,67% 46,83% 

6 tri2b 1,64% 50,79% 

7 mono0a 3,65% 79,37% 

7 tri2a 1,75% 47,62% 

7 tri2b 2,04% 53,17% 

7 tri3b 2,02% 53,97% 

8 mono0a 2,33% 66,67% 

8 tri2a 1,68% 46,03% 

8 tri2b 2,81% 65,87% 

8 tri3b 2,77% 60,32% 

9 mono0a 2,33% 68,25% 

9 tri2a 2,01% 50,79% 

9 tri2b 3,73% 76,19% 

9 tri3b 3,94% 73,81% 

10 mono0a 2,13% 65,08% 

10 tri2a 2,15% 55,56% 

10 tri2b 4,82% 76,98% 

10 tri3b 4,76% 72,22% 

 


