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RESUMO: A tese aborda o desenvolvimento e a implementação de uma bancada para 

ensaios de materiais ferromagnéticos baseada no teste rotacional de chapa única 

(RSST). A bancada RSST é composta de um quadro magnético, inversores de 

freqüência, malhas de controle, sensores de campo e de indução magnética, 

amplificadores de sinais, e, ainda, placas de geração e aquisição de sinais baseadas em 

computadores pessoais. Uma nova técnica é empregada nesta aplicação na qual os 

inversores de tensão são comandados por malhas de controle realimentado do tipo modo 

deslizante. As principais vantagens desta técnica são: capacidade de operação dos 

inversores em uma ampla faixa de freqüências e amplitudes da tensão de saída; não 

necessitar de prévio conhecimento do comportamento do material a ser caracterizado e 

controlar a forma de onda do fluxo magnético na amostra em teste, desde baixas 

induções até próximo à saturação do material, com baixa distorção harmônica em sinais 

senoidais. Além disso, a bancada pode aplicar também formas de ondas arbitrárias de 

indução magnética na amostra. A influência que a blindagem exerce nas medições de 

campo magnético no dispositivo e as técnicas de medição de indução são analisadas por 

meio de resultados experimentais e simulações numéricas em 3D. 
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ABSTRACT: The thesis tackles the development and the implementation of ferromagnetic 

materials workbench based on the rotational single sheet tester (RSST). The RSST 

workbench is composed by a magnetic yoke, voltage inverters, feedback controllers, 

magnetic field and induction sensors, signal amplifiers as well as signal generation boards 

and acquisition boards based on personal computers. A new technique is employed in this 

application in which the voltage inverters having analog feedback control of sliding mode 

type are used. The main advantages of this technique are: the inverters allow the 

operation in a wide band of frequencies and voltage magnitude variation; it is not 

necessary a previous knowledge of the material behavior to be characterized and the 

control can keep the induction waveform shape in the sample, from low inductions up to 

the material saturation. With a sinusoidal induction shape, the voltage waveforms of 

induction sensors present low total harmonic distortion (THD), even for high inductions 

levels. Moreover, the workbench can also apply any arbitrary induction waveforms in the 

sample. The shielding positioning influences on the magnetic field measurements in a 

RSST and induction measurement techniques are analyzed by means of experimental 

results and 3D numerical simulations. 
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1 – Introdução 

 

1.1 - Posicionamento do Problema e Motivação da Pesquisa 

 

Nas últimas décadas, tem-se notado um crescimento vertiginoso da área 

tecnológica. Novos materiais, processos produtivos e produtos disputam um 

mercado consumidor cada vez mais competitivo. Neste aspecto produtos de 

melhor qualidade a baixo custo de produção são fontes de investimento em 

pesquisa e desenvolvimento tecnológico. 

No setor elétrico, além dos aspectos levantados anteriormente, dá-se 

especial atenção ao estudo do rendimento dos produtos e na utilização adequada 

dos materiais. A eficiência energética é um tema de destaque na atualidade, 

seguindo uma tendência de tornar-se cada vez mais importante na medida em 

que os recursos não renováveis se extinguem ou suas explorações são 

normatizadas com regras cada vez mais restritivas. 

Os produtos e equipamentos elétricos empregam uma grande parcela de 

materiais ferromagnéticos. Uma característica desejável deste material é que não 

tivesse saturação do número de linhas de fluxo possíveis que atravessam seções 

transversais do circuito magnético, e que a alternância deste fluxo não causasse 

perdas energéticas. Isto tem motivado várias pesquisas na área de ciência dos 

materiais. Todavia, para a aplicabilidade dos materiais em equipamentos 

elétricos, são necessários modelos que representem de maneira mais precisa o 

comportamento das várias grandezas eletromagnéticas em questão. 

Há na comunidade científica vários trabalhos publicados que buscam 

representar de maneira adequada a curva de magnetização e o efeito de 

histerese do material na presença das mais variadas formas de indução. O 

processo de modelagem tem como objetivo final a obtenção e o desenvolvimento 

de modelos e ferramentas de cálculos numéricos e/ou procedimentos de 

obtenção dos parâmetros utilizados nos programas de simulação destinados à 

análise, concepção e projeto de dispositivos eletromagnéticos. 
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Os materiais ferromagnéticos têm sido caracterizados pela relação entre 

as grandezas indução e campo magnético e, por simplicidade, considera-se que 

as mesmas são paralelas entre si, recaindo-se em um modelo de histerese 

escalar. Nestes casos as perdas energéticas são obtidas em uma caracterização 

sob magnetização em uma só direção. Porém, em certas regiões de máquinas 

rotativas e nas juntas em “T” de núcleos de transformadores trifásicos a indução 

magnética não é paralela ao campo, aumentando as perdas energéticas nestes 

pontos. Para estas aplicações onde a indução magnética é rotacional os modelos 

escalares são imprecisos. 

Alguns pesquisadores já trabalham com a modelagem vetorial da 

histerese. Tem-se encontrado resultados interessantes, mas, na sua maioria, 

esbarram na falta de uma modelagem de perdas segundo uma lei válida para o 

caso geral. Acredita-se que o primeiro passo para o desenvolvimento de uma 

modelagem geral e eficiente seja a obtenção de parâmetros confiáveis, 

provenientes da experimentação destinada a este fim. 

Outro aspecto ainda em consolidação diz respeito ao método experimental 

de avaliação do material para obtenção de sua caracterização. Sensores de 

campo e indução eletromagnética, forma do quadro de indução e amostra tem 

sido propostos, bem como técnicas de alimentação elétrica do dispositivo 

utilizado no teste. Acredita-se que, em relação a este último tópico, existem na 

literatura poucas contribuições e equipamentos eficientes para que sejam 

alcançados bons resultados. 
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1.2 - Objetivos 

 

Este trabalho teve por objetivo o desenvolvimento, a construção e a 

análise de uma bancada experimental para o estudo das perdas magnéticas em 

lâminas de aços elétricos, especificamente quando o material está sujeito a 

campos rotacionais. Esta bancada seguiu critérios científicos, de modo a 

propiciar ensaios confiáveis para a obtenção de dados para caracterização das 

perdas nos materiais analisados. 

Para a alimentação de um quadro magnético empregado como fonte de 

campo foram montados conversores eletrônicos. O estágio de inversão de tensão 

dos conversores foi projetado de maneira a tornar possível a variação da 

amplitude, da freqüência e da forma de onda da tensão de alimentação. O estudo 

da alimentação elétrica do quadro levou em conta a qualidade da forma de onda 

de indução imposta na lâmina sob teste. Para este fim, adequou-se aos 

inversores uma malha de controle fechada do tipo modo deslizante. Esta malha 

apresenta rápida resposta dinâmica e robustez, características próprias para 

aplicação em cargas não lineares. 

Por considerar esta área de pesquisa como um vasto campo ainda a ser 

explorado, esta tese tem ainda o objetivo específico de avaliar as técnicas de 

medição de indução e campo magnético na amostra e, também, analisar o efeito 

do controle da alimentação do quadro magnético na determinação das perdas 

nos materiais. 

Espera-se que a bancada desenvolvida possa contribuir para a 

caracterização de aços elétricos e com o desenvolvimento e a consolidação de 

modelos para simulação. 
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2 – Revisão Bibliográfica 

 

Neste capítulo são apresentados os principais conceitos e dispositivos 

para avaliação de perdas magnéticas em aços para aplicações elétricas. O 

capítulo discorre sobre definições básicas até o estado da arte neste assunto. 

 

 

2.1 – O Aço para Aplicações Elétricas 

 

O aço, desde aquele simplesmente laminado até as ligas de ferro-silício 

(FeSi), é a matéria prima fundamental para a indústria de equipamentos elétricos. 

Este material, sendo um meio ferromagnético, tem a particularidade de 

concentrar um campo magnético aplicado no exterior de uma amostra [1]. 

Resultados de pesquisas envolvendo ligas de ferro-silício foram divulgados 

inicialmente por R. A. Hadfield em 1882 [2]. As seguintes melhorias obtidas em 

comparação com o ferro anteriormente utilizado foram: a) aumento da 

permeabilidade magnética; b) diminuição das perdas por histerese, c) diminuição 

das perdas por correntes de Foucault e d) menor deterioração com o tempo. Por 

outro lado, sabe-se que a inclusão de silício ao aço geralmente tende a diminuir 

o valor da indução de saturação. 

As lâminas de ferro-silício para aplicações elétricas começaram a ser 

utilizadas a partir de 1905 nos Estados Unidos e de 1906 na Inglaterra. 

Atualmente, ligas contendo de 1,5 a 3,5% de silício são empregadas na 

construção de motores e geradores, enquanto motores de alto rendimento e 

transformadores de potência utilizam 3 a 5% de silício. 

O aço para aplicações elétricas é obtido a partir de barras ou chapas, 

originalmente produzidas por siderurgia. As chapas são muito mais empregadas 

na indústria e são obtidas através da laminação de blocos de aço de espessura 

variável. Como o aço laminado não apresenta precisamente as mesmas 

características magnéticas em todas as direções do plano da chapa, as perdas 

magnéticas também variam em função da direção do fluxo, o que torna o termo 

“sentido de laminação” importante na caracterização do material. Isto é, o 
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processo de laminação provoca um grau de anisotropia magnética que depende 

do material e do processo em si. 

As ligas de FeSi podem sofrer diversos processos diferentes durante a sua 

fabricação mas, de maneira geral, pode-se classificá-las em dois grupos: (1) 

materiais isotrópicos, os que apresentam as mesmas características magnéticas 

para qualquer direção no plano da lâmina, e (2) materiais anisotrópicos, aqueles 

que apresentam propriedades distintas para diferentes direções no plano da 

lâmina.  

Os principais aços planos para fins elétricos podem ser divididos em duas 

famílias: os de grãos orientados (GO) e os de grãos não orientados (GNO). Os 

aços de grãos orientados são anisotrópicos, sendo empregados em 

transformadores de potência, porque estes possuem uma grande parcela do fluxo 

magnético alinhado com a direção longitudinal da chapa. Os aços de grãos não 

orientados são idealmente isotrópicos, sendo utilizados em máquinas rotativas, 

as quais requerem um maior grau de isotropia no plano da chapa, e em pequenos 

transformadores [3]. 

Os aços ainda podem ser classificados de acordo com outras 

características, tais como: densidade de silício e carbono, etapa de fabricação 

(semi e totalmente processado), entre outras. 

Para que seja um meio eficiente de condução do fluxo magnético, o aço 

deve possuir alta permeabilidade e baixas perdas magnéticas, o que torna estas 

grandezas parâmetros de seleção do aço. Em relação às perdas magnéticas 

cabe ressaltar sua importância para a determinação do rendimento de uma 

máquina elétrica e, conseqüentemente, no sucesso do seu projeto final. 

As perdas estão diretamente ligadas à relação peso da máquina versus 

potência elétrica consumida. O projetista busca constantemente desenvolver 

máquinas de alto rendimento com pouco volume, aliado com os anseios dos 

consumidores por produtos de baixo custo e de alta eficiência energética. Sob 

estes aspectos, as pesquisas atuais envolvendo aços, seja no campo de 

desenvolvimento de novos materiais ou na determinação de perdas e modelos 

matemáticos, constituem-se em uma grande contribuição à indústria e à 

sociedade em geral. 
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2.2 - As Perdas Magnéticas em Campos Alternados 

 

A determinação das perdas nos materiais magnéticos laminados em 

chapas é um tema que tem despertado bastante interesse da comunidade 

científica, principalmente por não existir ainda um modelo definitivo para sua 

previsão. 

Nos métodos experimentais, as perdas médias por ciclo são obtidas do 

laço B(H). A energia dissipada por ciclo e por unidade de volume é determinada 

através do cálculo da área interna do laço, como apresentado na Figura 2.1. Esta 

mesma energia em Joules por quilograma, para um período da forma de onda da 

indução, é expressa pela Equação 2.1, onde B é a indução magnética, H o campo 

magnético, B1 e B2 definem o período da indução e mv a massa específica do 

material. Neste caso, tem-se um modelo escalar, já que as grandezas vetoriais 

indução e campo magnético são paralelas entre si. 
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Figura 2.1 – Laço B(H) típico. 

A metodologia mais utilizada atualmente para estimar e analisar as perdas 

é baseada em um princípio de separação, isto é, considera-se que as perdas 

totais nas lâminas seja a soma de três termos: perdas por histerese, perdas 

devido às correntes de Foucault e perdas excedentes [4,5]. 

A magnetização do material deve-se ao processo de alinhamento dos 

spins dos elétrons, que constituem o material, com o campo magnético aplicado 

externamente. Spins orientados em uma mesma direção no cristal formam 

domínios que são delimitados por paredes entre estas regiões. No processo de 
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magnetização estas paredes de domínio se movem, resultando as perdas por 

histerese. A magnetização do material acontece pela movimentação e rotação 

dos domínios magnéticos [6]. Assim, a existência das paredes dos domínios 

magnéticos, associadas também aos defeitos da microestrutura metalúrgica do 

material, dá origem às perdas por histerese. Esta parcela de perdas não depende 

da freqüência, devendo ser medida com a freqüência da forma de onda da 

excitação mais próxima possível de zero para que as componentes das perdas 

dinâmicas no material possam ser desprezadas. As perdas dinâmicas são 

compostas pelas perdas devido às correntes de Foucault e pelas perdas 

excedentes. Elas dependem da freqüência de operação. 

As perdas devido às correntes de Foucault são originadas das correntes 

induzidas no material. Estas correntes circulam em formas de anéis fechados, 

induzidas pela variação do fluxo magnético no tempo, sendo perpendiculares ao 

plano do fluxo [1]. Para evitar a formação de grandes anéis de corrente o 

material ferromagnético é laminado. Quanto menor a espessura da lâmina, maior 

a dificuldade para a formação dos anéis de corrente e, conseqüentemente, menor 

serão as perdas por correntes de Foucault. Todavia, se a composição química do 

material for alterada para atenuar este tipo de perdas, as perdas por histerese 

também sofrerão alterações. 

As perdas excedentes, como o próprio nome indica, são originadas 

supostamente pelo excesso de correntes induzidas. A justificativa para a 

existência destas perdas excedentes baseia-se no fato de que o cálculo clássico 

das perdas por correntes de Foucault não considera a divisão do material em 

domínios magnéticos elementares e estes domínios modificam a distribuição das 

correntes induzidas, aumentando as perdas.  

Várias teorias foram construídas para avaliar estas perdas chamadas 

excedentes. A mais aceita atualmente foi proposta por Bertotti [4], baseada em 

uma análise estatística da organização dos domínios e paredes magnéticas. O 

modelo de Bertotti permite mostrar que estas perdas em J/kg são proporcionais à 

raiz quadrada da freqüência. 

Para separar  os tipos de perdas magnéticas na prática são efetuados dois 

ensaios: um para determinação das perdas devidas à histerese e o outro para a 

determinação das perdas totais. As perdas por histerese são obtidas na mais 

baixa freqüência possível. Tipicamente as perdas totais são avaliadas em 

ensaios a 50 ou 60Hz. A partir das perdas totais se subtrai as perdas devidas à 
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histerese, resultando desta operação o valor das perdas dinâmicas (soma das 

perdas devidas à correntes de Foucault e as perdas excedentes) [5,7,8,9,10]. 

A separação das perdas dinâmicas, nas suas duas parcelas constituintes, 

não pode ser realizada de maneira experimental. Teoricamente, a representação 

matemática das perdas totais no ferro em regime senoidal foi proposta por 

Fiorillo e Novikov [7] e Amar e Protat [8] e é aqui dada pela Equação 2.2. Nesta 

equação as perdas por histerese (WH) são descritas conforme o modelo de 

Steinmetz (kh e α são parâmetros do modelo) e as dinâmicas (WF e WE) são 

associadas aos coeficientes kf e ke, os quais dependem do tipo de composição 

das lâminas de aço e são definidos para a freqüência em que foi feito o ensaio 

(f1). 
 

]/[5,1
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A evolução da relação das perdas magnéticas para os três tipos de perdas 

em função da freqüência (com indução magnética constante) pode ser observada 

qualitativamente no gráfico da Figura 2.2 [6]. 
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Figura 2.2 – Representação das componentes de perdas em função da freqüência. 
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Na Figura 2.3 são apresentados laços B(H) onde as perdas por histerese, 

por correntes de Foucault e excedentes são consideradas sucessivamente. Pode-

se observar que o laço B(H) torna-se cada vez maior com a inclusão das 

diferentes componentes das perdas [9,10,11], para um mesmo valor da indução 

máxima. 

 

(a)

(b)

B+

B-
H- H+0

0 (c)

 
 

Figura 2.3 – Laços B(H) típicos levando-se em conta:  
a) Somente as perdas por histerese.  

b) Perdas por histerese e correntes de Foucault.  
c) Perdas por histerese, correntes de Foucault e excedentes. 

 

2.3 – As Medições de Perdas Magnéticas em Campos 
Alternados 

 

As perdas magnéticas em campos alternados podem ser mensuradas por 

diversas formas. Dentre os aparelhos mais utilizados estão o quadro de Epstein, 

o Teste de Chapa Única (da tradução original do inglês de Single Sheet Tester –

SST) e os métodos utilizando transformador toroidal [12]. 

A norma brasileira NBR 5161 [13] e as principais normas internacionais 

indicam como referência o quadro de Epstein para a caracterização magnética de 

aço laminado [14]. O quadro de Epstein é um dispositivo eletromagnético 

sugerido por Burgwin em 1936 [15]. Este dispositivo possui dois enrolamentos. O 

enrolamento primário é responsável pela geração do campo magnético 

(excitação) e o enrolamento secundário pela medição do fluxo magnético 
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induzido. O quadro é composto por quatro bobinas, ligadas em série, para cada 

enrolamento (Figura 2.4 - a). As amostras de aço a serem caracterizadas são 

introduzidas no interior dos enrolamentos, formando o circuito magnético do 

dispositivo (Figura 2.4 - b). São exigidos no mínimo 12 amostras de aço para a 

realização dos ensaios [13]. 

 

a)   b)  
Figura 2.4 – O quadro de Epstein: a) vista superior, b) vista em corte. 

No quadro de Epstein as induções magnéticas variam com o tempo, mas 

são puramente alternantes no volume do aço, como pode ser notado na Figura 

2.5. 

a)  b)  

Figura 2.5 – Induções magnéticas no quadro de Epstein: 
a) Um quarto do quadro com a indicação geométrica dos pontos de análise. 

b) Os loci das induções nos três pontos indicados. 

As perdas nas lâminas são determinadas a partir de grandezas elétricas 

do circuito (método indireto). A corrente ip(t) do enrolamento primário de Np 

espiras é uma imagem do campo magnético H(t), enquanto a integral da tensão 

vs(t) induzida no secundário de Ns espiras é proporcional à indução B(t). As 

relações entre estas grandezas estão apresentadas nas equações 2.3 e 2.4, 

Enrolamentos 

Ferro
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onde S é a seção magnética efetiva, lm o caminho médio magnético e T o período 

do sinal. 

][)(1)( Tdttv
SN

tB
T s

s
∫=  (2.3) 

]/[)()( mAti
l
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tH p
m

p=  (2.4) 

O ensaio normatizado [13] utiliza instrumentos de medidas padrão para 

determinação das perdas: voltímetros de valor médio e eficaz, amperímetro de 

valor médio e wattímetro. Metodologias mais atuais utilizam as memórias de um 

osciloscópio ou uma placa de aquisição de dados, alojada em computador, para 

capturar os sinais da tensão e da corrente no tempo e, após tratamento 

numérico, calcular as perdas nas lâminas [9]. 

O método SST difere do teste de Epstein basicamente por utilizar apenas 

uma lâmina como amostra e poder empregar métodos diretos de medição de 

campo magnético [15,16]. 

O SST possui seu próprio circuito magnético, sendo a amostra colocada 

como complemento ou fechamento do circuito global. Dentre as configurações 

possíveis do SST [15] a mais recomendada pelas normas internacionais é a de 

duplo circuito magnético [17], apresentada na Figura 2.6. 

 

 
 

Figura 2.6 – O sistema SST 

Dos métodos citados anteriormente se destacam as seguintes 

características: 
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i) No quadro de Epstein a magnetização no circuito magnético é mais 

homogênia do que no SST; 

ii) As medições no SST são realizadas de maneira mais simples e mais 

rápida do que no quadro de Epstein. Todavia, são necessários vários ensaios no 

SST para se obter uma “característica média” do material; 

iii) O SST é um ensaio mais econômico em termos de custo da obtenção 

da amostra do que o Epstein, pois este utiliza uma maior quantidade de lâminas 

no teste; 

iv) No quadro de Epstein há uma sobreposição de lâminas nos seus 

vértices, a qual é ilustrada na Figura 2.7. Esta disposição das lâminas acarreta 

em um valor maior da massa total das amostras do que a massa efetivamente 

envolvida no processo de magnetização. 

 
Figura 2.7 – Detalhe da sobreposição das lâminas em um vértice do quadro de Epstein. 

Nos ensaios de caracterização, independente do dispositivo utilizado, a 

alimentação do circuito magnético deve ser feita de maneira criteriosa, de modo 

que as amostras sejam submetidas a uma indução puramente senoidal em, no 

mínimo, duas freqüências. O método mais usual de ensaio consiste em traçar a 

curva de evolução das perdas por período, em função da amplitude da indução, a 

uma freqüência bem baixa (inferior ou igual a 1Hz). Neste caso, as perdas 

medidas são consideradas devidas somente à histerese. Efetua-se um outro 

ensaio a uma freqüência mais elevada (por exemplo em 50Hz), onde o resultado 

da medição representa o somatório total da parcela das perdas dinâmicas mais 

as perdas por histerese.  

O valor das perdas dinâmicas é calculado da subtração entre o resultado 

obtido do ensaio em 50Hz do ensaio em 1Hz. As componentes constituintes das 

perdas dinâmicas, devida à corrente de Foucault e à excedente, são avaliadas 
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teoricamente dos resultados experimentais e sua correlação com a Equação 2.2 

[9,18].  

Uma estratégia de separação das perdas sem necessidade do ensaio em 

baixa freqüência foi proposta por Mendes [18]. O resultado obtido é similar ao 

método tradicional, com a vantagem de eliminar as dificuldades encontradas em 

experimentos envolvendo baixa freqüência, principalmente os níveis muito baixos 

das tensões envolvidas. 

 

 

2.4 – As Perdas Magnéticas em Campos Rotacionais 

 

A indução magnética na região das ranhuras de máquinas elétricas e em 

certas regiões de transformadores não possui um comportamento simplesmente 

alternante no espaço, mas também muda de direção em pontos diferentes no 

material magnético. Para ilustrar uma situação deste tipo é apresentado na 

Figura 2.8 um pólo de motor síncrono a ímãs permanentes [19]. Na parte “a” da 

figura são indicados, pela numeração, diferentes pontos de análise da indução 

magnética. Na parte “b” pode-se observar a distribuição do fluxo magnético com 

o motor em vazio, obtida através do programa EFCAD [20]. 

 

a)

ímã 

4s *

1s 
*

2s *
2r *

1r *

3s 
*

   b)  
 

Figura 2.8 - Um pólo de motor síncrono a ímãs permanentes: 
a) Estrutura com indicação dos pontos para análise da indução. 

b) Distribuição de fluxo magnético em vazio. 
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Nas figuras a seguir são mostradas as evoluções das componentes radiais 

e tangenciais (Br e Bt) da indução do estator em função da posição do rotor para 

um período elétrico, bem como o lócus das induções Bt×Br. [19] 

 

a)

 

Br 
Bt 

graus 

  b)  
 

Figura 2.9 - Induções magnéticas radiais e tangenciais no ponto 1s: 
a) Variação das induções em função da posição do rotor. 

b) Lócus das induções Bt×Br. 

 

 

a)

 

Br
Bt

graus 

  b)  
 

Figura 2.10 -  Induções magnéticas radiais e tangenciais no ponto 2s: 
a) Variação das induções em função da posição do rotor. 

b) Lócus das induções Bt×Br. 
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a)

 

Br 
Bt 

graus 

  b)  
 

Figura 2.11 -  Induções magnéticas radiais e tangenciais no ponto 3s: 
a) Variação das induções em função da posição do rotor. 

b) Lócus das induções Bt×Br. 

 

a)

graus 

Br 
Bt 

  b)  
 

Figura 2.12 -  Induções magnéticas radiais e tangenciais no ponto 4s: 
a) Variação das induções em função da posição do rotor. 

b) Lócus das induções Bt×Br. 

 

Das figuras anteriores, verifica-se que existem regiões na máquina onde o 

vetor indução magnética varia em amplitude e em direção. A indução é, portanto, 

alternante e rotativa ao mesmo tempo, podendo também apresentar harmônicas. 

Da observação destas figuras se pode concluir que os ensaios clássicos em 

campos alternados, por utilizar apenas uma fonte de campo, não são capazes de 

fornecer informações suficientes quanto à caracterização e avaliação das perdas. 

Assim, outros dispositivos de medição devem ser empregados. 

Em 1908 P. Weiss descreveu as perdas por histerese em um pedaço de 

lâmina de níquel magnetizada em um meio quase-estático [21]. Para um campo 

[T] [T]

[T] 
[T]

[T]

[T]
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magnético rotacional ele relatou um aumento de perdas com o incremento da 

indução, seguido de um decréscimo, atingindo o valor de perdas zero na 

saturação. 

F. Brailsford publicou um artigo em 1939 [6], em que se pôde distinguir o 

comportamento das perdas magnéticas alternante e rotativa. As perdas foram 

estimadas através da medição do torque em um disco de ferro silício de grãos 

orientados com 3,13% de silício, sob diversos níveis de campo magnético. Na 

Figura 2.13 é apresentado o resultado obtido por Brailsford para perdas 

alternante e rotativa. Nesta figura o comportamento das perdas pode ser 

comparado. As perdas alternantes aumentam regularmente com o campo até a 

saturação, já as perdas rotacionais alcançam um ponto máximo e começam a 

decrescer, atingindo o valor zero na saturação. 

 
 

Figura 2.13 – Comportamento das perdas alternante e rotacional em 
função do campo magnético [6]. 

Acredita-se que as razões para o comportamento das perdas apresentadas 

na Figura 2.13 é que, em baixas induções, as paredes dos domínios magnéticos 

do material devem se deslocar duas vezes mais para o caso de campos 

rotacionais do que para campos alternantes, ocorrendo, neste caso, 

aproximadamente o dobro de perdas para um mesmo nível de indução. Na 

saturação, quando sujeita a um campo rotacional, a amostra de material estaria 

saturada durante todo o processo de magnetização, não havendo mais 

deslocamento das paredes de domínio. Por outro lado, para magnetização 
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puramente alternante, o material atinge a saturação para uma direção, 

desmagnetiza e satura novamente para uma outra direção em cada ciclo, 

aumentando cada vez mais as perdas com o aumento do nível de indução [6]. 

Outros trabalhos envolvendo medição de torque na análise de perdas 

rotacionais foram publicados por W. Brix em 1982 [22] e Grahan et al. em 1985 

[23], obtendo-se resultados semelhantes ao de Brailsford. 

Métodos térmicos também foram utilizados para a avaliação de perdas 

rotacionais. Moses e Tomas em 1973 [24] usaram amostras de lâminas de ferro 

silício em forma de cruz, magnetizadas por quatro enrolamentos de excitação, 

alimentados por uma fonte em 50Hz. A indução magnética era analisada por 

duas bobinas, uma para cada eixo, contendo duas espiras no centro da amostra. 

As perdas foram medidas a partir da elevação de temperatura obtida por 

termopares. Fiorillo e Rietto em 1988 [25] e Moses em 1994 [26] também 

utilizaram métodos de medição de temperatura e compararam com o método de 

medição de torque, atingindo bons resultados. 

Nas décadas de 80 e 90 vários artigos foram publicados com propostas e 

análises de dispositivos para medição de perdas rotativas [27 a 37]. Uma 

característica comum nestes trabalhos foi a utilização de uma única chapa de 

material como amostra. Os ensaios nestes dispositivos passaram a ser 

denominados por Teste Rotacional de Chapa Única (da tradução do inglês de 

Rotational Single Sheet Tester - RSST). Com uma maior facilidade advinda da 

utilização de computadores e circuitos amplificadores mais precisos, sensores 

baseados na indução de tensão em bobinas puderam ser empregados para 

medição do campo e da indução magnética. Estes dispositivos tornaram-se 

usuais na comunidade científica, principalmente pela facilidade da preparação 

dos ensaios e da confecção da amostra. Neste aspecto se pode destacar: Sasaki 

et al. [27] utilizando amostras de lâminas do quadro de Epstein na configuração 

apresentada na Figura 2.14; Sievert [15] analisando vários tipos de sensores 

para a amostra de chapa única e comparando os resultados com os métodos 

térmico e do wattímetro; Sievert et al. [28] com núcleo na posição vertical, 

apresentado na Figura 2.15. 
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(a)      (b) 

 
Figura 2.14 – Ilustração esquemática do dispositivo desenvolvido por Sasaki et al. [27]. 

a) Disposição da bobina para medição da indução. 
b) Configuração completa. 

 

 
   

Figura 2.15 – Ilustração do dispositivo proposto por Sievert et al. com  
núcleos verticais [28]. 

 

Brix et al. propuseram em 1984 um quadro magnético disposto na posição 

horizontal com a amostra posicionada no centro do dispositivo [29]. O núcleo 

magnético do quadro era composto por um pacote de lâminas de aço elétrico 

com uma grande seção transversal, de modo que a relutância magnética do 

núcleo fosse muito menor do que a relutância da amostra. Duas bobinas de 

magnetização foram dispostas em cada eixo do dispositivo. A amostra era 

composta por uma só lâmina nas dimensões de 80mmx80mm. As grandes 

vantagens apresentadas para este dispositivo foram a homogeneidade do fluxo 

magnético no centro da amostra e a facilidade para sua confecção. A Figura 2.16 

é uma ilustração do dispositivo proposto por Brix et al. [29]. 
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Figura 2.16 – Ilustração do dispositivo proposto por Brix et al. com  

núcleos horizontais [29] 

Enokizono et al. [30] publicaram um artigo em 1990 expondo resultados 

experimentais de perdas rotacionais. A forma e as dimensões do núcleo do 

dispositivo e dos sensores utilizados se tornaram referência para os trabalhos 

posteriores. As principais mudanças apresentadas em relação ao quadro 

magnético proposto por Brix et al. [29] foram a possibilidade de ajuste do 

tamanho da amostra, tornando o dispositivo mais versátil, e no formato 

pontiagudo dos pólos do quadro. Um trabalho apresentado por Makaveev [31] 

indicou que este formato diminui o fluxo magnético que entra perpendicularmente 

na amostra, tornando também o resultado dos sensores mais precisos. A Figura 

2.17 é uma ilustração do dispositivo proposto por Enokizono et al. [30] com a 

posição dos sensores de campo e indução magnética. 

 
 

Figura 2.17 – Ilustração do dispositivo proposto por Enokizono et al. [30] 
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Nos ensaios de Enokizono et al. [30] foram utilizadas amostras de lâminas 

de aço-silício de grãos orientados com espessura de 0,27mm e de grãos não 

orientados com espessura de 0,5mm. A freqüência do sinal da fonte de campo foi 

estabelecida em 50Hz e o entreferro entre os pólos do quadro e a amostra era de 

0,105mm. A Figura 2.18 ilustra alguns resultados obtidos nos ensaios. 

 
 

Figura 2.18 – Resultados de medidas obtidas por Enokizono et al. [30]  
para grãos não orientados. 

 
 

Figura 2.19 – Resultados de medidas obtidas por Enokizono et al. [30] 
para grãos orientados. 
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Em relação ao cálculo das perdas magnéticas em campos rotacionais, 

considera-se que o campo magnético é uniformemente distribuído através da 

seção da amostra. As perdas magnéticas totais, neste caso, podem ser 

calculadas pela Equação 2.5 [35]. 
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dt
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→
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No plano da lâmina utilizada como amostra se consideram, geralmente, 

somente duas componentes dos vetores de indução e de campo. Deste modo, a 

equação anterior pode ser expressa por [35]: 
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2.5 – As medições de Perdas Magnéticas em Campos 
Rotacionais 

Tendo como base o dispositivo magnético apresentado por Enokizono et 

al. [30], vários artigos foram publicados com o objetivo de melhorar os resultados 

das medições, principalmente através do estudo de novas disposições e tipos de 

sensores de campo e indução. A análise de alguns aspectos envolvendo estes 

trabalhos será apresentada nas seções seguintes. 

 

2.5.1 – Os Sensores de Indução Magnética 

Uma alternativa para medição da indução magnética é o método das 

agulhas, o qual está baseado na patente de E. Czeija e R. Zawischa [21]. Neste 

método um par de agulhas é colocado em contato com a superfície da amostra, 

ver Figura 2.20 [29]. A tensão induzida entre os dois pontos da superfície pode 

ser medida, sendo proporcional à variação do fluxo magnético na amostra. Neste 

método assume-se que as correntes de Foucault são simétricas para as duas 

superfícies da lâmina. A assimetria no fluxo magnético causa erro nas medidas, 

além de não ser possível eliminar a medição da parcela de fluxo que passa pelo 

ar na região entre as duas agulhas. Outro problema deste método é a medição 

em altas induções, uma vez que a vibração da amostra nesta situação prejudica 
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o contato das agulhas com a mesma. Sua principal vantagem é o tempo reduzido 

de preparação do ensaio. 

 

 a)  

 
 
 
 
 

 
 
 

b)  
 

Figura 2.20 – Ilustração do sensor de indução no método das agulhas para  
uma direção do fluxo magnético [29].  
a) Disposição do sistema na amostra. 

b) Princípio da medição. 

O método tradicional para determinação da indução magnética é a 

utilização de bobinas sensoras. As bobinas podem envolver toda ou uma parte da 

amostra. A Figura 2.21 ilustra estas possibilidades. Da mesma forma que o 

método da agulha, o fluxo magnético variável no tempo induz uma tensão nos 

terminais da bobina, proporcional ao próprio fluxo que a originou, com uma 

resposta bastante linear. 

 

a) 

zy

x  b)  
 

Figura 2.21 – Ilustração dos sensores de indução no método das bobinas sensoras.  
a) Bobinas envolvendo toda a amostra.  

b) Bobinas envolvendo parte da amostra. 

Para o caso das bobinas envolvendo parte da amostra, quatro furos são 

feitos na sua região central para possibilitar a introdução das espiras das 

bobinas. Como os furos devem ter pequeno diâmetro para não alterar o circuito 

magnético da amostra (a confecção dos furos pode causar estresse mecânico no 
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material, além do próprio espaço de ar criado), são utilizadas poucas espiras nas 

bobinas. Conseqüentemente, o nível da tensão induzida é baixo, principalmente 

em baixas induções e baixas freqüências, necessitando de amplificadores de 

ganhos elevados para adequar o nível do sinal gerado com a escala dos 

instrumentos de medida. Sabe-se que amplificadores com altos ganhos não 

possuem boa linearidade, o que passa a ser um problema para este método. 

Outro inconveniente está na montagem das bobinas. Os condutores por serem de 

diâmetro muito pequeno são de difícil manuseio. Logo, de fácil ruptura durante a 

confecção das bobinas. 

Quando os sensores envolvem toda a amostra é possível confeccionar as 

bobinas com um número maior de espiras, minimizando as dificuldades para 

utilização de amplificadores e evitando a necessidade de furações na lâmina. 

Neste caso, as espiras das bobinas podem ser arranjadas em um material não 

magnético, sendo a amostra inserida em seu interior, tornando a elaboração do 

ensaio mais simples [33]. Alguns trabalhos científicos publicados não empregam 

este método, por considerarem que a homogeneidade do fluxo magnético é 

preservada somente na área central da amostra [30,38]. Espíndola [39] realizou 

uma simulação em 2D para analisar o efeito da distorção do fluxo magnético 

causada pela não uniformidade do entreferro. No teste o quadro foi projetado 

com um entreferro de 0,5mm, sendo a simulação realizada com um desvio de 

0,1mm no posicionamento da amostra. A Figura 2.22 apresenta o resultado da 

simulação, onde se observa que, mesmo com a falta de simetria do entreferro, o 

fluxo magnético é homogêneo tanto na região central da amostra quanto no seu 

prolongamento, onde comumente são dispostos os sensores de indução. 

 
a)              b) 

Figura 2.22 – Análise do fluxo magnético da amostra com desvio do entreferro [39]. 
a) Ilustração do posicionamento. 

b) Resultado da simulação. 
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No método das bobinas sensoras, a indução magnética, para uma direção, 

é calculada por (2.7), onde N é o número de espiras da bobinas sensora, AB a 

área de seção transversal desta bobina e V(t) a forma de onda da tensão 

induzida na bobina sensora. 

][)(1)( TdttV
AN

tB
T

B
∫=  (2.7) 

 

2.5.2 – Os Sensores de Campo Magnético 

Os sensores de campo funcionam usando a propriedade da conservação 

da componente tangencial do campo magnético na passagem de um material 

ferromagnético para o ar [11]. Para detectar esta componente, alguns tipos de 

sensores são utilizados: sensor de efeito Hall, um fino filme de permalloy 

magnetoresistivo, meio anel, bobina em forma de meio anel (bobina de 

Rogowski-Chattock) e o sensor denominado bobina-H, que consiste de algumas 

espiras enroladas em um núcleo de material não magnético [40]. Semelhante ao 

sensor de indução, neste último método é medida a variação da tensão nos 

terminais da bobina gerada pela variação do campo magnético no tempo. 

Os sensores com bobina-H são utilizados com mais freqüência devido à 

sua relativa facilidade de confecção. Outras vantagens deste tipo de sensor são 

sua excelente linearidade e imunidade à componente ortogonal do campo [40]. 

Para se obter medidas confiáveis, os sensores devem ser fixados o mais próximo 

possível da superfície da amostra. Além disso, devem ser dispostos na região 

central da lâmina, onde a densidade de fluxo magnético é mais uniforme [41]. 

Na Figura 2.23 é apresentada a disposição de um sensor tipo bobina-H 

sobre uma amostra de aço. Neste método, o campo magnético, para uma 

direção, é calculado pela Equação 2.8. 

 
 

Figura 2.23 – Disposição de um sensor tipo bobina-H sobre uma amostra de aço. 
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Para a detecção do campo em duas direções, dois métodos são 

empregados: duas bobinas-H dispostas uma abaixo e outra acima da amostra ou 

confeccionadas ortogonalmente no mesmo núcleo, como pode ser observado na 

Figura 2.24. Na primeira situação é necessário que se tenha um sistema de 

alinhamento adequado das bobinas, evitando que haja um erro de fase na 

medição das duas componentes de campo. No caso das bobinas estarem no 

mesmo núcleo, este problema é minimizado. Todavia, uma das bobinas estará 

mais distante da amostra, diminuindo a precisão na medição, já que o campo 

magnético tem um decréscimo de sua intensidade com o aumento da distância. 

a)       b)  

Figura 2.24 – Sensores de campo tipo Bobina-H. 
a) Confeccionadas para disposição acima e abaixo da amostra.  

b) Confeccionadas ortogonalmente no mesmo núcleo.  

Nakata et al. [42] e Tumanski [40] propuseram uma melhoria na medição 

do campo através da utilização de múltiplos sensores. O método baseia-se na 

linearidade da evolução do campo magnético com a distância entre as bobinas 

de campo e a amostra. Através de medições simultâneas entre dois ou mais 

sensores, pode-se estimar com maior precisão o valor do campo magnético no 

interior da amostra. A Figura 2.25 apresenta duas disposições possíveis para 

esta proposta. 

a)    b)  
 Figura 2.25 – Múltiplos sensores de campo tipo Bobina-H [40].  

a) Três sensores para a medição em uma direção.  
b) Par de sensores para medição em duas direções.  
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2.5.3 – O Efeito da Blindagem e do Entreferro 

Apesar da amostra no interior do quadro magnético estar sujeita a uma 

densidade de fluxo preponderante no plano xy, um estudo apresentado por 

Makaveev et al. [31] mostrou que, mesmo para quadros com pólos chanfrados, 

linhas de fluxo magnético penetram perpendicularmente na amostra (eixo z), 

gerando um erro na medição dos sensores de campo. Para minimizar esse efeito, 

Makaveev et al. sugerem que o entreferro entre a amostra e o quadro seja 

suficientemente grande, de modo que a homogeneidade do campo magnético no 

plano da amostra seja melhorada. Brix et al. [29] ilustraram a importância do 

entreferro comparando dois tipos de amostra: uma em forma de cruz e outra na 

forma quadrada. Na Figura 2.26, retirada desta referência, percebe-se que as 

linhas de fluxo magnético são mais homogêneas na amostra quando existe 

entreferro. 

 
 

Figura 2.26 – Linhas de fluxo magnético para diferentes formas de amostra [29]. 

Um outro artigo publicado por Makaveev et al. [32] apresentou as 

vantagens da utilização de lâminas para blindagem do fluxo magnético, acima e 

abaixo da amostra. A Figura 2.27 mostra um resultado de simulação na superfície 

de uma amostra, acima sem e abaixo com blindagem, para um campo alternante. 

Pode-se observar desta figura que na parte superior da amostra existe uma 

grande quantidade de linhas de fluxo disperso que penetram perpendicularmente, 

inclusive na sua área central. Já na parte inferior, a blindagem absorve o fluxo 

perpendicular, de maneira que não há linhas de fluxo penetrando no sensor de 

campo magnético nem na amostra. 
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Figura 2.27 – Simulação das linhas de campo para a situação com e sem blindagem [32]. 

A Figura 2.28 apresenta curvas B(H) experimentais nas situações sem e 

com blindagem obtidas por Makaveev et al. [32]. Pode-se verificar nesta figura 

que o campo magnético máximo medido para a situação sem blindagem é cerca 

de três vezes maior que a situação com blindagem. Este mesmo efeito foi 

observado por Espíndola [39], em cujo trabalho comparou os resultados oriundos 

do quadro de Epstein com a curva B(H) obtida no RSST para campos alternados. 

Ou seja, se não for utilizada blindagem no arranjo experimental as medições das 

perdas magnéticas não serão exatas e, com isto, a relação B(H) do material não 

será a real. 

 
 

Figura 2.28 - Laços B(H) experimentais, com e sem blindagem, para campos  
alternantes em 50Hz [32].  

Makaveev et al. [32] ainda afirmaram que com o uso da blindagem um só 

sensor de campo por eixo é suficiente para se obter medições precisas, não 

sendo necessário o emprego de múltiplos sensores.  
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2.5.4 – O Controle da Forma de Onda da Indução 

O ensaio para caracterização do material da amostra deve ser realizado 

controlando-se a forma de onda da indução magnética aplicada. Este cuidado 

mostra-se relevante uma vez que vários trabalhos demonstram uma modificação 

no valor das perdas magnéticas, para um mesmo valor máximo de indução, 

dependendo do conteúdo harmônico [9]. 

Para a criação de modelos matemáticos ou determinação de perdas, 

utiliza-se geralmente indução na forma senoidal, embora outros regimes possam 

ser empregados. De qualquer modo, a alimentação para sensibilização da lâmina 

da amostra deve ser capaz de fornecer indução em freqüência variável com 

controle da forma de onda da indução. Uma vez que várias partes constituintes 

do sistema têm comportamento não linear, tais como o acoplamento magnético 

entre os dois eixos do quadro e a própria não linearidade magnética dos 

materiais, esta característica é uma das principais dificuldades para construção 

de uma bancada de caracterização, principalmente quando a amostra é 

submetida a altas induções e/ou a baixas freqüências. 

Nakata et al. [43], utilizando um dispositivo para testes em chapa única, 

estudaram variações da aplicação de um indutor mútuo para compensação do 

fluxo disperso de modo a controlar a distorção do fluxo magnético na amostra. Os 

autores demonstraram no artigo que as características das impedâncias dos 

enrolamentos de excitação afetam a forma de onda da indução na lâmina sob 

teste. Este método, além de pouco eficaz nas altas induções, necessita de 

constante ajuste no valor da indutância mútua para formas de ondas arbitrárias. 

Fontes lineares de excitação (amplificadores lineares) são largamente 

utilizadas, mas os resultados advindos deste equipamento são pouco precisos 

nas altas induções. Este equipamento não possui uma característica dinâmica de 

resposta compatível com a necessidade da carga e, consequentemente, 

apresenta uma alta taxa de distorção harmônica no sinal de saída. 

Espíndola [39] apresentou resultados com loci de indução para alguns 

tipos de aço. Em seus experimentos eram empregados dois amplificadores 

lineares, sem uma malha fechada de controle. Pode-se verificar claramente dos 

seus resultados que os loci obtidos não são circulares, mesmo para induções 

muito aquém do ponto de saturação do material. 
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As fontes chaveadas, por possuírem sistemas de controle realimentado, 

são uma boa alternativa nesta aplicação. Todavia, a dificuldade para o emprego 

das fontes chaveadas reside no fato de escolher e projetar a malha de controle 

com uma resposta dinâmica rápida, aplicável para o caso em questão. Em se 

tratando do controle da fonte chaveada, a estrutura clássica da malha de 

realimentação é a do tipo PID (proporcional integral derivativo), aplicável 

predominantemente em cargas lineares. Este tipo de controle possui parâmetros 

constantes e é ajustado para pontos específicos de operação, não sendo, 

portanto, adequado para variações da carga. Em cargas não lineares, a 

componente derivativa é retirada de modo a obter um controle menos susceptível 

à oscilações, porém a resposta do controle passa a ser mais lenta. Como na 

caracterização de um material magnético é necessário variar a indução em nível 

e freqüência e, ainda, variar o tipo de material, tem-se uma carga bastante 

variável sob o ponto de vista da fonte de energia. Para este tipo de controle seria 

preciso alterar constantemente os seus parâmetros, algo bastante trabalhoso 

para ser efetuado na prática. 

Tendo como dispositivo de ensaios o quadro de Epstein, Batistela [9] 

implementou um inversor de tensão com malha de controle por modo deslizante 

[44,45] com possibilidade de variação da alimentação do dispositivo com 

freqüência variável de 1 a 400Hz. Por este tipo de controle ter um caráter 

preditivo, Batistela obteve bons resultados, inclusive para altas induções. 

Métodos digitais de controle também são utilizados em testes com chapa 

única, tanto em campos rotacionais como em campos alternantes [43 a 50]. Nos 

métodos digitais a forma de onda de tensão para excitação do sistema é gerada 

via computador e introduzida como referência em uma fonte linear. Inicialmente, 

uma forma de onda é previamente estimada através de um algoritmo a partir dos 

parâmetros elétricos e magnéticos do sistema e, posteriormente, injetada como 

fonte de alimentação. É conveniente que se saiba a priori a característica do 

material ensaiado para diminuir o tempo de processamento. A tensão induzida na 

amostra, correspondente ao fluxo desejado, é medida e comparada com um valor 

de referência. Através de uma equação de dependência é determinada a tensão 

de excitação da próxima iteração. Estes passos se repetem até que seja atingido 

um fator de forma pré-estabelecido. Os procedimentos do método despendem um 

longo tempo para a realização dos ensaios, pois muitas vezes os resultados das 

iterações não convergem. 
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Na literatura consultada, os métodos digitais não mostram resultados de 

ensaios quando o material começa a saturar, muito menos na região de 

saturação. Como este caso não é apresentado ou comentado, pode-se pôr em 

dúvida a eficácia deste método nesta região de operação. 

 

2.6 – Outras Considerações 

A partir da literatura se pode fazer ainda as seguintes considerações em 

relação ao teste rotacional com chapa única: 

i) Diversas geometrias e dimensões para o quadro magnético, amostra e 

sensores foram publicadas, todas elas mostram resultados promissores; 

ii) Em 1996 foram comparados resultados experimentais entre seis 

laboratórios europeus [51]. Os autores do trabalho sugerem que novas pesquisas 

sejam realizadas antes que normas regendo ensaios com RSST sejam definidas; 

iii) O RSST parece ser o mais versátil e adequado método para o estudo 

de perdas rotacionais. 
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3 – Aparato Experimental 

 

Neste capítulo são descritas as partes integrantes da bancada RSST 

(Rotational Single Sheet Tester) implementada neste trabalho, apresentadas 

suas principais características e especificações técnicas. 

 

3.1 – Considerações Iniciais 

Para alcançar os objetivos propostos no trabalho, definiu-se que o sistema 

a ser empregado na bancada experimental para o estudo das perdas magnéticas 

em campos rotacionais fosse o RSST, sendo o quadro magnético alimentado por 

um conjunto de inversores de freqüência com malhas de controle realimentadas. 

Inicialmente, avaliou-se que o quadro magnético projetado e utilizado por 

Espíndola [39] durante a realização de seu mestrado no GRUCAD, em virtude da 

sua disponibilidade e características construtivas, integraria a bancada em 

desenvolvimento. As atenções, a partir desta definição, passaram a ser quanto a 

alimentação elétrica do RSST, ao controle da forma de onda da indução e ao 

sistema de aquisição e tratamento de dados. 

Com o objetivo de definir os requisitos principais para o sistema de 

alimentação do RSST, bem como realizar uma análise preliminar do desempenho 

de um controle realimentado, foi realizado um teste empregando um conversor 

existente no GRUCAD [9] desenvolvido para o emprego no quadro de Epstein. 

Neste ensaio, uma lâmina de teste foi colocada no interior do quadro magnético e 

o conversor forneceu energia para uma direção de magnetização. Os resultados 

experimentais apontaram que a topologia e o tipo de controle utilizado por 

Batistela [9,44] poderiam ser empregados com sucesso no RSST, desde que 

algumas modificações para suprir as particularidades e exigências para a 

alimentação do quadro do RSST fossem implementadas. 

Dos ensaios preliminares se puderam definir as seguintes características 

da alimentação elétrica do quadro magnético: 

i) Duas fontes de alimentação sincronizadas em relação à forma de onda 

de saída; 

ii) Fontes isoladas galvanicamente da rede comercial; 
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iii) Capacidade para impor formas de onda de tensão independentes para 

cada eixo de magnetização, tanto em forma quanto em amplitude e freqüência; 

iv) Existência de uma malha de “terra” geral para medição e controle; 

v) Baixa impedância de saída, com possibilidade de alterar os filtros de 

saída em função da freqüência aplicada no quadro; 

vi) Nível contínuo na tensão de saída próximo a valores nulos; 

vii) Operação em uma larga faixa de freqüências; 

viii) Capacidade de corrente na saída adequada, com impedância de saída 

a menor possível, permitindo a possibilidade de redimensionamento ou utilização 

de outros quadros magnéticos; 

ix) Rápida resposta dinâmica e robustez do controle, adaptado para as 

características da carga; 

x) Modular para que possa sofrer intervenções ou mudanças futuras; 

xi) Circuito de potência com 3.000VA de capacidade em cada fonte, pois 

em operação na região de saturação a potência instantânea fornecida ao sistema 

é elevada. 

 
 

Figura 3.1 – Diagrama de blocos de uma fonte do sistema para o RSST. 

 

A Figura 3.1 mostra o diagrama de blocos de uma das fontes do sistema, 

alimentando um eixo do quadro magnético. Como pode ser notado, há vários 

pontos de referências distintos ou “terras”: terra da rede comercial, terra da fonte 

de alimentação em tensão contínua do inversor e terra de controle e medição.  

Com este arranjo se podem referenciar as duas fontes em um mesmo ponto, 
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possibilitando que os sinais de cada eixo sejam sincronizados. Além disso, os 

sinais provenientes dos sensores de campo e indução podem ser conectados 

diretamente na placa de aquisição/medição com um ponto comum, garantindo 

segurança ao sistema. 

Nas seções seguintes se especifica cada bloco funcional do diagrama 

mostrado na figura anterior. 

 

3.2 - Bloco Funcional 1: Rede de Energia Comercial 

O sistema é energizado a partir da rede de energia elétrica comercial, 

alimentação trifásica, 380V e 60Hz. Um disjuntor trifásico termo-magnético é 

utilizado na entrada da alimentação para proteção contra curto-circuito e 

sobrecorrente do sistema. 

 

3.3 - Bloco Funcional 2: Quadro Magnético 

O quadro magnético é composto da sobreposição de lâminas de aço-silício 

tipo E230 da ACESITA [52], de 0,5mm de espessura [39]. A excitação é obtida 

por intermédio de dois conjuntos de bobinas, nas direções x e y. Estas bobinas 

são alimentadas por duas fontes elétricas independentes. Um controle das fontes 

de alimentação propicia a geração do fluxo magnético desejado no teste. A  

Figura 3.2 ilustra a geometria e as dimensões do quadro magnético em questão. 

 

        
Figura 3.2 – Ilustração do quadro magnético, vista superior e lateral.  

(Cotas em milímetros) 
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A Figura 3.3 apresenta a fotografia do quadro magnético utilizado na 

bancada de testes. 

 

Figura 3.3 – O quadro magnético. 
 

 

O quadro magnético foi projetado para operar com alimentação entre as 

freqüências de 1 a 400Hz, tensão de pico máxima de 100V e corrente máxima de 

30A [39]. 

 

3.4 - Bloco Funcional 3: Inversor de Tensão 

O inversor de tensão tem a configuração ponte completa, apresentada na 

Figura 3.4. Os interruptores empregados são do tipo IGBT (código 50MT060WH 

da empresa International Rectifier) com as seguintes características: corrente 

média de 50A, corrente de pico de 150A, tensão máxima de 600V. 
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Figura 3.4 – Topologia do inversor (configuração ponte completa). 

Na figura anterior S representa os interruptores IGBT, D os diodos de roda 

livre, Cs as capacitâncias parasitas dos interruptores, Lf e Cf são elementos do 

filtro de saída do inversor e E corresponde à tensão média no capacitor Ce da 

Figura 3.5. 

Os interruptores comutam em uma freqüência fixa de 80kHz em modulação 

do tipo PWM (Pulse Wide Modulation). 

Houve alguns problemas com ruídos na primeira montagem das fontes. 

Inicialmente, escolheu-se utilizar IGBTs individuais, a fim de se poder utilizar 

transistores com maior rapidez na comutação. As proteções dos transistores no 

drive de comando atuavam aleatória e freqüentemente.  Resolveu-se, após 

estudos e análises do inversor, constituir a ponte inversora com módulos de 

IGBTs. A descoberta de que o inversor construído com IGBTs individuais não era 

adequada levou um intervalo de tempo considerável. Devido ao sistema ser em 

malha fechada, julgava-se que o problema advinha da malha de controle, gerado 

pelos ruídos típicos do sistema. Após uma série de modificações no circuito 

eletrônico da malha, constatou-se que o problema não estava sendo resolvido ou 

até mesmo atenuado. Por fim, verificou-se que as indutâncias parasitas 

existentes entre as ligações dos IGBTs no primeiro protótipo geravam 

sobretensões e/ou ruídos que se propagavam, falseando comandos de gatilho, 

chegando às vezes a produzir curtos de braço. Devido às proteções 

implementadas, o sistema desligava, não danificando nenhum componente do 

circuito eletrônico. 

Para retirar possíveis níveis de tensão contínua na saída do inversor (não 

eliminadas pela malha de controle) foi inserido um transformador isolador no 

circuito entre a saída do inversor e o quadro magnético. Apesar de se incluir uma 
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impedância elétrica entre a fonte de tensão e o quadro magnético, devido a ação 

do controle, ela não interfere significativamente no desempenho dinâmico do 

sistema. 

 

3.5 - Bloco Funcional 4: Filtro de Saída 

O filtro de saída do inversor de tensão é composto por uma indutância (Lf) 

de 40µH e por uma capacitância (Cf) de 146µF. Como o valor do indutor 

escolhido possui um valor relativamente baixo em vista das impedâncias 

parasitas da fonte E até o quadro magnético, por exemplo, para a freqüência de 

operação de 150Hz a impedância é de 9,5mΩ, ele praticamente não limita a 

evolução da corrente no circuito. Deste modo, há uma transferência adequada de 

potência da fonte E para o quadro magnético na região de saturação da amostra 

em teste, o ponto mais crítico de funcionamento do sistema. 

 

3.6 - Blocos Funcionais 5 e 6: Fonte de Tensão Contínua 

A estrutura da fonte de tensão contínua de alimentação de cada inversor  

pode ser vista na Figura 3.5. Ela é composta por uma ponte retificadora trifásica 

do tipo Graetz (D1 a D6), com um filtro constituído por um banco de capacitores 

(Ce), totalizando 17mF, e por um indutor (Le) de 28mH. As fontes de tensão V1 a 

V3 representam a rede de energia, o autotransformador regulável (descrito no 

Item 3.8) e o transformador isolador (descrito no Item 3.7). 

 

 
Figura 3.5 – Topologia do retificador (configuração ponte de Graetz). 
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3.7 - Bloco Funcional 7: Isolamento Galvânico 

Para isolar galvanicamente o sistema da rede comercial se empregou, 

para cada retificador, um transformador trifásico com as seguintes 

características: tensão de entrada nominal de 380V, tensão de saída 127V, 

esquema de ligação triângulo/estrela. 

 

3.8- Bloco Funcional 8: Autotransformador Regulável 

A tensão de alimentação do quadro magnético varia em função da 

freqüência de operação e da amplitude da indução na amostra. Esta variação é 

obtida da associação de dois fatores: primeiro por meio da mudança do nível do 

sinal de referência, o qual altera o índice de modulação da técnica PWM e, 

segundo, pela mudança do valor da tensão contínua na entrada do inversor. Esta 

última operação é executada manualmente, através do ajuste de um 

autotransformador regulável em tensão, que interliga o transformador isolador e a 

rede comercial. 

O autotransformador empregado na bancada é trifásico, tensão de entrada 

de 380V, corrente máxima de saída de 6,3A, podendo variar a tensão de saída 

entre 0 a 413V. 

 

3.9- Bloco Funcional 9: Controle do Inversor 

As malhas de controle dos inversores de tensão têm por objetivo garantir a 

geração do fluxo magnético desejado no teste. O controle empregado na malha é 

do tipo não linear, especificamente o controle por modo deslizante [44,45] no que 

diz respeito a sua topologia, acrescido de uma malha com controlador PI 

(Proporcional Integral) e somando-se o próprio sinal de referência ao sinal de 

controle. A malha de controle é do tipo analógica, sendo seu projeto baseado em 

Batistela [9]. Seu diagrama de blocos é apresentado na Figura 3.6. 
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Figura 3.6 – Diagrama de blocos da malha de controle. 

A malha de controle implementada proporciona que a forma de onda da 

indução na lâmina em teste esteja em fase com a referência, algo incomum em 

termos de sistemas controlados. Ela propicia que as fontes elétricas tenham as 

seguintes características: 

i) Operação em freqüência fixa de comutação dos interruptores de 

potência dos inversores; 

ii) Poder seguir formas de onda arbitrárias criadas pelo usuário; 

iii) Alimentar cargas lineares ou não lineares, regulando a amplitude 

instantânea da tensão de saída; 

iv) Baixo conteúdo harmônico da tensão de saída quando operando com 

forma de onda senoidal pura; 

v) Poder variar em freqüência e amplitude a forma de onda da tensão de 

saída. 

O método de controle utilizado na bancada se diferencia dos demais 

métodos encontrados na literatura por possuir uma resposta eficaz, capaz de 

manter a forma de onda da indução magnética na amostra com baixo conteúdo 

harmônico (para induções senoidais), como poderá ser observado nos resultados 

experimentais dos capítulos seguintes. Esta é uma vantagem importante em 

relação aos métodos digitais, pois não depende de cálculos para ajustar a forma 

de onda da tensão de alimentação do quadro magnético. Sabe-se que devido a 

não linearidade do sistema, para determinados pontos de operação o  

procedimento de cálculo nos métodos digitais não atinge uma solução adequada. 

Além disso, o método implementado não necessita de nenhum ajuste circuital na 

malha para geração de formas de onda arbitrárias, variação de freqüência ou 
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amplitude, simplesmente muda-se o sinal de referência para o controle. Esta 

característica do sistema permite que os ensaios sejam realizados com maior 

rapidez que os métodos digitais de controle. 

 

3.10- Bloco Funcional 10: Sinal de Referência 

Os sinais de referência para as malhas de controle dos inversores provêm 

da placa modelo PCI-4451 da National Instruments residente em um 

microcomputador. Foram desenvolvidos Instrumentos Virtuais (VI – Virtual 

Instruments) no ambiente LabVIEW [53] para ajustar a forma, o valor da 

amplitude e a freqüência do sinal de referência. 

O ajuste dos sinais de referência para os dois inversores de tensão em 

relação à forma de onda, amplitude e defasagem é realizado de maneira 

independente. Porém, os sinais são sincronizados entre si. 

 

3.11- Bloco Funcional 11: Comando dos Interruptores 

Os sinais de comando para os interruptores do inversor, provenientes da 

placa de controle, são condicionados por placas da Semikron, modelo 

SKHI23/12, as quais isolam inversor e controle, e possuem um sistema de 

proteção de sobretensão e sobrecorrente nos interruptores. 

 

3.12 - Bloco Funcional 12: Sistema de Aquisição de Dados 

O sistema de aquisição e tratamento de dados da bancada RSST está 

baseado na aplicação de programas numéricos utilizando Instrumento Virtual (VI) 

[54], desenvolvidos no ambiente LabVIEW, para obter valores instantâneos de 

indução e campo magnético, calcular as perdas envolvidas por ciclo elétrico e 

apresentar os resultados graficamente, de maneira rápida, clara e precisa. 

O Instrumento Virtual implementado está residente em um computador 

pessoal, com a plataforma LabVIEW versão 7.1. O computador é equipado com 

uma placa de aquisição/geração de dados da National Instruments PCI 6251, a 

qual possui uma taxa máxima de amostragem de 1,25 MS/s (Mega Samples per 

second). 
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O software na plataforma LabVIEW pode ser compreendido como se 

possuísse duas partes distintas: a aquisição dos sinais de tensão provenientes 

dos sensores de indução e campo magnético da bancada e o tratamento dos 

dados adquiridos. 

A configuração da aquisição dos sinais requer que os canais de entrada da 

placa tenham seus ganhos (escalas) configurados individualmente. O modo de 

conexão utilizado para os sinais foi de terra comum, devido às conexões físicas 

da bancada experimental. 

Os dados adquiridos ficam armazenados como vetores de números 

decimais, correspondentes aos níveis de tensão dos diferentes canais de entrada 

da placa. Também são armazenados os intervalos de tempo entre duas medidas 

para a devida correspondência com o sinal real. 

Na Figura 3.7 são apresentados os campos de controle do usuário do VI e 

um exemplo dos resultados dos cálculos das grandezas magnéticas. As saídas 

gráficas deste VI são mostradas nos capítulos seguintes. 

 

 
 

Figura 3.7 – Campos de controle do usuário e resultados dos cálculos das grandezas 
magnéticas e de perdas em uma amostra. 
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3.13 - Bloco Funcional 13: Sensores de Indução e Campo 
Magnético 

Os sensores de indução e campo magnético foram escolhidos e 

desenvolvidos baseados nos aspectos levantados na Seção 2.5. A seguir, 

traçam-se detalhes destes sensores. 

 

3.13.1 – Os Sensores de Indução Magnética 

A função dos sensores de indução magnética na bancada RSST 

implementada vai além do fornecimento de informações do nível e da forma de 

onda da indução para o sistema de aquisição. A tensão induzida nestes sensores 

também integra a malha de controle dos inversores, sendo responsável por 

prover uma imagem da variável a ser controlada (sinal Vo(t) da Figura 3.6). 

Sendo assim, definiu-se utilizar o método das bobinas sensoras para 

determinação da indução magnética. Este método, por apresentar níveis de 

tensão induzida maiores que o método da agulha, para um mesmo valor de 

indução magnética, está menos sujeito a interferência e ruído que poderiam 

comprometer o funcionamento da malha de controle. 

Outro fator motivador para não utilizar o método das agulhas é que sua 

aplicação traz mais dificuldades para o emprego de lâminas para blindagem do 

fluxo magnético disperso. 

Na montagem das bobinas sensoras se optou por confeccioná-las, em uma 

mesma amostra, de duas maneiras distintas: bobinas envolvendo toda e também 

parcialmente a lâmina a ser testada. Deste modo, por se tratar de uma bancada 

em desenvolvimento, teve-se a possibilidade de analisar os resultados dos 

ensaios para estas duas maneiras de execução das bobinas. 

Em cada eixo de magnetização foram enroladas bobinas sensoras com as 

seguintes características:  

i) Bobina externa: 100 espiras de fio esmaltado com seção de 0,0040mm2 

(41 AWG) em torno da amostra; 

ii) Bobina interna: 10 espiras de fio esmaltado com seção de 0,0025mm2 

(43 AWG) na região central da amostra, em dois furos de 0,5mm de diâmetro 

distanciados entre si de 40mm. 
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A Figura 3.8 apresenta a disposição das bobinas sensoras implementadas 

em uma lâmina com dimensões de 80x80mm2. Nesta figura as bobinas internas 

não podem ser notadas porque foram sobrepostas pelas bobinas externas. 

 

 
 

Figura 3.8 – Disposição das bobinas sensoras de indução na amostra. 

 

Para adaptar o nível das tensões induzidas nas bobinas com as tensões 

envolvidas na malha de controle, foram montados circuitos eletrônicos que 

podem ser tanto atenuador como amplificador de sinais. Com o aumento da 

freqüência e/ou indução na amostra, o valor das tensões induzidas nas bobinas 

são maiores, necessitando que este sinal seja atenuado. No sentido inverso este 

efeito é oposto, necessitando a amplificação do sinal. 

 

3.13.2 – Os Sensores de Campo Magnético 

Para aplicação na bancada RSST os sensores de campo magnético foram 

confeccionados no mesmo núcleo e dispostos ortogonalmente entre si. As 

espiras do sensor foram enroladas com fio de seção 0,0040mm2 (41 AWG), em 

uma base quadrada de fenolite nas dimensões de 40x40mm2 de lado e 1,55mm 

de espessura.  

Por se tratar de sensores construídos no mesmo núcleo, a área da bobina 

interna (mais próxima do núcleo) é menor que a área da bobina mais externa. 

Para que o nível da tensão induzida nas duas bobinas fosse o mesmo, o número 

de espiras de cada bobina foi calculado de maneira a compensar a diferença de 

suas áreas internas. Deste modo, a bobina interna (utilizada para o eixo y) foi 
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enrolada com 1.800 espiras e a bobina externa (para o eixo x) com 1.300 espiras. 

A Figura 3.9 apresenta os sensores de campo montados. 

 

 

Figura 3.9 – Disposição das bobinas sensoras de campo magnético. 

 

Devido à acomodação das espiras umas sobre as outras, a área interna da 

bobina se tornou uma variável de determinação imprecisa. Conseqüentemente, 

para aplicação direta da Equação 2.7 na determinação do campo magnético é 

necessário encontrar um fator de ajuste para o sensor. A calibração destes 

sensores foi realizada empregando-se um solenóide de referência, cuja técnica é 

apresentada no Anexo. 

Na aplicação no RSST a tensão nos sensores de campo é de baixa 

amplitude, principalmente para baixas induções e/ou freqüências (ordem de micro 

ou poucos milivolts). Para estes casos foi projetado um amplificador para cada 

eixo de campo, empregando circuitos integrados operacionais de alta precisão 

(amplificadores de instrumentação), que servem de pré-amplificadores para o 

sistema de aquisição. O ganho de tensão destes amplificadores pode ser 

ajustado entre os valores de 1 a 1.000 V/V. 

Os circuitos de amplificação de sinais e suas conexões elétricas foram 

planejados para atenuar ruídos da melhor forma possível. De outro modo, o nível 

de ruído seria da mesma ordem de grandeza do sinal a ser medido. 

 



 

 

44

3.14 – Aspectos Gerais 

A Figura 3.10 apresenta uma fotografia da montagem das placas 

constituintes do circuito inversor. 

 

 

 
 

Figura 3.10 – Aspecto geral da montagem das placas constituintes do circuito inversor. 

 

 

A bancada RSST está montada como mostra a Figura 3.11, sendo a 

seguinte disposição dos equipamentos (de baixo para cima): Na primeira 

prateleira estão as duas fontes de corrente contínua e os transformadores 

isoladores, na segunda os dois auto-transformadores e na terceira os circuitos 

inversores com suas respectivas placas de controle e comando. Na parte 

superior encontram-se o quadro magnético e os amplificadores dos sinais de 

indução e campo magnético. 

controle
comando 

inversor 

transformadores isoladores 
para retirada do nível CC 

fonte auxiliar 
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Figura 3.11 – Bancada RSST. 



 

 

46

4 – Análise da Influência da Blindagem 

 

Neste capítulo é estudada a influência da blindagem na bancada RSST. 

Uma análise é realizada em campos alternantes de modo que os resultados 

possam ser comparados com os obtidos no teste padrão no quadro de Epstein. 

Também são realizadas simulações numéricas e avaliados resultados 

experimentais em campos rotacionais. 

 

4.1 – Resultados Experimentais em Campos Alternantes para 
Variação da Distância da Blindagem 

Para validação de todo o sistema desenvolvido para o RSST se fez 

necessária uma comparação dos resultados obtidos nesta bancada de testes com 

um equipamento padrão. Como o método RSST ainda não é normatizado e não 

havia outro dispositivo para ensaios em campos rotacionais disponível, optou-se 

por comparar os resultados em campos alternantes oriundos do RSST com as 

medições efetuadas usando o teste de Epstein. 

Conforme apresentado no Item 2.5.3, o efeito da blindagem da amostra 

para o RSST foi observado, evidenciando-se a necessidade da utilização deste 

acessório em todas as medições. Porém, observou-se ainda que os laços B(H) 

obtidos via RSST em campos alternantes modificam sua forma em função da 

distância entre a blindagem e a amostra de aço ensaiada. Este fenômeno ainda 

não havia sido comentado na literatura [55]. 

Amostras de lâminas do mesmo tipo de aço, material E230 – grãos não 

orientados – FeSi 3% [52], espessura de 0,5mm e pertencentes ao mesmo lote 

de fabricação foram testadas no RSST e no quadro de Epstein na freqüência de 

50Hz, com a indução máxima de 1T. No quadro de Epstein foram realizados 

ensaios distintos: lâminas com corte (estampagem) no sentido longitudinal ao de 

laminação e no sentido transversal. No RSST foram realizados ensaios com 

somente um eixo de magnetização em funcionamento para medições no sentido 

transversal de laminação e outros ensaios para o sentido longitudinal. A amostra 

neste caso tinha dimensões de 80x80mm2. 

Face ao exposto anteriormente, realizaram-se medidas de campo 

magnético em quatro situações distintas: sem a utilização de blindagem e para 
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uma distância entre a blindagem e a amostra de 5,9; 7,3 e 10,3mm. Detalhes da 

montagem são apresentados na Figura 4.1, onde: a - espessura da amostra 

(0,5mm); b - espessura do sensor de indução e do isolamento dos condutores 

(0,3mm); c - altura total do sensor de campo (5,59mm) e  d - distância total entre 

a amostra e a blindagem (variável). 

 
 

Figura 4.1 – Detalhes da montagem para variação da distância da blindagem. 

 

A lâmina de blindagem era do mesmo material da amostra e foi 

posicionada com a mesma orientação de laminação desta última. 

Nas figuras 4.2 a 4.6 são apresentados os laços B(H) nos dois sentidos de 

laminação da amostra (sentido longitudinal à esquerda e transversal à direita das 

figuras) dos ensaios com variação da distância da blindagem. Nestas figuras o 

lócus obtido via quadro de Epstein é representado em vermelho. Para verificar a 

repetitividade dos ensaios no RSST foram realizadas quatro série de testes, 

sendo cada série composta de três medições distintas para cada distância da 

blindagem (traços azul, verde e laranja das figuras). Neste conjunto de medições 

a amostra e a lâmina de blindagem foram retiradas e recolocadas no quadro 

magnético. Os entreferros entre os pólos do dispositivo magnético e cada uma 

das bordas da amostra foram ajustados para que tivessem as mesmas 

distâncias. 

A diferença entre as quatro séries de testes constitui-se no fato que, para 

cada uma delas, os sensores de campo foram retirados e posteriormente 

recolocados, sendo que em duas séries os sensores foram posicionados girando 

o seu eixo em 90º. Esta manobra teve a finalidade de avaliar se haveria diferença 

nas medidas de campo magnético em função de um dos sensores estar mais 

distante da lâmina do que o outro, como explanado na Seção 3.13.2. 

A situação sem blindagem é apresentada apenas para uma série de 

medidas. Dá-se a ela apenas um caráter ilustrativo, pois o efeito das medições 

de campo para este caso já são conhecidos. 
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Distância da blindagem de 5,9mm: 
 

a)
 
 

b)
 
 

 
Distância da blindagem de 7,3mm: 

 

a)
 

b)
 
 

 
Distância da blindagem de 10,3mm: 

 

a)
 

b)
 

 
Figura 4.2 – Laços B(H) para a primeira série de testes. 

a) Sentido longitudinal de laminação. 
b) Sentido transversal de laminação. 
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Distância da blindagem de 5,9mm: 
 

a)
 
 

b)
 
 

 
Distância da blindagem de 7,3mm: 

 

a)
 

b)
 
 

 
Distância da blindagem de 10,3mm: 

 

a)
 

b)
 

 
Figura 4.3 – Laços B(H) para a segunda série de testes. 

a) Sentido longitudinal de laminação. 
b) Sentido transversal de laminação. 
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Distância da blindagem de 5,9mm: 
 

a)
 
 

b)
 
 

 
Distância da blindagem de 7,3mm: 

 

a)
 

b)
 
 

 
Distância da blindagem de 10,3mm: 

 

a)
 

b)
 

 
Figura 4.4 – Laços B(H) para a terceira série de testes. 

a) Sentido longitudinal de laminação. 
b) Sentido transversal de laminação.
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Distância da blindagem de 5,9mm: 
 

a)
 
 

b)
 
 

 
Distância da blindagem de 7,3mm: 

 

a)
 
 

b)
 

 
Distância da blindagem de 10,3mm: 

 

a)
 

b)
 

 
Figura 4.5 – Laços B(H) para a quarta série de testes. 

a) Sentido longitudinal de laminação. 
b) Sentido transversal de laminação. 
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Sem blindagem: 

 

a)  b)  

 
Figura 4.6 – Laços B(H) para a primeira série de testes.  

a) Sentido longitudinal de laminação.  
b) Sentido transversal de laminação. 

 

Dos ensaios realizados observa-se que o teste sem blindagem apresenta 

as maiores discrepâncias. Na Figura 4.6 se pode notar que o campo magnético 

medido pelo sensor na bancada RSST é bem maior que o obtido pelo quadro de 

Epstein, fenômeno já descrito na literatura. 

Aplicando a lâmina de blindagem no sistema RSST os loci B(H) ficaram 

mais próximos dos encontrados utilizando o quadro de Epstein, bem como os 

valores das perdas magnéticas medidas nos dois dispositivos de testes.  

Nos resultados dos ensaios apresentados nas figuras 4.2 a 4.5 não se 

pode inferir qual a distância adequada entre a blindagem e amostra de modo que 

o RSST apresente o resultado mais preciso. Esta análise pode ser ratificada 

observando-se os resultados para a distância de 10,3mm, na qual foram obtidas 

boas concordâncias na terceira e quarta série de testes para ambos os sentidos 

de laminação. Em contrapartida, para a primeira e segunda série de testes estes 

resultados não se repetiram. 

Algumas vezes a execução de uma série de testes trouxe melhoria nas 

medições para um sentido de laminação e piora para o outro. Isto pode ser 

observado em uma comparação entre as figuras 4.2 e 4.4 para a distância de 

5,9mm. Em outras medições o simples reposicionamento da blindagem e da 

amostra no dispositivo trouxe mudanças significativas na forma do lócus, o que 

pode ser observado claramente na Figura 4.3 para a distância de 10,3mm no 

sentido transversal de laminação. 
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Uma das dificuldades no desenvolvimento das séries de testes é 

posicionar os sensores de campo magnético exatamente ortogonais em relação à 

amostra. Entre si os sensores são perfeitamente ortogonais, já que foram 

construídos em um mesmo núcleo. O posicionamento inadequado do sensor de 

campo poderia ser uma das fontes de erro nas medições. Todavia, observa-se 

em alguns resultados que este erro deveria ser sistemático. Ou seja, se o erro é 

maior para um sentido de laminação este efeito deveria ser notado para todas as 

variações de distância daquela série de testes, o que não ocorreu na prática. 

Na investigação sobre a repetitividade do sistema se pode concluir que o 

RSST é bastante sensível à pequenas variações de entreferro e ao 

posicionamento da amostra. Todavia, se a amostra é fixada no dispositivo e 

somente a lâmina de blindagem é deslocada, o valor do campo magnético 

medido é cada vez maior na proporção em que a distância entre a blindagem e a 

amostra aumenta. Os resultados experimentais desta análise podem ser 

observados nas figuras 4.7 e 4.8 para as distâncias de 7,3; 10,3 e 13,3mm. 

 

 
 

Figura 4.7 – Laços B(H) obtidos no quadro de Epstein e no RSST para  
diferentes distâncias da blindagem 

(direção longitudinal). 
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Figura 4.8 – Laços B(H) obtidos no quadro de Epstein e no RSST para  
diferentes distâncias da blindagem 

(direção transversal). 

As figuras a seguir mostram o efeito da variação da distância da blindagem 

na medição das perdas magnéticas na amostra em função da indução magnética. 

Na Figura 4.9 são apresentados os resultados para a direção longitudinal de 

laminação e na Figura 4.10 para direção transversal. 
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Figura 4.9 – Perdas magnéticas medidas pelo quadro de Epstein e  
no RSST para diferentes distâncias da blindagem 

(direção longitudinal). 
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Figura 4.10 – Perdas magnéticas medidas pelo quadro de Epstein e 
no RSST para diferentes distâncias da blindagem 

(direção transversal). 

Dos ensaios realizados com medição de potência no RSST e apresentados 

nas figuras anteriores, verifica-se que há um acréscimo no valor das perdas 

medidas na lâmina na medida em que a blindagem se afasta da amostra. Este 

efeito é mais facilmente perceptível visualmente na Figura 4.9, porém acontece 

para ambas as direções de laminação como pode ser observado na Tabela 4.1. 

 

Tabela 4.1 – Perdas magnéticas para diferentes distâncias da blindagem no RSST e  
no quadro de Epstein. 

 
Perdas Magnéticas (W/kg) 

Sentido Longitudinal Sentido Transversal 
RSST para diferentes 

distâncias de blindagem 
RSST para diferentes 

distâncias de blindagem 
B(T) 

7,3mm 10,3mm 13,3mm 
Epstein 

7,3mm 10,3mm 13,3mm 
Epstein 

1,4 2,162 2,245 2,325 2,236 2,370 2,421 2,479 2,433 
1,3 1,861 1,935 2,010 - 2,025 2,100 2,100 - 
1,2 1,604 1,677 1,720 1,646 1,724 1,786 1,782 1,798 
1,0 1,137 1,197 1,233 1,172 1,247 1,295 1,302 1,312 
0,8 0,759 0,808 0,822 0,819 0,852 0,882 0,887 0,941 
0,6 0,476 0,485 0,509 0,485 0,544 0,557 0,562 0,570 
0,4 0,234 0,242 0,249 0,240 0,280 0,280 0,290 0,290 
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Da Tabela 4.1 se pode ratificar que para ambas as direções as perdas são 

maiores para maiores distâncias entre a blindagem e a amostra (para a maioria 

dos pontos medidos). A observação anterior só não é válida para os pontos 0,8 e 

1,2T no sentido transversal de laminação, nos quais os valores de perdas 

medidas foram menores para a distância de 13,3mm do que para 10,3mm. Este 

fato realça mais uma vez a sensibilidade do sistema e a dificuldade que se tem 

para a repetição dos ensaios. Esta não é uma particularidade da bancada RSST 

desenvolvida, outros sistemas para medição de perdas magnéticas em chapa 

única apresentam esta mesma característica [12]. 

Para eliminar os erros que possam ocorrer no posicionamento da amostra 

com a variação da blindagem, a bancada RSST será analisada na próxima seção 

por simulação numérica. 

 

4.2 – Simulação em Campos Alternantes para Variação da 
Distância da Blindagem 

Para analisar o efeito da variação da distância da blindagem por cálculo 

numérico foi utilizado o programa CARMEL, desenvolvido no L2EP - Laboratoire 

d’Électrotechnique et d’Électronique de Puissance de Lille na França, em cálculo 

3D com elementos finitos. Todo o conjunto magnético (quadro, blindagem, 

amostra e bobinas) foi inserido no programa com as mesmas dimensões da 

bancada RSST. 

Um mesmo arquivo de desenho continha três blindagens com distâncias 

distintas: 5,9, 7,3 e 10,3mm a partir da amostra. Deste modo pôde-se elaborar 

somente uma malha (um único arquivo) para a simulação de cada distância 

requerida. A blindagem pôde ser retirada ou inserida alterando-se a configuração 

de material no programa (ar ou ferro). Um detalhe da disposição das blindagens 

é apresentado na Figura 4.11. 

 
Figura 4.11 – Detalhe da disposição das blindagens no arquivo de simulação. 
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Levando-se em consideração a simetria do sistema e condições de 

contorno apropriadas, somente metade da estrutura foi modelada. Para 

descrever o comportamento não-linear da amostra e da blindagem foi empregada 

a expressão analítica 4.1 (curva anisterética). 

 

⎟
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⎝
⎛

+
+

=
τ
ετ

µ α2)(
B

BcBBH
o

 (4.1) 

 

Os coeficientes de ajuste da equação foram identificados dos resultados 

experimentais do aço E230 em 50Hz (não estavam disponíveis na ocasião os 

resultados em baixa freqüência). A Tabela 4.2 apresenta os valores dos 

coeficientes para o sentido transversal de laminação, para o qual serão 

apresentados os resultados de simulação. 

 
Tabela 4.2 – Coeficientes para o sentido transversal de laminação.  

 
Coeficiente Valor 

c 45⋅10-3 
α 8 

τ 100·103 
ε 125·10-6 

 

A grande dificuldade para a realização das simulações foi conseguir 

confeccionar uma malha 3D que pudesse trazer resultados precisos e ao mesmo 

tempo não fosse demasiadamente grande. Como as relações de dimensões da 

estrutura são bastante distintas (o quadro magnético tem 330x330mm2, enquanto 

a lâmina da amostra tem 0,5mm de espessura) isto não foi realizado de maneira 

trivial. Para otimizar o tempo de cálculo a escolha adequada seria uma malha 

“espessa” para o quadro e para a caixa de ar que envolve a estrutura; e uma 

malha “fina” para a amostra e as blindagens. Porém, esta escolha muitas vezes 

faz com que o malhador não gere uma malha adequada e o programa de cálculo 

numérico não funcione. A malha utilizada para a apresentação dos resultados 

tem uma relação de dimensão entre 2 e 10 entre os menores e os maiores 

elementos, que se julgou ser adequada para a realização do cálculo. 
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Na Figura 4.12 é mostrada a malha gerada do quadro magnético e na 

Figura 4.13 um detalhe dos pólos do quadro e da amostra. A malha possui 

314.504 elementos e 59.854 nós. 

 
Figura 4.12 – Quadro magnético com a malha gerada. 

 

 
 

Figura 4.13 – Detalhe da malha em dois pólos do quadro e na amostra. 

 

As bobinas dos pólos do quadro foram alimentadas com fontes de 

corrente. 

Para tornar o tempo de cálculo menor optou-se por realizar simulações 

estáticas para as diferentes alturas de blindagem, obtendo-se resultados sob o 

enfoque mais qualitativo do problema. Após a geração da malha, foi escolhido 

um elemento no centro da amostra e outro elemento na posição do sensor de 

campo experimental. O programa numérico, depois de atingida a precisão 

especificada, dá como resposta as induções e os campos nestes elementos 

(“elemento do sensor” e “elemento da amostra”). A partir de várias simulações, 
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alterando a altura da blindagem e o valor da indução magnética, pôde-se 

construir as curvas apresentadas na Figura 4.14. 
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Figura 4.14 – Resultados de simulação no “elemento da amostra” e no “elemento do 

sensor” com variação da distância da blindagem. 

 

De modo qualitativo, observa-se na Figura 4.14 que a distância da 

blindagem exerce uma influência no campo medido no “elemento do sensor”. 

Porém, pequenas variações na distância (menores que 2mm) não trazem 

diferenças significativas (relação de resultados entre as distâncias 5,9 e 7,3mm). 

Dado um nível de indução, o campo magnético aumenta com o acréscimo da 

distância entre a blindagem e a amostra. Este é o mesmo comportamento 

encontrado na experimentação. 

Dos resultados obtidos se poderia inferir que, para o “elemento sensor” 

possuir a mesma curva do “elemento da amostra” seria necessário distanciar a 

blindagem ainda mais. Na prática verificamos que isto não corresponde a 

realidade já que, quando se distancia demasiadamente a blindagem, ocorre 

alteração no laço B(H) em função dos campos dispersos que penetram no sensor 

e na amostra. 

 

4.3 – Ensaios em Campos Rotacionais para Variação da 
Distância da Blindagem 

Do mesmo modo que em campos alternados, ensaios foram realizados em 

campos rotacionais, com induções senoidais, variando-se a distância entre a 

blindagem e a amostra, em 50Hz. A mesma amostra utilizada para os testes em 
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campos alternantes foi empregada. A amostra e os sensores de campo foram 

mantidos fixos no quadro magnético. 

Para a medição em campos rotacionais, as duas fontes de tensão que 

alimentam o quadro magnético do RSST são ligadas simultaneamente, com os 

sinais de referências defasados de 90º entre si. 

Para efeito ilustrativo, a Figura 4.15 mostra os loci rotacionais de B para 

diferentes valores de indução magnética para a distância da blindagem de 

10,3mm. Nestas e nas figuras subseqüentes o índice x indica a direção 

longitudinal de laminação e o y a transversal. 

 
Figura 4.15 – Loci de induções magnéticas para a distância da blindagem de 10,3mm. 

 

A evolução das perdas magnéticas em campos rotacionais em função da 

indução, para diferentes valores da distância da blindagem, é mostrada na Figura 

4.16. As perdas magnéticas avaliadas pelo quadro de Epstein, em composição 

mista de lâminas com corte longitudinal e transversal, é inserida no mesmo 

gráfico como referência. 

Da Figura 4.16, inicialmente, confirma-se que o valor das perdas em 

campos rotacionais é superior ao medido para campos alternados até próximo a 

saturação do material. Na região vizinha a este limite, como já apresentada na 

literatura, as perdas em campos rotacionais decrescem.  

Em campos rotacionais observa-se que quanto menor a distância entre a 

blindagem e a amostra maiores são os valores das perdas magnéticas medidas. 
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Este comportamento é o oposto ao encontrado para campos simplesmente 

alternantes.  
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Figura 4.16 – Perdas magnéticas em função da indução, no RSST em campos 
rotacionais e no quadro de Epstein para campos alternados (freqüência 50Hz). 

 

a)  b)  
Figura 4.17 – Laços B(H) para o ensaio em campos rotacionais para as 

duas componentes ortogonais do fluxo (B=1,2T). 
a) Sentido longitudinal 
b) Sentido transversal 

Analisando-se as componentes ortogonais individualmente dos loci B(H) 

(direções longitudinal e transversal) do teste em campo rotacional, pode-se 

verificar na Figura 4.17, tomando-se a indução B=1,2T como exemplo, que o 

valor do campo magnético máximo na amostra aumenta com o distanciamento da 

blindagem. Este comportamento é similar ao encontrado para campos 

alternantes. Todavia, as perdas magnéticas em campos rotacionais são 
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calculadas pela Equação 2.6, baseada em medições das duas componentes 

ortogonais e dependente da área do lócus B(H) de cada direção magnética. 

Observando novamente a Figura 4.17, nota-se que a área do laço fica menor na 

medida em que a distância da blindagem aumenta. Isto justifica os resultados 

obtidos na medição das perdas magnéticas em campos rotacionais. 

 

 

4.4 – Outros Testes com Blindagem 

No início dos estudos da bancada RSST acreditava-se que a questão da 

blindagem estava definida no meio científico. O propósito desta lâmina era posto 

como exclusivamente de blindar o sensor de campo magnético e a amostra 

contra fluxos dispersos. Porém, os resultados apresentados nas seções 

anteriores mostraram que o simples distanciamento da lâmina de blindagem 

provoca alteração nas medições de campo magnético. 

Além do exposto anteriormente, resultados de simulação da bancada 

RSST mostram que a parcela de fluxo magnético que circula pela blindagem é 

expressiva, como se verifica na Figura 4.18. A simulação foi realizada em 3D 

para campos alternantes considerando o efeito de histerese do material [56]. 

 
 

Figura 4.18 – Detalhe da distribuição da indução magnética no RSST. 

Do resultado anterior se pode inferir que quando o sensor de campo 

magnético é inserido entre a amostra e a blindagem ele não detecta somente o 

campo na amostra, mas uma composição dos campos magnéticos presentes 

tanto na amostra quanto na própria blindagem. 
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Os resultados experimentais em campos alternantes apresentados na 

Figura 4.19 corroboram com a análise anterior. Nesta figura tem-se os laços B(H) 

do aço E-230, amostra de 80x80mm2, para os dois sentidos de laminação em 

quatro teste distintos: os resultados do ensaio de Epstein e no RSST 

apresentados anteriormente e indicados na figura por i) Epstein e ii) RSST 1 

Lâmina, respectivamente; quando a lâmina de blindagem tem seu sentido de 

laminação invertido em relação ao da amostra iii) RSST 1 Lâm. Invert.; e o 

emprego de duas lâminas de blindagem, ambas com a mesma direção de 

laminação da amostra iv) RSST 2 Lâminas. 

 

a)   b)  
 

Figura 4.19 – Laços B(H) de ensaios em campos alternantes para 
diversas composições da blindagem (B=1T). 

a) Sentido longitudinal 
b) Sentido transversal 

A Figura 4.19 mostra que a medição do campo é sensível a variação da 

blindagem, resultando na modificação da forma dos loci. Quando a lâmina de 

blindagem é invertida, percebe-se que a anisotropia do material faz com que o 

campo medido na amostra tenha seu valor acrescido para o sentido longitudinal 

de laminação e decrescido para o sentido transversal, tomando-se como base a 

posição original da blindagem. Já quando se utiliza duas lâminas na blindagem, 

ambas com o mesmo sentido de laminação da amostra, o campo medido é menor 

para ambos os sentidos, uma vez que a relutância do circuito magnético torna-se 

menor em ambas as direções de laminação. 

Outro teste realizado foi a alteração do valor do entreferro entre os pólos 

magnéticos e a amostra para avaliação do campo disperso e das perdas. Como o 

quadro magnético possui seus pólos fixos, utilizou-se lâminas para a amostra e 
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para a blindagem com dimensões de 76x76mm2
. Deste modo, o entreferro passou 

para 5mm (para lâmina de 80x80mm2 o entreferro era de 1mm). As amostras de 

76x76mm2 do aço E-230 foram confeccionadas a partir do mesmo lote de 

fabricação das lâminas de 80x80mm2, sofrendo o mesmo tratamento térmico. 

Os valores de perdas magnéticas em campos alternados para os 

entreferros de 1mm e 5mm podem ser observados nas figuras 4.20 e 4.21. 

Nestes ensaios a distância entre a blindagem e a amostra foi mantida em 

10,3mm e a freqüência em 50Hz. Os valores das perdas medidas no quadro de 

Epstein também são inseridos nas figuras como referência. 
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Figura 4.21 – Perdas magnéticas medidas no RSST para diferentes entreferros 
e no quadro de Epstein (direção longitudinal). 
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Figura 4.22 – Perdas magnéticas medidas no RSST para diferentes entreferros 
e no quadro de Epstein (direção transversal). 
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Das figuras anteriores, nota-se um acréscimo nos valores das perdas 

magnéticas na alteração do entreferro para 5mm. Devido ao aumento do campo 

disperso na amostra, este efeito ocorre tanto em campos alternantes como em 

campos rotacionais, como pode ser observado na Figura 4.23. 
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Figura 4.23 – Perdas magnéticas medidas no RSST para diferentes entreferros 
em campos rotacionais. 

 

O fato de utilizar um maior valor de entreferro no ensaio pode não estar 

diretamente ligado com medições errôneas de perdas magnéticas. Para ter os 

valores equivalentes ao encontrado no quadro de Epstein em campos alternantes 

seriam necessários outros testes para avaliar se existiria uma distância ideal da 

blindagem para o novo valor do entreferro. Outra alternativa seria utilizar amostra 

de 76x76mm2 com lâmina de blindagem de 80x80mm2 para julgar se este arranjo 

amenizaria o efeito dos campos dispersos. Um fato observado é que os laços 

B(H) e, conseqüentemente, as perdas estão menos susceptíveis a influência da 

variação da distância da blindagem para um entreferro maior. 

O estudo da influência do entreferro foi realizado de forma incipiente. Para 

uma avaliação sistemática do seu efeito sobre a medição do campo seria 

necessário desenvolver um novo quadro magnético. Neste novo projeto a 

variação do entreferro se daria pelo deslocamento dos pólos magnéticos, em 

deslocamentos precisos e mensuráveis com exatidão. A amostra, os sensores e 

a blindagem permaneceriam fixas no centro do dispositivo, evitando-se possíveis 

erros de medições oriundos da montagem. 
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4.5 – Conclusão do Capítulo 

Neste capítulo foi apresentada a influência exercida pela blindagem nas 

medições de campo magnético da bancada RSST. As análises foram efetuadas 

por meio de resultados experimentais e simulações em 3D. 

O estudo aponta que existe uma distância ótima entre a blindagem e a 

amostra de forma que sejam obtidos resultados similares entre o RSST e o teste 

de Epstein para campos alternantes. O reflexo da variação da distância da 

blindagem também foi observado nas medições de perdas magnéticas em 

campos rotacionais. 

Como conclusão deste capítulo se destacam os seguintes pontos: 

i) os resultados obtidos no RSST são sensíveis a variações no entreferro 

entre a amostra e o quadro magnético e no posicionamento da amostra; 

ii) o teste com quadro de Epstein é um importante aliado para aferição e 

ajuste da bancada RSST; 

iii) a blindagem não exerce um papel de simples coadjuvante no sistema, 

mas interfere diretamente nas medições do campo magnético e, 

conseqüentemente, nos resultados oriundos dos ensaios. 
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5 - Análise do Posicionamento dos Sensores de 
Indução Magnética 

 

Neste capítulo é analisada a influência que o posicionamento dos 

sensores de indução exerce sobre as medições de perdas magnéticas. Em 

campos rotacionais, são realizadas simulações e ensaios para avaliar os 

resultados obtidos nas duas técnicas empregadas no método das bobinas 

sensoras: bobinas envolvendo toda a amostra e bobinas envolvendo parte da 

amostra. 

 

 

5.1 – Simulação em Campos Rotacionais 

Para avaliar a distribuição de fluxo magnético na amostra, principalmente 

na região onde se localizam os sensores de indução, foram realizadas 

simulações em 3D em baixas e altas induções. Para este estudo foi 

confeccionado um novo desenho e uma nova malha contendo uma única 

blindagem. A malha foi constituída de 81.962 elementos e 16.731 nós, com uma 

relação de dimensão entre 2 a 12 entre os menores e os maiores elementos. 

Foram empregados o mesmo programa e coeficientes apresentados na 

Seção 4.2, porém realizando-se agora uma simulação dinâmica do sistema. 

Nas figuras a seguir são apresentados resultados de simulação no 

momento temporal quando as fontes x e y, que alimentam as bobinas do quadro 

magnético, possuem o mesmo valor instantâneo. Neste ponto o fluxo magnético 

instantâneo na lâmina tem resultante 45º (instante wt=225º na simulação, 

freqüência 50Hz). As figuras mostram as resoluções para as induções de 1T 

(região de baixa indução para o material) e 1,5T (saturação). 
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Figura 5.1 – Distribuição do fluxo magnético no quadro para indução 
de 1T na amostra. 

 
 

Figura 5.2 – Distribuição do fluxo magnético na amostra para indução de 1T. 

 
 

Figura 5.3 – Distribuição do fluxo magnético no quadro para indução 
de 1,5T na amostra. 
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Figura 5.4 – Distribuição do fluxo magnético na amostra para indução de 1,5T. 

 

Das figuras 5.2 e 5.4 se observa que o fluxo é homogêneo em quase toda 

a área da amostra, exceção feita apenas nos cantos da mesma. 

Na região onde atuam os sensores de indução, tanto em baixas induções 

como na região de saturação do material o fluxo é uniformemente distribuído. 

Para destacar esta análise, a posição física dos sensores de indução que 

envolvem a amostra é representada pela marcação em verde da Figura 5.5 

(simulação para indução de 1,5T na amostra). 

 

 
 

Figura 5.5 – Distribuição do fluxo magnético na amostra com destaque (em verde) 
da região onde atuam os sensores de indução. 



 

 

70

A Figura 5.7 mostra resultados de simulação para evolução temporal da 

indução magnética nas direções x e y. Nesta simulação, para 1,5T na amostra, 

foram calculadas as induções em diferentes elementos da malha. Os elementos 

foram escolhidos ao longo do eixo x, do centro a borda da lâmina, como 

apresentado na Figura 5.6. 
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Figura 5.6 – Posicionamento dos elementos da malha para análise. 

(cotas em milímetro) 

-2,0

-1,5

-1,0

-0,5

0,0

0,5

1,0

1,5

2,0

Período 20ms

In
du

çã
o 

M
ag

né
tic

a 
- B

 (T
)

Pc eixo x Pc eixo y
P10 eixo x P10 eixo y
P5 eixo x P5 eixo y

 
Figura 5.7 – Evolução da indução magnética em diferentes elementos da malha. 

 

Nota-se da Figura 5.7 que o a evolução da indução magnética é similar 

nos três elementos da malha, mesmo próximo da borda, onde o fluxo tende a ser 

menos homogêneo. Pode-se considerar destes resultados que a distribuição do 

fluxo é homogênea ao longo do segmento onde os sensores de indução atuam, 

tanto o do tipo que envolve toda a amostra quando aquele que envolve apenas 

parte dela. 

 

Pc  – Elemento no centro da amostra  
P10 –   Elemento a 10mm da borda 
P5 –  Elemento a 5mm da borda 
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5.2 – Resultados Experimentais em Campos Rotacionais 

 

Os ensaios para avaliar a distribuição de fluxo magnético foram realizados 

empregando as bobinas sensoras envolvendo toda e parcialmente a amostra, em 

uma mesma lâmina de teste, realizando-se a leitura dos dados no mesmo 

instante, para ambas as técnicas de construção dos sensores. 

A montagem dos sensores de indução e seus respectivos circuitos 

atenuadores ou amplificadores permite que os inversores sejam controlados tanto 

com os sinais oriundos dos sensores que envolvem a amostra quanto por 

aqueles localizados na área central da lâmina. Inicialmente, como a escolha de 

uma destas técnicas para realimentação do controle influencia nos resultados de 

medição da outra, optou-se por operar como se os inversores estivessem em 

malha aberta. O sinal da variável a ser controlada foi oriundo das tensões nos 

terminais de alimentação da bobina do quadro magnético. Deste modo o fluxo 

magnético teve um grau de liberdade, não sendo imposto pelo controle na região 

dos sensores. 

A Figura 5.8 apresenta a evolução das induções nos sensores para uma 

indução máxima na amostra de 1T. Percebe-se que neste ponto a indução possui 

a mesma forma em ambas as técnicas de medição. Já a Figura 5.9 mostra os 

resultados das medições em 1,5T. Neste caso, como se aproxima da região de 

saturação do material, o fluxo na lâmina é distorcido, principalmente devido ao 

fato do circuito estar em malha aberta. A anisotropia intrínseca do material se 

torna evidente pela diferença nas formas de onda de indução entre os dois eixos 

de magnetização da lâmina. Todavia, a diferença entre as duas técnicas de 

medição da indução continua a ser muito pequena. 
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Figura 5.8 – Evolução da indução magnética nas duas técnicas de medição da indução -  
controle em malha aberta, 1T, 50Hz. 

 
 

Figura 5.9 – Evolução da indução magnética nas duas técnicas de medição da indução -  
controle em malha aberta, 1,5T, 50Hz. 

A análise dos resultados anteriores não permite inferir de forma direta qual 

das técnicas se adapta melhor a bancada. Porém, quando se associam as formas 

de onda das induções com os campos magnéticos para compor o valor das 

perdas na amostra em campos rotacionais, percebe-se que na região de altas 

induções as medições oriundas dos sensores que envolvem toda a lâmina 

possuem um comportamento mais de acordo com o fenômeno físico em questão. 

Pelas figuras 5.10 e 5.11, nota-se que as perdas estimadas pelos sensores 

envolvendo parte da amostra tende a um crescimento na região próxima a 

saturação do material, enquanto as perdas avaliadas pelos sensores envolvendo 

toda a lâmina possuem um comportamento típico para o fenômeno, tanto em alta 

quanto em baixa freqüência do ensaio. 
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Figura 5.10 – Comparação das perdas magnéticas duas técnicas de medição 

da indução - controle em malha aberta, 50Hz. 
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Figura 5.11 – Comparação das perdas magnéticas duas técnicas de medição 

da indução - controle em malha aberta, 5Hz. 

 

As análises das diferenças relativas indicadas nas figuras 5.10 e 5.11 

(onde Pe e Pc são as perdas magnéticas medidas utilizando os sensores de indução 

envolvendo a amostra e dispostos na região central, respectivamente) denota que as 

técnicas de medição da indução são equivalentes até próximo da região de 

saturação do material, onde os erros relativos entre as duas técnicas ficam 
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abaixo de 3,6%. Entretanto, na vizinhança da saturação os resultados são 

divergentes. 

O estudo das perdas magnéticas em campos rotacionais, utilizando-se as 

duas técnicas de medição de indução, também foi realizado com o circuito 

operando em malha fechada. A Figura 5.12 apresenta os resultados destes 

experimentos, onde o controle pôde receber os sinais de realimentação 

originários dos sensores posicionados no centro e envolvendo a amostra. 
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Figura 5.12 – Comparação das perdas magnéticas duas técnicas de medição 

da indução - controle em malha fechada, 50Hz. 

 

A análise comparativa das perdas magnéticas em malha fechada é similar 

ao encontrado em malha aberta. Os valores de perdas nas duas técnicas de 

medição de indução são equivalentes para baixas induções e diferem 

significativamente próximo à saturação. Mesmo sendo empregado controle em 

malha fechada nos dois ensaios, para a malha de controle, percebe-se que é 

muito mais difícil manter a forma de onda da indução quando o sinal para a 

realimentação vem dos sensores posicionados no centro da amostra. 
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5.3 – Conclusões do Capítulo 

As simulações e ensaios apresentados neste capítulo demonstram que as 

técnicas de medição de indução magnética envolvendo parte ou toda a amostra 

em teste apresentam resultados aparentemente similares, podendo ambas serem 

utilizadas na bancada RSST até um certo grau de saturação do material. Os 

valores de medições de perdas magnéticas em campo rotacional indicam que o 

método das bobinas sensoras envolvendo toda a amostra apresenta resultados 

mais precisos em altas induções. 

Devido à complexidade que envolve o assunto e a correspondente 

dificuldade para o desenvolvimento de ferramentas de investigação, buscou-se 

neste capítulo mostrar o desempenho do sistema frente às possibilidades de 

implementação dos sensores de indução. No Capítulo 6 esta análise tem 

continuidade com a avaliação da taxa de distorção harmônica total nas tensões 

nos sensores de indução magnética. 
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6 - Análise do Método de Controle da Indução 
Magnética na Amostra 

 

Em campo alternante as perdas magnéticas dependem do conteúdo 

harmônico da forma de onda da indução. Para avaliar este efeito em campos 

rotacionais, neste capítulo é realizada uma análise dos resultados experimentais 

com o controle da bancada RSST operando em malha aberta e em malha 

fechada. 

 

6.1 – Medições de Perdas Magnéticas em Campos 
Rotacionais 

Uma maneira de determinar o nível de deformação de um sinal é calcular 

sua taxa de distorção harmônica total (Total Harmonic Distortion – THD do 

original em inglês), definida por uma relação entre o valor eficaz das 

componentes harmônicas e o valor eficaz da componente fundamental de um 

sinal. Quanto menor for o valor da distorção harmônica total, mais próximo estará 

o sinal de uma forma senoidal. O valor da THD é determinado pela Equação 6.1, 

onde Vefn representa o valor eficaz da harmônica correspondente e Vef1 o valor 

eficaz da componente fundamental do sinal. 

1

2

2

Vef

Vef

THD n

n∑
∞

==  (6.1) 

Tradicionalmente, os trabalhos na literatura mostram resultados de 

distorção harmônica da indução magnética, quando estes são avaliados. 

Todavia, como apresentado na Seção 2.5.1, a indução magnética é determinada 

por meio da integração do sinal da tensão induzida nos sensores. A operação 

matemática de integração do sinal de tensão é um filtro natural para o resultado 

da indução. Portanto, se forem avaliados simplesmente os valores de THD na 

indução magnética ter-se-á os resultados mascarados pelo “filtro”, perdendo-se o 

real comportamento da variável magnética. Como exemplo, as figuras 6.1 e 6.2 

mostram resultados experimentais das tensões nos sensores de indução e a 

indução magnética para os dois eixos de magnetização de uma amostra, 
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respectivamente. A THD de cada forma de onda é indicada nas legendas. O 

lócus de induções é mostrado na Figura 6.3, onde se acrescenta um sinal 

senoidal puro como referência (círculo perfeito) para facilitar a observação do 

efeito da distorção nas formas das induções magnéticas. 

a)  b)  
Figura 6.1 – Tensões induzidas nos sensores de indução magnética. 

a) Sentido longitudinal, THD=11,83%. 
b) Sentido transversal, THD=9,44%. 

a)  b)  
Figura 6.2 – Resultado dos cálculos das induções magnéticas. 

a) Sentido longitudinal, THD=2,15%. 
b) Sentido transversal, THD=1,83%. 

 
Figura 6.3 – Lócus de induções magnéticas referentes à Figura 6.2. 
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Observando a Figura 6.1 se percebe graficamente a distorção do sinal nas 

tensões induzidas nos sensores. Os altos valores da THD para ambos os eixos 

de magnetização nesta figura complementam a informação que os sinais estão 

deformados. Por outro lado, como explanado anteriormente, se forem observados 

apenas os sinais das induções magnéticas (Figura 6.2), tem-se a sensação que o 

sinal é de boa qualidade. 

O lócus apresentado na Figura 6.3 é uma maneira auxiliar para identificar 

visualmente as distorções nos sinais das induções magnéticas. Se as induções 

nos eixos tiverem a forma senoidal pura, com defasagem de 90º entre si, o lócus 

de induções será uma forma circular perfeita. 

Em todos os experimentos apresentados neste trabalho se adotou a 

metodologia de analisar os resultados dos cálculos de THD nas formas de onda 

das tensões nos sensores de indução. Esta análise teve o objetivo de  ajustar as 

formas de onda das tensões nos sensores de indução, o mais próximo possível 

de uma onda senoidal, antes de gravar os dados da aquisição. Para o cálculo da 

THD foi empregado um aplicativo no Instrumento Virtual do programa LabVIEW 

[54]. 

Para analisar o efeito da distorção harmônica nas medições de perdas 

magnéticas em uma amostra sujeita a campos rotacionais foram realizados dois 

ensaios em 50Hz: com o controle dos inversores funcionando em malha aberta 

(sem realimentação) e em malha fechada (com realimentação através dos 

sensores de indução envolvendo a amostra). Os resultados destes experimentos 

são mostrados na Figura 6.4, da qual observa-se que os valores das perdas se 

mantêm próximos para os dois métodos de controle, até a região de saturação. 

Acima de 1,4T as perdas se tornam maiores para o controle em malha aberta. 

Isto se deve ao maior conteúdo harmônico no sinal de indução na lâmina, 

apresentando o mesmo comportamento do caso de induções alternantes com 

harmônicos. 

Para os ensaios referentes à Figura 6.4, os valores da THD da tensão nos 

sensores de indução magnética, em função do nível de indução na amostra, são 

apresentados na Tabela 6.1, para os dois eixos de magnetização. Pode-se notar 

nesta tabela que próximo ao valor da saturação do material a taxa de distorção 

harmônica aumenta para ambos os ensaios. Este efeito fica mais evidente 

quando o circuito opera em malha aberta devido ao fraco acoplamento existente 

entre os terminais do quadro magnético e a lâmina em teste. Nesta situação a 



 

 

79

fonte não consegue transferir para a carga níveis suficientes de energia nos 

pontos de saturação e, na desmagnetização, retirar a energia armazenada no 

quadro, fazendo com que a tensão induzida no sensor (e conseqüentemente na 

forma de onda da indução magnética na lâmina) seja cada vez mais distorcida na 

medida em que se aproxima da saturação do material. 
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Figura 6.4 – Comparação das perdas magnéticas medidas com o controle dos 

inversores funcionando em malha aberta e em malha fechada, 50Hz. 

 

Tabela 6.1 – THD para os dois eixos de magnetização em função da indução e do tipo de controle.  
 

THD(%) 
Controle em Malha Aberta Controle em Malha Fechada 

 
B(T) 

Longitudinal Transversal Longitudinal Transversal 
1,52 26,40 19,77 13,50 16,16 
1,50 20,91 14,42 9,48 11,30 
1,45 6,95 5,42 3,01 2,97 
1,40 3,67 3,84 1,79 2,10 
1,30 2,47 2,93 1,27 1,17 
1,20 1,87 2,59 0,85 0,95 
1,00 1,60 2,18 0,91 0,89 
0,80 0,99 2,08 0,97 0,85 
0,60 0,91 1,69 0,81 0,61 
0,40 0,90 1,14 0,50 0,57 
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6.2 – Trajetórias dos Campos Magnéticos Rotacionais 

O item anterior tratou da análise das perdas magnéticas, porém, um outro 

aspecto importante na análise de materiais é a permeabilidade magnética. O 

comportamento da permeabilidade é descrito por meio das trajetórias de campo 

magnético, já que a trajetória da indução é imposta pelo sistema. Neste contexto, 

um fato constatado é que, mesmo tendo valores de perdas semelhantes na faixa 

de indução abaixo da saturação, o comportamento do campo magnético é 

significativamente influenciado pelo conteúdo harmônico no sinal de indução. 

Este efeito pode ser observado na Figura 6.5, na qual estão traçados os campos 

magnéticos rotacionais para alguns valores de indução nos dois métodos de 

controle. Se forem avaliados somente os loci de induções este efeito não fica 

evidenciado, como pode ser observado na Figura 6.6. 

Na Figura 6.6, destaca-se ainda que no ponto de 1,5T o nível de distorção 

harmônica nos sinais de tensão nos sensores de indução faz com que os loci não 

sejam circulares, tanto com o controle operando em malha fechada quanto em 

malha aberta, apesar do conteúdo harmônico dos sinais originados do controle 

em malha fechada ser menor. 

 

 
Figura 6.5 – Conjunto de trajetórias de campos magnéticos para vários 

valores de induções (linha contínua controle em malha fechada,  
linha tracejada controle em malha aberta). 
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a)   b)  
Figura 6.6 – Loci de induções magnéticas para: 

a) controle em malha aberta 
b) controle em malha fechada 

Um dos propósitos para a realização dos ensaios de caracterização de 

materiais é levantar dados experimentais para identificar e determinar 

parâmetros de modelos matemáticos para aplicação numérica. Alguns modelos 

necessitam de laços B(H) em diferentes freqüências e induções para poderem 

ser desenvolvidos [56]. Por isto o comportamento das grandezas magnéticas no 

material deve ser descrito com exatidão pelos dados experimentais. 

Na Figura 6.7 são traçados os laços B(H) para os dois eixos de orientação 

magnética. Os gráficos são um caso particular da Figura 6.5 para a indução de 

1,4T. Percebe-se nestes gráficos que os loci têm forma diferenciada para os dois 

métodos de controle empregados, ficando evidenciada a importância do controle 

para a precisão dos dados experimentais. 

a)  b)  
Figura 6.7 – Laços B(H) de ensaios em campos rotacionais para o controle 

operando em malha aberta (MA) e em malha fechada (MF). 
a) Sentido longitudinal 
b) Sentido transversal 
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6.3 – Conclusões do Capítulo 

 

Neste capítulo foram apresentados resultados experimentais onde se 

avaliou o efeito do controle da forma de onda da indução magnética na amostra. 

Como conclusão deste capítulo se destacam os seguintes pontos: 

i) em baixas induções, quando a THD das tensões nos sensores de 

indução ficam abaixo de 3%, as perdas magnéticas medidas com o controle dos 

inversores operando em malha fechada e em malha aberta são próximas; 

ii) na região próxima à saturação do material as potências avaliadas pelos 

dois métodos de controle são divergentes e, como ocorre em campos alternados, 

um acréscimo na taxa de distorção harmônica no sinal da indução aumenta as 

perdas magnéticas no material; 

iii) a análise das trajetórias do campo magnético no material realçou a 

importância da utilização de uma malha de controle adequada. Principalmente no 

que diz respeito a utilização dos dados experimentais em modelos matemáticos. 
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7 – Resultados Experimentais para Análise de 
Desempenho da Bancada RSST 

 

Neste capítulo são apresentados diversos resultados que ressaltam as 

características e as potencialidades da bancada desenvolvida. Os ensaios são 

para o aço E-230, amostra de 0,5mm de espessura, dimensões 80x80mm2, 

blindagem 10,3mm de distância, medição da indução por sensores envolvendo a 

lâmina e controle dos inversores operando em malha fechada. 

 

7.1 – Resultados Experimentais em Campos Rotacionais para 
Sinais Senoidais 
 

Na Seção 3.12 foi exibida uma parte do Instrumento Virtual desenvolvido, 

da qual constavam os campos de controle do usuário e os resultados dos 

cálculos das grandezas magnéticas. A título de ilustração, é apresentada a seguir 

a saída gráfica do VI para um ensaio com induções senoidais na freqüência de 

50Hz. As figuras 7.1 e 7.2 mostram o conjunto de sinais adquiridos provenientes 

dos sensores de indução e campo magnético e, na seqüência, os resultados dos 

cálculos das grandezas magnéticas para as induções de 1T e 1,3T, 

respectivamente. 

Os gráficos da Figura 7.1 associados com a Figura 3.7, referenciada no 

Capítulo 3, representam a tela do VI implementado. Os sinais adquiridos e os 

resultados dos cálculos são mostrados de maneira instantânea. O usuário pode 

interagir imediatamente com todos os valores lidos e calculados do ensaio. 

Para mostrar com fidelidade todo o comportamento das variáveis 

magnéticas medidas se buscou tratar os sinais sem nenhuma técnica de 

filtragem. Isto foi possível para o caso das tensões oriundas dos sensores de 

campo magnético. Contudo, para os sensores de indução, como estes fazem 

parte do circuito de controle dos inversores, foi necessário acrescentar um 

capacitor de desacoplamento na saída do sinal dos sensores. A função deste 

capacitor é retirar as componentes de alta freqüência (ruídos) geradas pela 

comutação dos inversores. Este capacitor de desacoplamento não altera a 

informação do sinal original. 
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Figura 7.1 – Conjunto de sinais e resultados para o RSST no ponto de  

operação 1,0T e 50Hz (x – sentido longitudinal, y – sentido transversal). 
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Figura 7.2 – Conjunto de sinais e resultados para o RSST no ponto de  

operação 1,3T e 50Hz (x – sentido longitudinal, y – sentido transversal). 
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Um ensaio necessário para obtenção dos parâmetros de caracterização de 

materiais, sujeitos a campos rotacionais, consiste na análise de perdas 

magnéticas em função da freqüência. Deste ensaio, a Figura 7.3 apresenta 

resultados da evolução das perdas para um valor de indução constante de 1,0T. 

Na figura pode-se comparar ainda o comportamento das perdas magnéticas em 

campo rotacional com o ensaio em campo alternante. Para a medição das perdas 

em campo alternante foi utilizado o quadro de Epstein com amostras contendo 

50% de lâminas estampadas no sentido longitudinal e 50% no sentido transversal 

de laminação. 
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Figura 7.3 – Perdas no RSST para campos rotacionais e no quadro de  

Epstein para campo alternante em função da freqüência (B=1T). 

 

Os valores experimentais da Figura 7.3 mostram que a relação média 

entre as perdas rotacionais e as perdas alternantes é de 1,74 para o material 

ensaiado. 

Os laços B(H) do material, para diferentes freqüências de indução, são 

traçados na Figura 7.4. Semelhante ao efeito descrito para campos alternantes, 

em campos rotacionais o laço B(H) tem sua área acrescida com o aumento da 

freqüência. Este comportamento também pode ser avaliado na Figura 7.5, pelo 

desenho das trajetórias dos campos magnéticos. As medições destes gráficos 

foram realizadas com induções magnéticas constantes e igual a 1T. 
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a)  b)  
Figura 7.4 – Conjuntos de laços B(H) em diferentes freqüências.  

a) Sentido longitudinal 
b) Sentido transversal 

 

 
Figura 7.5 – Conjunto de trajetórias de campos magnéticos em diferentes freqüências. 

 

A evolução das perdas magnéticas em campos rotacionais em função da 

indução e para diferentes valores de freqüência, pode ser avaliada nas figuras 

7.6 e 7.7. Através destas figuras se observa que as perdas têm o mesmo 

comportamento, independente da freqüência do ensaio. 

Nos ensaios com variação de freqüência a THD da tensão nos sensores de 

indução ficou abaixo de 2,12% para induções até 1,4T. De 1,45T a 1,52T a 

distorção harmônica dos sinais ficou na faixa de 2,20% a 16,16%. 

Uma das propriedades do ensaio em campos rotacionais é a possibilidade 

de definir o ponto de saturação do material pela curva de perdas magnéticas. As 
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figuras 7.6 e 7.7 mostram este ponto, onde ocorre uma queda acentuada no valor 

das perdas quando o valor de indução se aproxima de 1,5T. 
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Figura 7.6 – Evolução das perdas magnéticas rotacionais em função da indução 

nas freqüências de 5Hz e 20Hz. 
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Figura 7.7 – Evolução das perdas magnéticas rotacionais em função da indução 

nas freqüências de 50Hz e 100Hz. 

 

Por possuir dois inversores completamente independentes um do outro, a 

bancada implementada tem como característica a possibilidade de controlar o 

ângulo e a amplitude das tensões que alimentam os pólos do quadro magnético. 

Este atributo permite ampliar a análise do material testado sob outras condições 

de magnetização. Exemplos de alguns casos na freqüência de 50Hz podem ser 

observados a seguir. 
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As figuras 7.8 e 7.9 apresentam resultados experimentais dos loci 

rotacionais de indução e campo magnético, respectivamente, para as seguintes 

defasagens entre as fontes de alimentação: 90º, 60º, 45º e 20º. 

 

 
Figura 7.8 – Conjunto de loci de induções em diferentes ângulos de 

 defasagem das fontes de alimentação. 

 

 
Figura 7.9 – Conjunto de trajetórias de campos em diferentes ângulos de 

 defasagem das fontes de alimentação. 

 

Nas figuras 7.10 e 7.11 são traçados loci rotacionais de indução e campo 

magnético em experimentos onde as amplitudes das fontes de alimentação não 
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são simétricas. Mostra-se o caso onde a fonte de tensão do eixo x do quadro 

magnético tem a mesma amplitude da fonte y, fonte y com metade da amplitude 

de x e fonte y com um quarto da amplitude de x. 

 

 
Figura 7.10 – Conjunto de loci de induções para variações de  

amplitude das fontes de alimentação. 

 

 
Figura 7.11 –Conjunto de trajetórias de campos para variações de  

amplitude das fontes de alimentação. 
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7.2 – Resultados Experimentais em Campos Rotacionais para 
Sinais Arbitrários 

Devido às características do controle implementado, pode-se impor com 

facilidade qualquer forma de onda de indução na amostra em teste. Para isto, 

basta alterar a forma do sinal de referência das malhas de controle dos 

inversores. Este aspecto é relevante para comparação de perdas magnéticas 

entre fluxos senoidais e não senoidais. Além disso, este atributo possibilita 

comparar resultados experimentais com os obtidos por simulação, e vice-versa, 

em qualquer regime de magnetização do material [57]. As figuras a seguir dão 

alguns exemplos experimentais obtidos na bancada. A freqüência da componente 

fundamental para estes casos é de 50Hz. 

Para um sinal senoidal, mesmo em altas induções, a tensão nos sensores 

de indução imposta pelo controle (Vo) segue o sinal de referência. Este efeito 

pode ser observado na Figura 7.12, onde plota-se no mesmo gráfico estas duas 

formas de onda, para o eixo de magnetização x, numa indução magnética 

rotacional de 1,45T. Os loci de induções e campo magnético para este caso 

podem ser verificados nas figuras 7.13 e 7.14. 

 

 
Figura 7.12 – Tensão de referência e tensão no sensor de indução para 

um sinal senoidal – indução de 1,45T. 
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Figura 7.13 – Lócus de induções magnéticas para a tensão de referência 

constituída de um sinal senoidal. 

 
Figura 7.14 – Trajetória de campos magnéticos para a tensão de referência 

constituída de um sinal senoidal. 

 

As figuras 7.16 e 7.17 mostram o comportamento da indução e do campo 

magnético, respectivamente, quando o sinal de referência tem a componente 

fundamental da tensão associada a uma harmônica de 3ª ordem. A evolução das 

formas de onda da referência e do sinal de tensão nos sensores de indução pode 

ser observada na Figura 7.15. Também para este e nos demais casos 
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apresentados na seqüência, o controle atua de maneira eficaz, impondo o sinal 

de referência na forma de onda da tensão dos sensores de indução. 

 

 

 
Figura 7.15 – Tensão de referência e tensão no sensor de indução para um sinal 

constituído da componente fundamental (0,7V) mais a harmônica de 3ª ordem (1,2V). 

 

 
Figura 7.16 – Lócus de induções magnéticas para a tensão de referência constituída da 

componente fundamental mais a harmônica de 3ª ordem. 
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Figura 7.17 – Trajetória de campos magnéticos para a tensão de referência constituída 

da componente fundamental mais a harmônica de 3ª ordem. 

 

Quando a indução possui um elevado conteúdo harmônico a trajetória de 

campos magnéticos originada é complexa para a interpretação. Uma noção  de 

como estas trajetórias se formam pode ser tirada dos laços B(H) nas direções de 

magnetização x e y, como apresentados na Figura 7.18. 

 
 

a)   b)  
Figura 7.18 – Laços B(H) para a tensão de referência constituída da componente 

fundamental mais a harmônica de 3ª ordem. 
a) Sentido longitudinal 
b) Sentido transversal 
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Para um sinal de referência constituído de sua componente fundamental 

mais a harmônica de 5ª ordem, os comportamentos das variáveis elétricas e 

magnéticas são apresentados nas figuras 7.19 a 7.22. 

 

 
Figura 7.19 – Tensão de referência e tensão no sensor de indução para um sinal 

constituído da componente fundamental (0,9V) mais a harmônica de 5ª ordem (1,2V). 

 
 

 
Figura 7.20 – Lócus de induções magnéticas para a tensão de referência constituída da 

componente fundamental mais a harmônica de 5ª ordem. 
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Figura 7.21 – Trajetória de campos magnéticos para a tensão de referência constituída 

da componente fundamental mais a harmônica de 5ª ordem. 

 
 
 

a)   b)  
Figura 7.22 – Laços B(H) para a tensão de referência constituída da componente 

fundamental mais a harmônica de 5ª ordem. 
a) Sentido longitudinal 
b) Sentido transversal 
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Nas figuras seguintes mostra-se o comportamento das variáveis elétricas e 

magnéticas quando a tensão de referência tem sua componente fundamental 

associada às harmônicas de 3ª, 5ª e 7ª ordem. 

 

 
Figura 7.23 – Tensão de referência e tensão no sensor de indução para um sinal 

constituído da componente fundamental (1,05V) mais as harmônicas de 3ª (0,38V), 
5ª (0,15V) e 7ª (0,07V) ordens. 

 

 
Figura 7.24 – Lócus de induções magnéticas para a tensão de referência constituída da 

componente fundamental mais as harmônicas de 3ª, 5ª e 7ª ordens. 
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Figura 7.25 – Trajetória de campos magnéticos para a tensão de referência constituída 

da componente fundamental mais as harmônicas de 3ª, 5ª e 7ª ordens. 

 
 

a)   b)  
Figura 7.26 – Laços B(H) para a tensão de referência constituída da componente 

fundamental mais as harmônicas de 3ª, 5ª e 7ª ordens. 
a) Sentido longitudinal 
b) Sentido transversal 
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7.3 – Conclusões do Capítulo 

Neste capítulo foram apresentados resultados experimentais que 

destacaram as características e as potencialidades da bancada construída. A 

possibilidade de realização de ensaios em campos rotacionais em diversos 

regimes de magnetização potencializa o uso da bancada RSST para aplicação 

em diferentes formas de caracterização do material, tanto para aplicação em 

medições de perdas magnéticas quanto na obtenção de parâmetros para a 

modelagem numérica de materiais ferromagnéticos. 

Especificamente em relação à técnica de controle empregada, os 

resultados mostraram que a malha é eficaz, tanto impondo altas induções na 

amostra para sinais senoidais quanto para ondas arbitrárias. 
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8 – Conclusões Finais e Perspectivas 

 

 

8.1 – Conclusões Finais 

 

O objetivo principal desta tese foi a construção de uma bancada 

experimental para o estudo das perdas magnéticas em lâminas de aços elétricos 

submetidas a campos rotacionais. O trabalho englobou a montagem de dois 

inversores de tensão; o emprego de uma estratégia de controle original para esta 

aplicação; o desenvolvimento de amplificadores de precisão; a concepção de 

uma malha de terra de referência comum para os inversores, para os 

amplificadores de sinais e para o sistema de aquisição, pouco susceptível a 

interferência; e ainda, a utilização de sensores de indução e campo magnético 

conhecidos no meio científico. 

A bancada do tipo RSST desenvolvida pode operar com freqüências de 

5Hz a 150Hz, controlando a forma de onda do fluxo magnético na amostra, de 

baixas induções até próximo a saturação do material, podendo também aplicar na 

amostra ensaiada formas de ondas arbitrárias de indução magnética. 

Pela falta de uma referência disponível, os resultados obtidos em campo 

alternante na bancada RSST foram comparados com os oriundos do quadro de 

Epstein. O exame dos laços B(H) para os dois métodos evidenciou a necessidade 

de um estudo mais elaborado sobre a aplicação da blindagem no método de 

chapa única. 

A influência que a blindagem exerce nas medições de campo magnético da 

bancada RSST foi analisada por meio de resultados experimentais e simulações 

em 3D. De forma original, conclui-se que a blindagem desempenha uma função 

de suma importância para a exatidão das medições do campo magnético. 

As análises mostraram que existe uma distância adequada entre a 

blindagem e a amostra de forma que sejam obtidos resultados similares em 

campos alternantes entre o RSST e o teste de Epstein. Esta técnica de ajuste da 

distância da blindagem trouxe uma nova ferramenta para aferição e ajuste da 

bancada RSST, possibilitando que as medições em campos rotacionais possam 

ser realizadas com mais precisão. 
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As técnicas de medição de indução magnética envolvendo parte ou toda a 

amostra, que suscitam discordância de opiniões na comunidade científica a 

respeito da maior eficácia de uma ou de outra, também foram analisadas por 

simulações e experimentação. 

As simulações em 3D mostraram que na região da amostra em que atuam 

os sensores de indução o fluxo magnético é homogêneo, indicando que as duas 

técnicas trazem o mesmo resultado. Porém, analisando-se os resultados 

experimentais das medições das perdas magnéticas em campo rotacional se 

observou que o método das bobinas sensoras envolvendo toda a amostra são 

mais precisos em altas induções. Uma justificativa possível para este fato é que 

os furos na amostra para a introdução dos sensores provocam estresse mecânico 

(mesmo que as amostras tenham passado por um tratamento térmico após as 

furações), alterando as características magnéticas da lâmina e a distribuição do 

fluxo magnético, ficando o efeito evidenciado somente nas altas induções. 

Devido à inerente complexidade do assunto, os detalhes teóricos e 

práticos da alimentação elétrica do RSST e do controle da forma de onda de 

indução na amostra receberam a maior parte das atenções durante o 

desenvolvimento da tese. Para avaliar o desempenho do controle implementado, 

resultados experimentais foram comparados com o sistema operando em malha 

fechada e aberta. 

Uma nova metodologia a partir da análise da taxa de distorção harmônica 

das tensões nos sensores de indução foi posta em prática. Mostrou-se que este 

procedimento é mais coerente com o efeito físico a ser analisado do que o exame 

da THD dos sinais de indução magnética. 

Os resultados experimentais em campos rotacionais indicam que em 

baixas induções, quando a THD das tensões nos sensores de indução ficam 

abaixo de 3%, as perdas magnéticas medidas com o controle dos inversores 

operando em malha fechada e em malha aberta são próximos. Porém, na região 

em torno da saturação do material, onde o controle em malha aberta não impõe o 

fluxo adequado, o acréscimo na taxa de distorção harmônica faz com que os 

valores das perdas no material aumentem. 

O estudo do desempenho do controle implementado indica que, além da 

medição errônea das perdas, a distorção harmônica tem significativa influência 

nas trajetórias do campo magnético no material, até mesmo quando os valores 

de THD são menores que 3%. Este fato é de elevada importância no que diz 
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respeito à utilização dos dados experimentais para caracterização e modelagem 

numérica de materiais. 

Considera-se que os objetivos deste trabalho tenham sido alcançados, 

pois os resultados apresentados mostraram a capacidade da bancada RSST de 

estabelecer a indução magnética na amostra com baixa distorção harmônica para 

sinais senoidais e, ainda, de impor diferentes regimes de magnetização como 

diferença de amplitude das tensões de alimentação, defasagem entre as fontes e 

geração de ondas arbitrárias. 

Para finalizar, a construção da bancada RSST teve, desde seus primeiros 

esboços, o objetivo claro que a mesma deveria ser um equipamento útil, versátil, 

robusto e duradouro. Que pudesse ser utilizada por pesquisadores para análise 

de materiais, principalmente para o desenvolvimento de modelos matemáticos. 

Acredita-se que este objetivo tenha sido alcançado. Porém, tem-se a certeza que 

as técnicas e as metodologias empregadas deverão sofrer aperfeiçoamento num 

futuro próximo, pois assim funciona o domínio da ciência e da tecnologia. 

 

 

 

8.2 – Perspectivas 

 

Os resultados obtidos na bancada e as análises efetuadas suscitaram 

dúvidas e algumas certezas, desta forma, vislumbram-se algumas possibilidades 

como proposta para futuros trabalhos nesta área de pesquisa: 

i) Realização de ensaios envolvendo um maior número de amostras 

para verificar a repetitividade dos resultados; 

ii) Realização de ensaios envolvendo outros tipos de lâminas de aço-

silício, com maiores e menores perdas magnéticas, isotrópicas ou com 

anisotropias diferentes, para verificar a resposta da bancada RSST; 

iii) Realização de estudos e ensaios de outras disposições e formas dos 

sensores de campo magnético e, conseqüentemente, verificação da 

influência da blindagem nos resultados das medições do campo; 

iv) Avaliação da aplicação de um único tipo de material para a função de 

blindagem. Julgar se o uso de um material isotrópico na blindagem, 
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posicionado numa distância definida por experimentação, poderia ser 

utilizado para qualquer tipo de material da amostra, sem necessidade 

de troca da blindagem ou alteração da distância. 

v) Melhoramento dos aspectos mecânicos que envolvem a amostra, os 

sensores e a blindagem para facilitar a realização e a repetitividade 

dos ensaios; 

vi) Construção de um novo quadro magnético no qual os pólos possam 

ser deslocados com precisão. Desta forma ter-se-ia um controle nos 

valores dos entreferros entre os pólos e a amostra, podendo-se avaliar 

com maior exatidão a influência do tamanho do entreferro na medição 

do campo magnético; 

vii) Estudo e separação das perdas magnéticas sob campos rotativos; 

viii) Estudo e modelagem das perdas dinâmicas sob campos rotativos; 

ix) Estudo quantitativo do comportamento das perdas magnéticas sob 

campos rotativos distorcidos ou não uniformes. 
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9 – Anexo 

 

9.1 – Solenóide de Referência para Calibração dos Sensores 
de Campo Magnético 

 

Com o objetivo de calibrar os sensores de campo foi construído um 

solenóide de referência, de modo que o campo magnético no eixo deste 

solenóide fosse de valor conhecido. O solenóide foi confeccionado com 1.832 

espiras, em um cilindro de pvc de 916mm de comprimento e 51,74mm de 

diâmetro. Uma simulação deste dispositivo no programa EFCAD [20] mostrou que 

o campo magnético é homogêneo (variação menor que 1%) em toda a região 

central do solenóide, apresentando uma diminuição brusca em sua intensidade 

somente a 1mm de distância do seu enrolamento. 

Uma vez inseridos os sensores no interior do solenóide, aplica-se uma 

corrente conhecida nos terminais deste último e se determina o campo no seu 

interior pela Equação 9.1, onde I é o valor da corrente circulante e l o 

comprimento do solenóide. Comparando este resultado com o valor de campo 

encontrado pelo método da bobina-H se estabelece um fator de ajuste para os 

sensores. A Figura 9.10 apresenta o solenóide de referência utilizado na 

calibração dos sensores de campo. 

 

]/[ mA
l
INH =  (9.1) 

 

 
 

Figura 9.10 – Solenóide de referência. 
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