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RESUMO

A identificacdo individual de organismos presentes na natureza € uma poderosa ferramenta
de observacdo do comportamento animal, dindmica demografica e padrbes de migracdo das
espécies. No entanto, na maioria dos casos o trabalho de identificacdo individual pode ser muito
dispendioso, devido ao constante processo de captura e recaptura de individuos para controle,
através de marcadores artificiais, como por exemplo, colares e anilhas. Porém este conceito mudou
a partir dos anos 1970 com a introducdo da foto identificacdo, que possibilitou o reconhecimento de
cada individuo de uma determinada espécie através de caracteristicas Unicas registradas nas
imagens. No contexto da biologia marinha, existem trabalhos promissores que focam na
identificacdo adotando técnicas de visdo computacional e algoritmos de classificacdo baseados em
inteligéncia artificial, para construir catalogos de imagens das populacdes do objeto de estudo.
Contudo ainda existem varios obstaculos a serem ultrapassados, principalmente quando se trata de
identificacdo individual de cetaceos, cuja a identificacdo é efetuada através da andlise de marcas
encontradas nas nadadeiras dorsais. Muitos trabalhos ja foram desenvolvidos para solucionar o
problema, no entanto poucos se aventuraram na construcdo de um processo automatizado de
identificacio do objeto de estudo. Assim sendo, este trabalho desenvolveu um processo
automatizado para a etapa de extragdo da linha de contorno da dorsal de cetaceos, visando extinguir
0 processo de selecdo manual de caracteristicas do individuo. A criacdo deste processo, bem como a
construgdo de uma ferramenta para a execucgdo da tarefa foi dividida em trés etapas: (i) localizacdo e
deteccdo de dorsais; (ii) segmentacdo da dorsal para destaca-la do contexto da cena; e (iii) extracdo
da linha de contorno. Na primeira etapa utilizou-se a técnica de deteccdo de objetos com Redes
Neurais Convolucionais SSD disponibilizada pela API do Tensorflow, cujos resultados da avaliacéo
foram de AP 95,97%. A segunda etapa fez uso da técnica de segmentacdo semantica conhecida
como DeepLab, que também apresentou resultados significativos ao atingir um valor mloU de



70,3% para todas as classes envolvidas no processo. JA na etapa de extracdo das linhas de
contornos, adotou-se a técnica de visdo computacional conhecida como matting, dos seis algoritmos
avaliados para esta tarefa, apenas um apresentou um comportamento atipico, 0os demais resultaram
em uma preciséo global acima de 82%, bem como um valor de F-score superior a 0,83.
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ABSTRACT

The individual identification of organisms in nature is a powerful tool for observing animal
behavior, demographic dynamics and species migration patterns. However, in most cases individual
identification can be very demanding due to the constant process of capturing and recapturing
individuals for control, using artificial markers such as necklaces and rings. However, this concept
changed from the 1970s with the introduction of photo identification, which allowed the recognition
of individuals of a particular species through the presence unique characteristics recorded in images.
In the context of marine biology, there are promising works that focus on identification by adopting
computer vision techniques and classification algorithms based on artificial intelligence, to build
image catalogs of the populations under study. However, there are still several obstacles to be
overcome, especially when it comes to the individual identification of cetaceans, whose
identification uses marks found on the dorsal fins. Much research has been done to solve the
problem, but few have ventured to build an automated process for identifying the object of study.
Therefore, this work developed an automated process for the extraction of cetacean’s dorsal contour
line, aiming to eliminate the process of manual selection of individual characteristics. The creation
of this process, as well as the construction of a tool for the task was divided into three steps: (i)
dorsal location and detection; (ii) dorsal segmentation to separate it from the context of the scene;
and (iii) extraction of the contour line. In the first stage we used an object detection technique with
SSD Convolutional Neural Networks provided by the Tensorflow API, with evaluation results of
AP 95.97%. The second step made use of the semantic segmentation technique known as DeepLab,
which also presented significant results reaching a value of mloU 70.3% for all classes involved in
the process. In the contour lines extraction stage, we adopted the computer vision technique known
as matting. Of the six algorithms evaluated for this task, only one presented an atypical behavior,
the others resulted in an overall accuracy above 82%, as well as as an F-score greater than 0.83.
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1 INTRODUCAO

A identificacdo individual de organismos presentes na natureza é de grande valia para 0s
bidlogos. Este tipo de trabalho, permite explorar o comportamento de cada espécie, a dindmica
demografica de grupos e os padroes de migracao (BEARZI et al., 2005).

O método de identificacdo de individuos mais difundido no meio cientifico, exige a fixagdo
de marcas artificiais como, por exemplo, etiquetas, anilhas, dispositivos de monitoramento via radio
ou Global Positioning System (GPS) (IRVINE; WELLS; SCOTT, 1982; OSBOURN et al., 2011;
HOOVER et al., 2017).

Na maioria dos casos, esta técnica de identificacdo envolve o processo de captura e
recaptura do individuo para fixacdo da marca ou observacdo de marcas existentes. Trabalhos como
Saraux et al. (2011), Heide-Jgrgensen et al. (2017) e Norman et al. (2018), evidenciam que 0 uso
desta abordagem nos animais pode ocasionar estresse, mudangas no comportamento, ocorréncia de

infeccOes devido a perfuracdes e em alguns casos a morte de espécimes.

Em alguns grupos de animais, como os cetaceos (baleias e golfinhos), a captura ndo era um
processo viavel, fazendo com que os pesquisadores buscassem métodos alternativos para a
identificacdo individual. Nos anos 1970 iniciou-se a técnica de identificacdo de cetaceos através de
fotografias, mais difundida nas ultimas décadas devido a popularizacdo de maquinas fotogréficas
digitais (PERRIN; WURSIG; THEWISSEN, 2008). Essa técnica, tornou-se uma importante
ferramenta no processo de identificacdo individual, em virtude de sua caracteristica ndo invasiva de

abordagem dos individuos do objeto de estudo.

Esta técnica ndo invasiva, faz uso de padrbes de caracteristicas presentes no corpo dos
animais, durante o processo de identificacdo. Assim como as digitais de uma pessoa servem para
identifica-la dentro de um grupo ou populagdo, no reino animal é possivel identificar um individuo
de uma determinada espécie através de algum padréo de marcas (ARZOUMANIAN; HOLMBERG;
NORMAN, 2005; CARTER et al., 2014; ZHELEZNIAKQV et al., 2015).

Em mamiferos marinhos da ordem dos cetaceos, as marcas de identificagdo, podem ser
cortes nas bordas das nadadeiras dorsais dos golfinhos (MARKOWI; HARLIN; WURSIG, 2003),
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coloragdo ou padrdo da linha de contorno das nadadeiras das baleias jubarte (FRIDAY et al., 2000)
ou calosidades na parte superior da cabeca das baleias francas (YURKOV; CHERNUKHA, 2015).

Com a difusdo da técnica de identificacdo individual por meio de imagens digitais, houve
um aumento no volume de dados gerados durante esse processo. Em vista disso, observou-se que 0
trabalho mecénico de avaliagdo visual das caracteristicas de um individuo, em um catalogo de
imagens, torna-se dispendioso e cansativo, podendo levar o pesquisador a cometer erros apos

longos periodos de trabalho.

Visando a reducdo do esforco necessario para esta atividade, pesquisadores das areas de
Ciéncias Bioldgicas e Ciéncia da Computacdo, juntaram esforcos com intuito de criar softwares
capazes de avaliar grandes volumes de dados, apresentando apenas o0s resultados relevantes
encontrados durante o processo de comparacao das caracteristicas dos individuos. Permitindo dessa

forma, maior precisao e agilidade na tomada de decisdo do pesquisador.

Alguns exemplos de softwares que analisam o padrdo das marcas nas imagens Sao:
DARWIN (1993) que possibilita o usuério criar um catalogo de identificacdo de golfinhos através
da avaliacdo de padrbes das marcas existentes no contorno das nadadeiras dorsais; e a plataforma de
softwares do Wildbook (Wildbook: Software to Combat Extinction, 2016), iniciativa que consiste
em juntar varios pesquisadores do mundo, com intuito de criar algoritmos que possam auxiliar no

processo de identificacdo de individuos de diferentes espécies de animais.

O conceito basico de funcionamento dos softwares de identificagdo individual se divide em
duas etapas. A primeira, consiste em extrair as caracteristicas de interesse do animal, aplicando
técnicas de visdo computacional sobre as imagens digitais, como a extracdo do contorno das dorsais
de golfinhos (HALE, 2008) ou padrdo de texturas da pelagem (ZHELEZNIAKOQV et al., 2015). Na
segunda, aplica-se algum tipo de algoritmo de analise e classificacdo de padrbes nas caracteristicas
encontradas para o individuo avaliado, como por exemplo, Dynamic Time-Warping ou Naive

Bayesian Classifier.

O processo de execucdo das duas etapas do software, resulta em um ranking dos individuos
encontrados com as caracteristicas de interesse similares ao individuo avaliado. Desse modo, o
pesquisador podera selecionar com maior precisdo o individuo correspondente, incrementando as

informagdes relacionadas a ele nos dados do catalogo de imagens do objeto de estudo.
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Dentro do contexto apresentado, este trabalho focou na construgdo de um processo
automatizado para extracdo das caracteristicas de identificagdo das nadadeiras dorsais dos animais
da ordem dos cetaceos, utilizando técnicas de deteccdo de objetos e segmentacdo semantica
baseadas em Redes Neurais Convolucionais, que até o presente momento sdo consideradas como o
estado da arte para este conjunto de técnicas de visdo computacional. A construcdo deste processo
permitiu a criacdo de uma ferramenta automatizada para extracdo da linha de contorno, que permite
compartilhar os resultados obtidos com ferramentas que possam executar a etapa de identificacao
individual. O desenvolvimento deste trabalho também viabilizou a criacdo de um corpus de imagens
de cetdceos com as devidas anotagdes de localizacdo, segmentacdo e classificagdo dos individuos,
para que possam ser utilizados em trabalhos futuros.

1.1 PROBLEMA DE PESQUISA

Apesar dos esforcos relatados, sobre o desenvolvimento de softwares que auxiliam no
processo de identificacdo individual de animais, ainda existem alguns obstaculos a serem

transpassados.

Tratando-se de animais marinhos, mais especificamente os cetaceos, o principal obstaculo
encontrado é a auséncia de um mecanismo automatizado, que permita localizar o individuo na

imagem e extrair das caracteristicas necessarias para a identificacéo.

Este tipo de limitacdo pode ser constatado no software DARWIN, pois apos a selecdo da
imagem do individuo que serd identificado, o pesquisador € obrigado a informar manualmente a
localizacdo das extremidades inferiores de inicio e término da dorsal na imagem para delimitar a

area de extracdo do contorno da dorsal.

Outro exemplo, é o trabalho de Weideman et al. (2017), onde o software desenvolvido
demanda que o pesquisador realize o trabalno manual de recorte da imagem onde a dorsal do

tubardo esta localizada, antes de encaminha-la para a execugéo da identificagao.

A principal justificativa apresentada pelos autores dos softwares citados, para a auséncia de
tal mecanismo, concentra-se no problema relacionado a qualidade das imagens obtidas pelos

pesquisadores. Em imagens de animais marinhos, existem fatores presentes no habitat que podem
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dificultar a automatizacgao dos softwares de identificagdo individual, como por exemplo, reflexo da
luz, ondas, esguichos de agua e pouco contraste entre a coloracéo do individuo e do ambiente.

Contudo, iniciativas como o trabalho desenvolvido por Hughes e Burghardt (2016), para
identificacdo de tubarbes brancos atraves da nadadeira dorsal, bem como o trabalho de Yurkov e
Chernukha (2015), identificacdo baleias franca usando as calosidades presente em suas cabegas.
Ambos apresentaram bons resultados ao adotar técnicas hibridas que juntam algoritmos de viséo
computacional e aprendizado de maquina, para automatizar a primeira etapa de um software de

identificacdo individual.

Apesar do bom desempenho apresentado nos resultados dos trabalhos citados, os autores nao
apresentam evidéncias que validem a eficiéncia das técnicas escolhidas para automatizar o processo

de identificacdo individual, em imagens com condi¢es distintas de iluminacao, contraste e nitidez.

Portanto, este fato faz refletir sobre outro problema de pesquisa que deve ser explorado
nesse trabalho. Mesmo sendo factivel a possibilidade de replicacdo dos processos presentes nos
trabalhos citados, para o desenvolvimento de um software de identificacdo de pequenos cetaceos.
Sera necessario buscar um meio de avaliar a eficiéncia deste software, aplicando testes em imagens

que apresente condi¢des adversas de ambiente.

Observando os fatos apresentados se faz pertinente o levantamento dos seguintes

questionamentos para este projeto de dissertacao:

e E possivel implementar uma solucdo similar ao proposto no trabalho de Hughes e
Burghardt (2016), em uma ferramenta de extracdo das caracteristicas de identificacéo

individual de cetaceos?

e De que maneira é possivel avaliar a eficiéncia das técnicas adotadas na resolugdo do
problema proposto, em imagens que apresentem condi¢Oes adversas de ambiente,

visando resultados qualitativos ou quantitativos?

1.1.1 Solucéo Proposta

Diversas abordagens utilizando técnicas de visdo computacional ja foram propostas para a
solucéo do problema levantado (HALE, 2008; ANDREOTTI et al., 2017; CARVAJAL-GAMEZ et

al., 2017). No entanto, técnicas hibridas que misturam conceitos classicos do processamento de
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imagens digitais e algoritmos de aprendizado de méquina vem se destacando nos ultimos quinze

anos, principalmente na area de identificagdo individual de animais marinhos.

Portanto, este trabalho ird adotar como referéncia o trabalho de Hughes e Burghardt (2016),
cujo objetivo foi a construcdo de uma ferramenta automatizada para identificacdo individual de

grandes tubardes brancos.

Ao adotar os conceitos metodoldgicos propostos por Hughes e Burghardt (2016) no contexto

de identificacdo de pequenos cetaceos, busca-se confirmar a seguinte hipotese:

hl: A implementacdo de algoritmos de visdo computacional similares ao apresentado para
tubarBes brancos no trabalho de Hughes e Burghardt (2016), para a etapa de localizagéo e extracao
do contorno da dorsal, também se aplica a cetaceos.

1.1.2 Delimitacao de Escopo

Durante o levantamento dos trabalhos relacionados foi possivel observar que em quase todos
0s casos, 0s pesquisadores focaram no desenvolvimento solucdo completa para o problema de
identificacdo individual. Contudo, este trabalho focara apenas na automatizacdo do processo de
localizagéo da nadadeira dorsal e extragdo da linha de contorno, em imagens digitais, bem como, na

avaliacdo dos recursos incorporados nesse processo.

1.1.3 Justificativa

O Laboratdrio de Informatica da Biodiversidade e Geomatica (LIBGEQO) da Univali executa
varias atividades de pesquisa voltadas a espécies marinhas. Desde 2005 vem hospedando um
sistema de gestdo de dados sobre ocorréncia de mamiferos marinhos, o Sistema de Monitoramento
de Mamiferos Marinhos — SIMMAM (BARRETO et al., 2006), que atualmente possui mais de
30.000 registros de ocorréncia armazenados em sua base de dados. O LIBGEO coordena o Projeto
de Monitoramento de Praias da Bacia de Santos (PMP-BS), que é uma atividade desenvolvida para
0 atendimento da condicionante de licenciamento ambiental federal das atividades da Petrobras de
producédo e escoamento de petroleo e gas natural no Polo Pré-Sal da Bacia de Santos. O objetivo do
projeto é avaliar o impacto de producdo e escoamento de petréleo sobre as aves, tartarugas e

mamiferos marinhos, através do monitoramento das praias e do atendimento veterinario aos animais
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debilitados e coleta dos mortos. Uma das atribui¢cfes do LIBGEO é a gestdo dos dados destas

ocorréncias de animais na area do projeto.

Um dos pontos importantes para avaliar o possivel impacto é conhecer a distribuicdo dos
organismos e como estas podem variar ao longo do tempo. Um dos modos de se realizar esta
avaliacdo é o desenvolvimento de modelos de distribuicdo das espécies encontradas durante as
atividades de monitoramento, predicdo dos possiveis motivos de ocorréncia de encalhes
correlacionando as variaveis ambientais envolvidas e as ocorréncias de interacfes antropicas

evidenciados no momento do atendimento das ocorréncias.

Portanto, uma forma de contribuir com a constru¢cdo de um modelo de distribuicdo de
espécies e que vem de encontro a proposta deste trabalho, trata-se de melhorar o desempenho do
trabalho dos pesquisadores na atividade de identificacdo individual de pequenos cetaceos, buscando
a construcdo de um software consistente que automatize a etapa de localizacdo e extracdo das
caracteristicas da dorsal de cada individuo, encontrados durante as atividades de monitoramento do
PMP-BS. A identificacdo destes individuos utilizando imagens do proprio PMP-BS em conjunto
com outras bases de dados de imagens de projetos como, as imagens obtidas durante a execucao do
Projeto de Monitoramento de Cetaceos da Bacia de Santos (PMC-BS) (SISPMC, 2016), permitira
avaliar a distribuicdo espacial destes individuos na Bacia de Santos e consequentemente servira
como uma ferramenta que contribuira com a avaliacdo do impacto das atividades de producdo e

escoamento de petrdleo e gas sobre estes animais.

Adicionalmente, este trabalho também terda um papel importante nas pesquisas que
envolvem o uso de algoritmos de visao computacional, tendo em vista que os métodos apresentados
até o momento desconsideram a variabilidade da qualidade das imagens obtidas, bem como o

envolvimento de condi¢bes ambientais adversas que interferem na visualiza¢do do objeto do estudo.
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1.2 OBJETIVOS

1.2.1 Objetivo Geral

Construir um processo para automatizacdo da etapa de extracdo das caracteristicas de

identificacdo das nadadeiras dorsais para cetaceos, através de técnicas de visdo computacional.

1.2.2 Objetivos Especificos

1. Implementar e avaliar um método para deteccdo e extracdo de nadadeiras dorsais em

imagens de cetaceos.
2. Implementar e avaliar uma técnica de extracdo da linha de contorno da nadadeira dorsal

3. Desenvolver uma ferramenta que entregue as linhas de contornos das dorsais extraidas
de imagens digitais em arquivos do formato Portable Network Graphics (PNG), para que

possam ser utilizados em um software de identificacdo individual de cetaceos.

1.3 METODOLOGIA

Nesta secdo, serdo apresentados os procedimentos metodoldgicos que conduziram a

pesquisa, bem como as atividades executadas para cumprir 0s objetivos do trabalho.

1.3.1 Metodologia da Pesquisa

Este trabalho adotard o método indutivo, tendo em vista a necessidade de confirmar a

hip6tese levantada para o problema proposto.

A pesquisa tera abordagem quantitativa, pois pretende avaliar os resultados obtidos durante
os testes de desempenho da solucdo proposta para o trabalho, através do uso de métricas adotadas

pelos pesquisadores da area de visdo computacional.

Quanto a natureza da pesquisa, pode-se considerar que esta pesquisa € aplicada, pois tem por
objetivo aplicar na pratica uma solucdo para o problema proposto, considerando o interesse do

LIBGEO em ter um produto que contribua com os temas de pesquisas realizados no laboratério.
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1.3.2 Procedimentos Metodoldgicos

Do ponto de vista metodologico, foi efetuada uma pesquisa bibliogréafica através do processo
de revisdo sistematica, para definir o estado da arte das aplicacbes que empregam técnicas de visdo
computacional na extracdo das caracteristicas biométricas das nadadeiras dorsais, com intuito de

utiliza-las na identificacdo individual de animais marinhos.

1.4 ESTRUTURA DA DISSERTACAO

O trabalho esta dividido em seis capitulos. O Capitulo 1 contextualiza do tema proposto para

o trabalho.

O Capitulo 2 aborda a fundamentacdo tedrica para compreender melhor o contexto da
proposta deste trabalho, passando pelos conceitos de biometria animal e as principais técnicas de
visdo computacional utilizadas neste trabalho, deteccdo de objetos, segmentacdo de imagens e

extracdo da linha de contorno.

No Capitulo 3 é apresentado os resultados obtidos da pesquisa efetuada, buscando levantar
as informacOes relacionadas ao estado da arte do processo de obtencdo das caracteristicas de
identificacdo dos animais marinhos da ordem dos cetadceos. Durante a pesquisa abordou-se alguns

conceitos voltados a revisao sistematica da literatura.

O Capitulo 4 descreve as etapas da construcdo do processo de automatizacdo da etapa de

extracdo das caracteristicas de identificacdo das nadadeiras dorsais.

Tanto a avalicdo de cada etapa desenvolvida no Capitulo 4, bem como as discussfes destas

estdo presentes no Capitulo 5.

Ja o Capitulo 6 é destinado ao fechamento do tralho e contempla as conclusées e sugestdes

para trabalhos futuros.
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2 FUNDAMENTACAO TEORICA

Este capitulo apresentara alguns conceitos tedricos que embasam as pesquisas realizadas
para 0 desenvolvimento deste trabalho. Entre os assuntos apresentados estdo, a definicdo de
biometria animal e os conceitos de deteccdo de objetos, segmentacdo, algoritmos matting e métricas

de avaliacao.

2.1 BIOMETRIA ANIMAL

Trata-se de um campo de pesquisa em constante evolugdo, onde os pesquisadores das areas
de ciéncias bioldgicas e ecologistas avaliam os padrdes de caracteristicas dos animais visando a
classificacdo das espécies e identificagdo de individuos (KUMAR et al., 2017).

Uma das técnicas mais populares neste contexto de estudo é conhecida como foto
identificacdo (SPEED; MEEKAN; BRADSHAW, 2007). Esta técnica consiste na aquisicdo de
fotografias dos animais do objeto de estudo, buscando descrever as caracteristicas relevantes que
permitam a identificacdo dos individuos, através da observacdo das particularidades morfoldgicas e

comportamentais de cada espécie (KUMAR et al., 2017).

A identificacdo dos individuos através da observacdo das caracteristicas biométricas dos
mesmos, é considerada um recurso importante em estudos relacionados ao comportamento animal,
controle populacional e rastreamento individual ao longo do tempo (PERRIN; WURSIG;
THEWISSEN, 2008).

O levantamento dos padrdes morfolégicos e comportamentais dos animais conduzidos pelos
pesquisadores, consiste em capturar informacdes visuais de diferentes angulos e fontes, aplicando
métodos de amostragem conhecidos como captura e recaptura de marcas (SPEED; MEEKAN;
BRADSHAW, 2007).

Alguns exemplos de marcas avaliadas que pode-se citar s&o:

e Os padrdes de listras em zebras Equus quagga (LAHIRI et al., 2011) (Figura 1b);
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e Os pontos presentes na pelagem dos guepardos Acinonyx jubatus (KELLY, 2001) e
girafas Giraffa camelopardalis thornicrofti (HALLORAN; MURDOCH; BECKER,
2014) (Figura 1a e Figura 1c); e

e A pigmentacdo aparente na cauda das baleias jubarte Megaptera novaeangliae (TITOVA
etal., 2018) (Figura 1d).

Figura 1: Exemplos de marcas Unicas para identificagdo individual das espécies, (a) Giraffa camelopardalis
thornlcroftl (b) Equus quagga, (c) Acmonyx jubatus, (d) Megaptera novaeangliae.

(&

F.onte Adaptado de Halloran, Murdoche Becker (2014); Lahiri et al. (2011); Kelly (2001); Perrin, Wirsig e
Thewissen (2008).

No caso de cetaceos, as caracteristicas de identificacdo mais evidentes séo, a pigmentacdo da
nadadeira dorsal ou caudal (GILMAN et al., 2016) (Figura 2a), e os entalhes no entorno das dorsais
gerados por interacbes ambientais ou antropicas (KREHO et al., 1997) (Figura 2b), sendo a
segunda, o tipo de marca natural adotada com mais frequéncia por pesquisadores no processo de
identificacdo individual de golfinhos, uma vez que nem todas as espécies destes tipos de animais

apresentam pigmentacdo nas dorsais.
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Figura 2: Exemplos de caracteristicas de identificacdo, (a) pigmentacéo e (b)
entalhes no contorno da dorsal.

. - e}l
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Fonte: Adaptado de Gilman et al. (2016); Kreho et al. (1997).

Assim como a impressdo digital serve para identificar os seres humanos, o modelo
biométrico baseado nos entalhes no entorno das dorsais destes animais, funciona como um padrao
de identificacdo que permite distinguir cada individuo em um grupo ou populacdo. Este tipo de
padrdo é observado e fotografado pelos pesquisadores quando os animais expdem as dorsais para

fora da &gua durante o seu ciclo respiratorio.

Além disso, este tipo de abordagem de identificacdo possui duas vantagens importantes. A
primeira é a permanéncia a longo prazo, pois apesar de ocorrer a cicatrizacdo dos entalhes nas
dorsais, as marcas ficardo presentes ao longo de toda a vida do animal, ou seja, o local afetado ndo
se regenera. J& a segunda, refere-se ao fato de que as marcas podem ser vistas mesmo que a dorsal
do individuo esteja posicionada para a direita ou esquerda (PERRIN; WURSIG; THEWISSEN,
2008).

2.1.1 Sistemas de reconhecimento de biometria animal

Os sistemas especializados em reconhecimento de biometria animal sdo também conhecidos
e categorizados como sistemas de classificacdo de espécies ou identificacdo individual. Tem por
objetivo a deteccdo e classificagdo de animais através do reconhecimento dos padrdes de
caracteristicas (PERRIN; WURSIG; THEWISSEN, 2008).

Apesar de existir sistemas cujo objetivo é a classificacdo de animais de diferentes espécies,

como por exemplo o iNaturalist (2018). A maioria dos sistemas disponiveis para identificacdo
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individual focam na identificacdo de uma Unica espécie como o caso do Wildbook for Whale
Sharks (2018), voltado a identificacdo de tubardes baleia.

Basicamente, estes sistemas fazem uso de técnicas de visdo computacional como meio de
deteccdo, aquisicdo e representacdo computacional das caracteristicas morfologicas e biométricas
dos animais. Os dados coletados sdo extraidos e categorizados para a geracdo de modelos
morfoldgicos da espécie, onde posteriormente sdo processados por algoritmos desenvolvidos para a
etapa de identificacdo individual, também conhecida como etapa de comparagdo de individuos ou

do termo em inglés matching.

Kumar et al. (2017), descreve que um software consistente para identificacdo individual

baseado em biometria animal, conta com seis componentes importantes (Figura 3):
1. Sensores: equipamentos utilizados para aquisicdo de dados, por exemplo, maquinas
fotograficas ou cameras de armadilhas fotogréaficas (trapping camera).

2. Deteccdo da especie: utilizando como base as caracteristicas morfoldgicas e biométricas

dos animais.
3. Armazenamento: capacidade de armazenar os dados coletados e processados.

4. Matching: analise de correspondéncia de similaridade das imagens consultadas em
relacdo as imagens armazenadas no banco de dados, ou seja, execucdo do processo de
comparacao e identificacdo dos individuos.

5. Ranking: classificagdo dos resultados encontrados no processo de identificacdo

individual, através da delimitacdo de um valor de corte dos resultados.

6. Apresentacdo: visualizacdo dos resultados obtidos.



Figura 3: Diagrama dos principais componentes presentes em um software de identificagdo individual.
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Fonte: Kumar et al. (2017).

2.2 DETECCAO DE OBJETOS

A deteccdo de objetos € uma das técnicas de visdo computacional cujo o objetivo é

determinar onde o0s objetos estdo localizados em uma imagem e definir a qual categoria cada objeto

pertence. Conforme Zhao et al. (2018), nos Gltimos anos tanto na area de pesquisa quanto no

desenvolvimento de aplicagbes o uso desta técnica foi impulsionado pela adogdo de recursos de

aprendizado de maquina, como por exemplo, as Redes Neurais Artificiais (RNA). As RNA

permitiram melhorar o desempenho dos algoritmos de detecc¢do ao proporcionar recursos capazes de

entender a complexidade da dinamica dos objetos na cena.

Zhao et al. (2018) descreve que a deteccdo de objetos é basicamente composta por trés

passos:

1. Selecdo de regido informativa: consiste em utilizar uma técnica de busca de objetos em

qualquer regido da imagem, como por exemplo, a janela deslizante multi-escala;
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2. Extracdo de caracteristicas: técnica de reconhecimento de objetos, que utiliza descritores
de caracteristicas como, SIFT!, HOG? e Haar-like; e

3. ldentificacdo: identifica o objeto entre as distintas classes de um modelo, alguns
exemplos de técnicas implementadas neste passo sdo, Support Vector Machine (SVM) e
AdaBoost.

Apesar da forma simplista que foi descrita a técnica de deteccdo de objetos, os modelos
adotados neste trabalho utilizam alguns recursos sofisticados para melhorar o desempenho da tarefa,
como por exemplo, as redes neurais convolucionais do termo inglés Convolutional Neural Network
(CNN), descritores de regido de interesse e classificadores de objetos. Contudo antes de descrever
sobre as principais caracteristicas para cada arquitetura de detector de objetos, serd necessario
contextualizar alguns elementos que constituem uma RNA e também descrever os componentes

necessarios para transforma-la em uma CNN.

2.2.1 Redes Neurais Artificiais (RNA)

Nielsen (2015) descreve a RNA como um paradigma de programacdo inspirado
biologicamente no cérebro humano, que permite um computador aprender a partir de um conjunto
de dados. Ou seja, a RNA consiste em uma colecdo de perceptrons (neurdnios), que estdo
conectados através de unidades de camadas ocultas e por sua vez sdo ativados atraves de funcoes de

ativacdo, uma representacao analoga das sinapses neurais.

As funcbes de ativagdo possuem um papel importante na rede neural, elas evitam que esta
transforme-se em um modelo linear, ao decidir quando um perceptron deve ou ndo ser ativado
(SHANMUGAMANI, 2018).

Algumas das fung¢Ges mais utilizadas séo:

e Sigmoide: pode transformar valores em probabilidades, e também pode ser utilizada em

classificacOes binarias (Figura 4 (a));

! Scale-invariant feature transform (SIFT) ou do portugués, Transformagéo de recurso invariante de escala.
2 Histogram of oriented gradientes (HOG) termo em inglés para Histograma de gradientes orientados.



e Tangente hiperbodlica: semelhante a sigmoide permite suavizar e diferenciar os valores,

porém é mais estavel (Figura 4b); e

e Unidade linear retificada®: gera esparsidade entre os neurdnios da rede uma vez que

pode deixar passar apenas 0s valores maiores, isto gera o desuso de alguns neurdnios na

rede (Figura 4c).

Figura 4: Func0es de ativacdo. (a) Sigmoide; (b) Tangente hiperbdlica; (c) Unidade linear

retificada.

- | (a)

(c)

(b)

Fonte: Adéptado de Shanmugamani (2018).

Um modelo basico de RNA pode ser definido conforme a Figura 5, neste caso a primeira
camada € a de entrada de dados, as camadas do meio ou camadas ocultas formam a base néo linear
que mapeia as camadas de entrada para Ultima camada, a de saida. Os modelos de aprendizados de
uma rede sdo gerados a partir do calculo ponderado dos pesos e vieses, e estes sao atualizados a
cada passo do treino através do célculo de uma fungdo de perda utilizando os dados do padrdo

verdade como referéncia (SHANMUGAMANI, 2018).

3 Traducg&o em portugués para o termo em inglés Rectified Linear Unit (ReLU)
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Figura 5: Modelo de RNA.
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'Fonte: Adaptado de Nielsen (2015).

A funcdo de perda é de extrema importancia na construcdo de um modelo de RNA, pois esta
diretamente ligada a camada de saida de uma rede neural e consequentemente calcula o erro gerado
pelo modelo ao produzir um valor de saida (NIELSEN, 2015). Outra funcionalidade que pode ser
atribuida a funcdo de perda estd relacionada a observacdo dos valores retornados durante o
treinamento para definir se 0 mesmo deve ou ndo ser encerrado, ou seja, 0 encerramento podera ser
efetuado ao observar que o erro ndo pode ser reduzido ou que o valor ndo apresenta uma variacao

significativa.

Em problemas em que o resultado final do modelo deve gerar uma classificagdo dos dados
de entrada, a RNA deve contar com uma funcdo de ativacdo na camada de saida, que permita
classificar corretamente as informacgfes. A funcdo comumente utilizada nestes casos € a Softmax,
que converte todos os valores de saida em probabilidades de pertencerem a uma determinada classe
do modelo, ou seja, divide cada valor pela soma dos demais para criar o grau de confianca para a
classificacdo (NIELSEN, 2015).

Alguns modelos de rede neural tendem a ter problemas de sobreajuste, também conhecido
pelo termo em inglés overfitting. Trata-se dos casos onde o modelo adapta-se aos dados de
treinamento, porém com a entrada de novos valores gera varios erros nos resultados (NIELSEN,
2015). Para resolver este problema as RNA contam com métodos de regularizagcdo, como o Dropout
que remove aleatoriamente algumas unidades das camadas da rede, o L1 penaliza os valores
absolutos dos pesos tendendo a zera-los e o L2 que penaliza os valores quadrados dos pesos para
reduzi-los durante o treinamento (SHANMUGAMANI, 2018).
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2.2.2 CNN

As redes convolucionais essencialmente sdo muito parecidas com as RNA, porém nao
possuem 0s neurdnios totalmente conectados. Os neur6nios de uma CNN sdo organizados
volumetricamente, transformando um determinado volume de dados de entrada em um volume
diferente de dados de saida (SHANMUGAMANI, 2018). Em aplicacBes voltadas a visao
computacional, este volume de dados pode ser representado pelas camadas de cores RGB da
imagem (Figura 6).

Figura 6: Arquitetura basica de uma CNN.
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Fonte: Adaptado de Shanmugamani (2018).

2.2.2.1 Kernel

A operacdo de convolucdo de uma CNN funciona como extrator de caracteristicas de uma
imagem, preservando o relacionamento entre um conjunto de pixels ao aplicar um determinado
filtro com uma configuracdo de kernel. O kernel é formado por dois parametros, o primeiro diz
respeito ao tamanho do mesmo (e.g. 3x3), j& 0 segundo parametro remete a0 nUmero de passos
executados durante deslocamento (SHANMUGAMANI, 2018), a Figura 7 demostra um exemplo

de funcionamento do kernel.

Figura 7: CNN kernel.
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Fonte: Adaptado de Shanmugamani (2018).
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2.2.2.2 Pooling

As camadas de pooling sdo inseridas entre as camadas convolucionais, com intuito de
reduzir a dimensdo dos dados para acelerar o processamento da informacdo e também ¢é utilizada
como uma técnica de regularizacdo para evitar o overfitting. As opera¢cdes mais comuns para esta
camada consistem em obter o valor méximo (max-pooling) ou o valor médio para cada conjunto de
pixels (SHANMUGAMANI, 2018). A Figura 8 demonstra um exemplo das operacdes para a
camada.

Figura 8: Operacdo de pooling.
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Fonte: Adaptado de Shanmugamani (2018).

2.2.3 Regions of the Convolutional Neural Network (R-CNN)

Este modelo de deteccdo de objetos é o precursor da familia R-CNN, bem como foi o
primeiro a utilizar a busca seletiva descrita por Uijlings et al. (2013), para criar algumas propostas
de regides de interesse* (SHANMUGAMANI, 2018). A arquitetura do modelo esta representada na
Figura 9.

4 Regibes de interesse termo em portugués para Regions of Interest (Rol).
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Figura 9: Arquitetura R-CNN.
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Fonte: Adaptado de Girshick et al. (2014).

Conforme Girshick et al. (2014), 2000 propostas de regides sdo extraidas a partir de uma
imagem de entrada, cada regido € redimensionada para um tamanho fixo e processada por uma
CNN com intuito de obter os mapas de caracteristicas de identificacdo do objeto. No final estes
mapas fazem uso de uma SVM linear para classificar o objeto a partir das caracteristicas obtidas na

etapa anterior.

Shanmugamani (2018) aponta trés fatores que trazem desvantagens ao modelo proposto. O
primeiro é que o numero de regifes propostas a serem processadas € muito grande, tornando a
tarefa de deteccdo lenta. Outro fator negativo é a presenca de trés classificadores que precisam ser
treinados e isto aumenta 0 nimero de parametros da rede. O Gltimo € a auséncia de um treinamento

ponta a ponta.

2.2.4 Fast R-CNN

Na nova versdo do modelo desenvolvido por Girshick (2015), dado uma imagem de entrada
e um conjunto de regides de interesse o processo de identificacdo passa por uma rede totalmente
convolucional, para posteriormente extrair 0s mapas de caracteristicas fixos através de uma camada
de max-pooling para cada regido de interesse. Finalizando o processo em camadas totalmente
conectadas que produzem na saida um vetor de probabilidades gerados pelo softmax e outro vetor
de caixas delimitadoras de regressdo. A Figura 10 descreve a arquitetura para esta atualizagcdo do
modelo. Girshick (2015) descreve em seu trabalho que esta alteracdo do novo modelo deixou o

processo 9 vezes mais rapido que o seu antecessor.
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Figura 10: Arquitetura Fast R-CNN.
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Fonte: Girshick (2015).

2.2.5 Faster R-CNN

Este modelo foi o tltimo da familia R-CNN a ser desenvolvido, e também é um dos modelos

adotados neste trabalho. A Figura 11 apresenta a arquitetura do modelo com o ajuste efetuado para
0 mesmo.

Figura 11: Arquitetura Faster R-CNN.
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Fonte: Adaptado de Ren et al. (2015).
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Ren et al. (2015), descrevem que a principal alteracdo deste modelo em relacdo aos demais,
foi a substituicdo do algoritmo gerador de regifes propostas, por uma rede totalmente convolucional
que cria um mapa de caracteristicas para gerar um conjunto de regiGes propostas com objetos

retangulares, e cada um com sua respectiva pontuacéao de objetividade.

2.2.6 Single Shot MultiBox Detector (SSD)

Enquanto os modelos da familia R-CNN apresentam uma arquitetura que utiliza mais de
uma rede para obter a localizag&o dos objetos. O modelo SSD desenvolveu uma arquitetura de rede
unificada, para prever a localizacdo de multiplos objetos e descrever as caixas delimitadoras dos
mesmos, bem como entrega uma rede de alta performance capaz de rodar a 22 FPS com imagens de
resolugdo 500x500 pixels (SHANMUGAMANI, 2018). A Figura 12 apresenta o desenho da
arquitetura criada para este modelo de rede.

Figura 12: Arquitetura SSD.
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Fonte: Liu et al. (2016).

Conforme pode-se observar na Figura 12, cada etapa do modelo convolucional representa
uma camada de caracteriscas com diferentes tamanhos de kernel e profundidades. Esta
caracteristica do modelo permite a identificacdo de objetos em vérias escalas de tamanho (LIU et
al., 2016). Para classificar os possiveis objetos de uma determinada imagem, 0 processo de
convolugdo percorre 0 mapa de caracteristicas gerados para a mesma utilizando diferentes tamanhos
de kernel, e para cada kernel gerados no mapa sdo previstas mais quatro caixas delimitadoras com
deslocamento relativo a mesma regido (Figura 13), além de calcular a pontuacdo que indica a

presenca para cada classe do modelo.
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Figura 13: Caixas delimitadoras geradas pelas previsdes dos kernels da rede.
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Fonte: Adaptado de Liu et al. (2016).

Como o resultado final de todo o processo gera um grande nimero de caixas delimitadoras
dos possiveis objetos encontrados na imagem, bem como os respectivos valores de confianca para
as predicdes, foi necessario implementar uma forma de delimitar o nimero de itens preditos.
Portanto, Liu et al. (2016) adotaram o0 método non-maximum suppression® para definir um valor
minimo de confianca que ird determinar se uma caixa delimitadora pode ou ndo ser considerada

como uma predicao verdadeira.

2.2.7 Region-based Fully Convolutional Networks (R-FCN)

Dai et al. (2016), propuseram um modelo de rede para deteccdo de objetos semelhante ao R-
CNN, ou seja, possui duas etapas, uma para localizacdo das regides propostas e outra para
classificacdo destas. Contudo abordaram uma arquitetura de redes convolucional totalmente
conectada, ao compartilhar os recursos gerados entre as duas etapas do modelo, conforme pode ser

observado na representacdo da Figura 14.

5> Non-maximum suppression termo em inglés para supressao ndo maxima.
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Figura 14: Arquitetura R-FCN.
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Fonte: Adaptado de Dai et al. (2016).

Para cada regido de interesse gerada a partir da etapa de localizacdo, 0 modelo R-FCN
calcula a probabilidade de ocorréncia para 0 nimero de classes definidas durante o treinamento
mais 0 background para cada posicdo relativa da grade espacial k * k. O final do processo resulta
em 9 pontuac@es de classificacdo cuja a classificacdo geral é a média destas pontuacdes, que por sua

vez respondera se 0 objeto foi detectado corretamente.

2.3 SEGMENTACAO SEMANTICA

A tarefa da segmentacdo semantica consiste em atribuir um rétulo de classificagdo para cada
pixel na imagem (SHANMUGAMANI, 2018), conforme apresentado no exemplo da Figura 15.
Para atribuir estes rétulos de classificacdo aos pixels, torna-se necessario implementar recursos
precisos de identificacdo dos contornos dos objetos separando-os em segmentos distintos. Esta
metodologia definida para construcdo deste tipo de recurso, faz com que a arquitetura do modelo
seja mais rigorosa do que a propria deteccdo de objetos com caixas delimitadoras (LATEEF;
RUICHEK, 2019).
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Figura 15: Classificacdo dos pixels da imagem.

Fonte: Adaptado de DeepLab (218).

2.3.1 DeepLab

O DeeplLab é considerado até o momento como o estado da arte dos modelos de
segmentacdo semantica. O mesmo foi desenvolvido por pesquisadores da area de visdo
computacional da Google, a sua distribuicdo como cddigo aberto ocorreu em 2018 e atualmente

encontra-se na versao v3+.

Este modelo de segmentacdo € composto basicamente por duas etapas. A etapa de
codificacdo que consiste na extracdo de informacgdes essenciais da imagem utilizando uma CNN
pré-treinada, como por exemplo, a localizacdo dos objetos. E a etapa de decodificacdo, que faz uso
das informacGes extraidas para reconstruir a saida nas dimensdes originais da imagem de entrada
(LATEEF; RUICHEK, 2019).

Para contextualizar as etapas que envolvem o modelo, serdo apresentados nas subsecdes a

seguir as técnicas implementadas na construcdo da arquitetura do DeepLab.

2.3.1.1 Convolucao dilatada

Os primeiros modelos de redes totalmente convolucionais implementadas para a
segmentacdo semantica demonstrou-se eficiente e proporcionou bons resultados. No entanto, o uso

excessivo das operacdes de pooling em consecutivas camadas convolucionais reduziram
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significativamente a resolucdo dos mapas de caracteristicas. Esta caracteristica limita o uso deste
modelo em diferentes escalas de imagens (Chen et al., 2017).

Portanto, os idealizadores do DeepLab, adotaram a técnica de convolucdo dilatada®, que
altera o campo de visdo do kernel inserindo um parametro extra para definir a taxa de dilatagéo.
Conforme pode-se observar o exemplo desta operagdo na Figura 16, ao utilizar um kernel de 5x5
com taxa de dilatacdo 1, a operacdo de convolucdo dilatada gera um campo de viséo de 9 pixels

enguanto na operacao convencional ocupa 25 pixels.

Figura 16: Tipos de convolugdes. (a) convolucdo dilatada; (b)
convolucdo padréo.

(a)

(b)

Fonte: Adaptado de DeepLab (2018).

Chen et al., (2017) relatam que a adocdo desta técnica permite calcular as respostas das
camadas extratoras de caracteristicas de uma rede para qualquer escala de mapas geradas pelas
mesmas, conforme pode ser observado através de um exemplo basico de funcionamento da mesma
na Figura 17. Dado uma imagem de entrada, primeiramente aplica-se a reducao de seu tamanho por
um fator de 2, em seguida aplica-se uma operacdo de convolucdo padrdo. O mapa de caracteristicas
gerado pela operagédo passa por um filtro com furos do mesmo tamanho da imagem de entrada para
ajustar os pixels do mapa de caracteristicas a0 mesmo tamanho, onde 0s espagos vazios
remanescentes sdo preenchidos com o valor zero. Por sua vez a convolugédo dilatada analisa a
imagem no tamanho original gerando o mapa correspondente aos valores vazios, os resultados das

operacdes sdo somados para gerar 0 mapa de caracteristicas final.

& Convolugio dilatada, uma tradugéo informal para o termo em inglés Atrous convolution.
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Figura 17: Passos para criacdo do mapa de caracteristicas com convolucdo dilatada.
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Fonte: Adaptado de Chen et al., (2017).

2.3.1.2 Pooling da piramide espacial de dilatacéo

Considerando que um mesmo tipo de objeto pode ser representado por diferentes escalas em
uma imagem, Chen et al. (2017) introduziram ao DeepLab a técnica de pooling da pirdmide
espacial de dilatacdo’ para a etapa de codificacdo. A operacio une paralelamente as convolugdes de
dilatacdo com diferentes taxas de dilatacdo na entrada do mapa de caracteristicas para reconstruir as

informacdes geradas em diferentes tamanhos nas camadas de convolucdo padréo (Figura 18).

" Pooling da piramide espacial de dilatacéo, traducéo do termo em inglés Atrous Spatial Pyramid Pooling (ASPP)
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Figura 18: Operacédo de multiplas convolugdes de dilatacdo.
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Fonte: Adaptado de Chen et al., (2017).

2.3.1.3 Decodificador

Chen et al. (2018) implementaram em seu trabalho, o recurso de decodificacao para refinar o
resultado da segmentacdo no contorno dos limites dos objetos. A arquitetura da recente versdo do

DeepLab, é descrita através do diagrama da Figura 19.

Como pode-se observar, o decodificador faz uso das camadas de caracteristicas de baixo
nivel obtidas através das operagdes de convolugdes de dilatagdo, que posteriormente passa por uma
operacdo bésica de convolugdo 1x1 para concatenar com o resultado da etapa de codificacéo,
seguido de algumas convolugBes 3x3 para refinar as caracteristicas dos objetos e finalizando com o

redimensionamento de fator 4 para remontar 0s segmentos ao tamanho original da imagem.
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2.4 MATTING

Wang e Cohen (2007) descrevem que o matting é uma técnica de visdo computacional
destinada a separagdo precisa de um determinado objeto em primeiro plano (foreground) do
contexto residual em segundo plano (background)®. Uma traducéo literal de matting para portugués
seria fosqueamento, ou seja, tornar o contexto do foreground fosco, que também pode ser
interpretado como a producdo de uma camada de transparéncia (alpha). A camada alpha define a
opacidade dos pixels do foreground, através da faixa de valores entre 0 e 1 (BODA; PANDYA,
2018).

Conforme Boda e Pandya (2018), as técnicas de matting estdo divididas em trés categorias:

e Baseado em amostragem: trata-se de algoritmos como o de Chuang et al. (2001), que
trabalham com a estimativa de cores entre foreground e background para calcular a cada
pixel alpha, os modelos cléssicos desta categoria trabalham com o relacionamento

existente entre as amostras de pixels vizinhos e os parametros alpha. Ja os métodos

8 Os respectivos termos em inglés para primeiro plano e plano de fundo foreground e background, serdo utilizados no
decorrer da dissertacdo sempre que for necessario contextualizar a separagdo entre um objeto e o plano de fundo.
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otimizados coletam um conjunto de pixels proximos ao foreground e background

utilizando-os para adaptar o algoritmo matting;

e Baseado em propagacdo: este tipo de técnica foca na propagacdo da camada alpha
através de modelos hibridos que fazem uso dos algoritmos baseados em amostragem.
Como ¢ o caso do algoritmo Knn criado por Chen, Li e Tang (2013), que aborda esta
metodologia ao determinar que os pixels vizinhos ao pixel avaliado incorporem 0s
valores alpha semelhantes ao mesmo. Neste mesmo contexto estéo os algoritmos Closed
form de Levin, Lischinski e Weiss (2007) e Large Kernel Matting (Lkm) de He, Sun e
Tang (2010), que operam em uma area em torno do pixel avaliado para determinar o
fluxo de dados presente no local e propagar os valores adequadamente, algo semelhante
acontece no algoritmo Information Flow Matting (Ifm) de Aksoy, Aydin e Pollefeys,
2017), que controla o fluxo de dados das regides de foreground e background para a

regido de interseccdo através das defini¢bes de afinidade entre os pixels; e

e Baseado em aprendizado: as técnicas baseadas em aprendizado local aprendem sobre a
distribuicdo dos pixels alpha vizinhos do que esta sendo estimado para gerar o valor do
mesmo. Nos casos de aprendizado global como o modelo implementado por Zheng e
Kambhamettu (2009), o algoritmo aprende sobre algum pixel previamente rotulado que
esteja mais proximo ao pixel avaliado para adequar-se ao melhor matting baseado em

trimap.

2.4.1 Trimap

O trimap é um mapa de segmentos que divide a imagem em trés regides definitivas,
foreground, background e regido desconhecida ou a area de interseccdo entre o objeto e o restante
da cena. Esta abordagem é utilizada na maioria dos algoritmos matting, e permite delimitar a regido
de interesse que deve ser processada pelo algoritmo (WANG; COHEN, 2007). A Figura 20

demonstra os passos da operagao de matting utilizando o trimap.
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Figura 20: Exemplo da operacdo de matting.
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Fonte: Adaptado de Wang e Cohen (2007).

Comumente o trimap é gerado manualmente pelo usuario e a definicdo da éarea de
interseccdo deve ser precisa, cobrindo apenas os pixels que realmente interessam para o contexto do
objeto. Portanto, quanto mais fino o trimap, menor serda 0 nimero de pixels que devera ser

estimado.

Contudo, como este trabalho almeja a constru¢do de um processo totalmente automatizado,
a criacdo do trimap sera guiado com base na linha gerada pela etapa de segmentacdo, ou seja, a
linha do segmento substituira a descricdo manual da area de interseccdo. A metodologia adotada

para a criacdo do trimap esté descrita na se¢éo 4.3.

2.5 METRICAS DE AVALIACAO

Conforme Shanmugamani (2018), as métricas de avaliacdo sdo de extrema importancia para
as tarefas de aprendizado de maquina, pois permitem entender o comportamento dos modelos

criados ao avaliar 0 qudo preciso sdo ao executar uma determinada tarefa.

Nas tarefas de deteccdo de objetos a métrica comumente utilizada é a Precisdo Média
também conhecida pelo termo em inglés Average Precision (AP). No entanto, para avaliar se o
recurso de deteccdo de objetos localizou corretamente um determinado objeto em uma imagem,
utiliza-se a unidade de medida conhecida como Interseccdo Sobre a Unido ou Intersection Over
Union (loU) (SHANMUGAMANI, 2018).

2.5.1 Intersection Over Union (loU)

O loU avalia o percentual de sobreposicdo de duas caixas delimitadoras, sendo uma destas
caixas o padréo verdade criado a mao por uma pessoa e a outra resultante da detecgdo de objetos,
conforme pode ser observado na Figura 21 (EVERINGHAM et al., 2010).
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Figura 21: Avaliacéo da sobreposi¢éo das caixas delimitadoras para a detec¢do de
objetos.

Padrao verdade

Predigao

area de sobreposigao

loU =

area de uniao

Uniao

Fonte: Compilacéo do autor.

Portanto, o valor resultante do loU é dado pela Equagdo (1). Onde B, € a caixa prevista,

B, € a caixa do padrdo verdade, B, N B, denota a intersecdo e B, U B, a unido.

0 = area(B, N Bg:) (@D)]
° area(B, UBy)

Através do valor resultante € possivel declarar se uma determinada detec¢do do modelo é
verdadeira ou falsa. Para isto basta definir um limiar de corte, como por exemplo, o valor 0,5
definido pelo PASCAL VOC (EVERINGHAM et al., 2010), ou a escala de valores entre 0,5 a 0,95
determinado pelo conjunto de métricas de avaliagdo do COCO (2015).

Durante a avaliacdo dos resultados para este trabalho o loU também foi adotado como
métrica de avaliacdo da etapa de segmentacdo. Contudo, conforme seréa apresentado na se¢do 5.1.2
do capitulo 5, os valores obtidos representam a media ponderada para loU (mloU).
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2.5.2 Average Precision (AP)

Conforme Everingham et al. (2010), o AP resume a forma da curva de precisdo e revocagio®
a partir dos resultados de classificacdo para um determinado método, ou seja, 0 AP é basicamente a
média da precisdo sobre todos os valores de revocagdo entre 0 e 1. Para melhor entendimento de
como o valor de avaliacao é obtido, sera necessario explicar os conceitos que envolvem a obtencéo

dos resultados da curva de preciséo e revocacao.

2.5.2.1 Precisdo e revocacao

A precisdo mede a porcentagem de previsdes verdadeiras positivas que foram encontradas
por um determinado modelo, cujo valor é obtido através da Equacéo (2). J& a revocacao quantifica a
capacidade de um modelo prever todas as informaces relevantes e seu valor é dado pela Equagéo
(3). Sendo tp os verdadeiros positivos ou previsdes corretas, valor definido pelo limiar de corte da
avaliacdo do loU (e.g. = 0,5). O fp é o equivalente aos falsos positivos ou detecgdes erradas loU
(e.g. <0,5) e o fn séo as definicbes do padrdo verdade que ndo foram previstas pelo modelo
(EVERINGHAM et al., 2010).

t
Precisao = P 2
tp + fp
t
Revocacao = P )
tp+ fn

2.5.2.2 AP -PASCAL VOC

O PASCAL VOC foi uma competicdo voltada a avaliacdo de desempenho de modelos de
deteccdo de objetos e segmentacdo que ocorreu entre 0s anos de 2005 a 2012, onde incorporou a
métrica AP a partir de 2007 como o metodo de avaliacdo padrdo para as deteccOes de objetos
(EVERINGHAM et al., 2010).

® Revocagéo é uma tradugdo ndo literal para o termo em inglés Recall.
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O célculo de AP definido pela Equacéo (4), infere a interpolacdo dos valores de preciséo

sobre os 11 pontos de revocacgdo entre 0 e 1. Onde r é a precisdo medida no ponto de revocagéo r'.

(4)

AP = L Z Pinterp™
11

r€{0,0.1,..,1}

onde

Pinterp™ = max p(r’)
rrzr

A métrica AP do PASCAL VOC é calculada para todas as classes presentes em um modelo
preditivo, no entanto um valor global também é calculado ao final do processo de avaliacdo. Trata-

se da média ponderada sobre os produtos de AP para todas as classes do modelo (MAP).

2.5.23 AP-COCO

O célculo de AP para a métrica de avaliagio COCO (2015) compartilha de alguns dos
conceitos da avaliacdo do PASCAL VOC, as diferencas ficam para o nimero de interpolacdes que
sai de 11 para 101 (e.g. {0,0.01,...1}), além do valor de mAP que é gerado a partir de 10 valores de
loU entre 0,5 a 0,95.

2.5.3 F-score

O F-score ou medida F, mede a precisdo de um determinado teste baseando-se na média
harmonica da curva de precisao e revocacdao (MARTIN; FOWLKES; MALIK, 2004). E seu valor é
dado pela Equacéo (5).

precisdo * revocagio (5)

F=2x — —
precisdo + revocagao

Este método é comumente utilizado na avaliacdo de técnicas de deteccdo de contorno, como

por exemplo, o algoritmo desenvolvido por Canny (1986).
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No entanto, ao avaliar os pixels de um contorno gerado pela tarefa e o contorno criado como
padrdo verdade por um humano, a probabilidade de se obter a correspondéncia exata destes pixels é
baixa, principalmente quando comparado a uma Unica amostra de padrdo verdade (Figura 22).
Portanto, este tipo de abordagem pode declarar que os resultados obtidos pela tarefa de detecgédo séo

imprecisos, mesmo que este tenha gerado contornos utilizaveis (ARBELAEZ et al., 2010).

Prevendo este tipo de limitagdo Martin, Fowlkes e Malik (2004), criaram um algoritmo de
avaliacdo de deteccdo de contorno mais flexivel que a medida F-score padrdo, ou seja, esta
avaliacdo tende a ser mais tolerante no que diz respeito a pequenos deslocamentos da linha
detectada.

Figura 22: Correspondéncias dos pixels da linha de contorno. Em vermelho
a linha do padréo verdade, em amarelo a linha predita pelo algoritmo.

Fonte: Compilacéo do autor.

Portanto, neste trabalho optou-se por utilizar a métrica criada por Martin, Fowlkes e Malik
(2004) durante a avaliagao da etapa de extracdo da linha de contorno, pois os resultados obtidos néo
se enquadram ao modelo de avaliacéo restrito do F-score padrao.
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3 TRABALHOS RELACIONADOS

Buscando apresentar o estado da arte dos trabalhos voltados a identificacdo individual de
mamiferos marinhos da ordem dos cetaceos, foi realizada uma pesquisa seguindo alguns conceitos

da revisdo sistematica.

A pesquisa do tema foi realizada em fevereiro de 2018 e focou na consulta dos repositorios

de artigos, IEEE, Science Direct, ACM, Springer Link, Scopus e Google Scholar.

Como critério de inclusdo definiu-se que os artigos deveriam ser todos em inglés e ndo seria
adotado o critério temporal relacionado ao periodo de publicagdo, devido a necessidade de
contextualizar a evolugdo das solucbes adotadas para a resolucdo do problema proposto até o
presente momento. Por outro lado, o critério de exclusdo que foi estabelecido ignora qualquer
trabalho cuja as caracteristicas adotadas para a identificacdo individual ndo sejam provenientes das

nadadeiras dorsais dos individuos.
Outro objetivo da pesquisa realizada é responder 0s seguintes questionamentos:

e Q1: Quais trabalhos fazem uso de técnicas de visdo computacional para extrair as
caracteristicas necessarias para identificacdo individual a partir da linha de contorno da

dorsal dos individuos?

e Q2: Dos trabalhos que satisfazem a Q1, quais realizam o processo de extracdo das
caracteristicas do contorno da dorsal sem a interacdo humana, ou seja, automatiza o

processo?

e Q3: entre os trabalhos avaliados, quais aplicam testes de validacdo do desempenho para

etapa de extracdo das caracteristicas do contorno da dorsal?

A string de busca foi construida pensando encontrar artigos voltados principalmente na

identificacdo individual baseada em fotografias tiradas das nadadeiras dorsais dos individuos.
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String de busca:

e ("photo-id" OR "photo identification” OR "individual identification” OR ™animal
identification” OR "animal biometric™) AND ("fin" OR "dorsal") AND ("dolphin™ OR

"cetacea” OR "delphinidae™).

O Quadro 1 apresenta dos resultados obtidos com as buscas efetuadas nos repositorios.

Quadro 1. Lista de titulos dos trabalhos relacionados.

Repositorio Quantidade de artigos Quantidade de artigos
retornados na consulta encontrados relacionados ao
tema do trabalho
IEE 4 1
Science Direct 247 0
Springer Link 160 3
ACM 0 0
Scopus 72 0
Google Scholar 4550 4

Considerando os termos escolhidos para definir os critérios da string de busca observa-se
que, a pesquisa realizada no Google Scholar encontrou dois artigos que remetem ao repositério
IEEE, vide Quadro 2. Contudo, as buscas nestes repositorios com a mesma string nao retornaram os

artigos em questao.

A busca realizada na Scopus retornou como resultado o trabalho de Genov et al. (2018). No
entanto, este foi desconsiderado pois 0 método de identificacdo abordado no trabalho faz uso das
carateristicas faciais dos individuos para identificacdo, fugindo do escopo definido para este
trabalho.

E importante ressaltar um detalhe sobre os trabalhos 7 e 8 listados no Quadro 2 como
trabalhos relacionados. Apesar de tratarem da identificacdo individual de animais que né&o
pertencem a ordem dos cetaceos, ao comparar as nadadeiras dorsais de um tubardo branco e um
golfinho ¢ possivel observar a semelhangca morfoldgica entre as diferentes espécies, viabilizando a

implementacdo da metodologia apresentada nesses trabalhos para os dois tipos de animais.
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N° Artigo Autor/Ano Repositdrio
1 |"Finscan", a Computer System for Photographic Hillmanetal., |IEEE
Identification of Marine Animals (2002)
2 | Unsupervised Thresholding for Automatic Extraction | Hale (2008) Google Scholar
of Dolphin Dorsal Fin Outlines from Digital
Photographs in DARWIN
3 | Computer-assisted Recognition Of Dolphin Individuals | Gilman et al. IEEE
Using Dorsal Fin Pigmentations (2016)
4 | Photo-id of blue whale by means of the dorsal fin using | Carvajal- Springer Link
clustering algorithms and color local complexity Géamez et al.
estimation for mobile devices (2017)
5 |Integral Curvature Representation and Matching Weideman et IEEE !
Algorithms for Identification of Dolphins and Whales |al. (2017)
6 |Wild Cetacea Identification using Image Metadata Pollicelli, Google Scholar
Coscarella e
Delrieux (2017)
7 | Automated Visual Fin Identification of Individual Hughes e Springer Link
Great White Sharks Burghardt
(2016)
8 | Semi-automated software for dorsal fin photographic | Andreotti et al. | Springer Link
identification of marine species: application to (2017)
Carcharodon carcharias

A seguir sera explorado com mais detalhes os trabalhos citados no Quadro 2.

3.1 FINSCAN, UM SISTEMA DE IDENTIFICAQAO FOTOGRAFICA PARA
ANIMAIS MARINHOS
O Finscan foi um software desenvolvido para auxiliar os pesquisadores no processo de
identificagdo de animais marinhos como, golfinhos, baleias e tubarées (HILLMAN et al., 2002).

O software foi alterado ao longo de anos, almejando sempre a evolucdo do processo de
identificacdo individual (ARAABI et al., 2000). A Figura 23, apresenta o diagrama das etapas de

execucdo do software.

10 Artigos mantidos pela IEEE, porém foram encontrados durante a pesquisa no Google Scholar.
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Figura 23: Diagrama de execugéo do software Finscan.
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Fonte: Fonte: Araabi et al. (2000).

Os dois primeiros modulos apresentados no diagrama da Figura 23 foram desenvolvidos e
descritos no trabalho de Kreho et al. (1997). No primeiro modulo foi implementada a técnica de
deteccdo de contornos Laplacian of Gaussian (LoG), ja o segundo mddulo focou na implementacao

do descritor da curvatura.

O trabalho de Kreho et al. (1997), também abordou dois métodos de comparacéo as linhas

de contorno.

O método Dorsal Ratio Matching, conhecido como um método manual de identificacdo
Dorsal Ratio (DR), determina que a comparacdo € realizada a partir da distancia entre os dois
entalhes mais significantes da dorsal dividido pela distancia do menor entalhe encontrado no topo
da mesma, conforme representado na Figura 24. No entanto, este método néo era eficiente quando

confrontado a dorsais de individuos que apresentem mais que dois entalhes significativos.



56

Figura 24: DR, método manual de
identificacdo individual
Tip

Fonte: Araabi et al. (2000).

Portanto, para suprir esta deficiéncia os autores implementaram o Curve Matching que
apresentou resultados melhores que o DR. Este método utiliza uma funcdo de diferenca para avaliar

a semelhanca entre as curvas dos entalhes da dorsal ao comparar dois individuos.

Contudo, percebeu-se que o modelo de comparacdo de curvas em algumas ocasides
contribuiu mais ao avaliar entalhes menos significativos do que os mais significativos. Por este
motivo Hillman et al. (2002), resolveram adotar o método de comparacdo baseado em uma

representacdo de cadeia de caracteres “string”.

O método em questdo considera que os entalhes no contorno da dorsal dos individuos
podem ser representados por funcOes de curvatura, onde atributos de medicdo como largura,
comprimento, altura, profundidade, area, posicdo podem ser representados por notacfes primitivas

como “a” e “b” (Figura 25).

Figura 25: Notac6es primitivas e atributos de medidas
do contorno da dorsal.
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Fonte: Araabi et al. (2000).
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Dois modelos de notacdo foram implementados, o Low-level String Representation (LLS) e
High-level String Representation (HLS) baseado no LLS. O LLS caracteriza-se como uma
representacdo tolerante a flutuacdes ou ruidos, j& 0 HLS mescla as caracteristicas insignificantes,
considerando apenas as representaces mais significativas geradas pelo LSS. A Figura 26 denota a

forma de representacdo de cada modelo.

Figura 26: (a) notagdes primitivas do contorno da dorsal, (b) modelo
de representacdo LSS e (c) modelo de representagdo HLS.
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Fonte: Araabi et al. (2000).

Para a etapa de comparacao e identificacdo de individuos foi criado um método de medida
das distancias sintaticas/semanticas para as representacfes primitivas LSS e HLS. O método é

modelado no trabalho pela Equacao (6).
Dare(51,52) = ) Ay (att)(d; / dywy ®
i

Onde i é o index dos valores primitivos, (d; /d) € o comprimento normalizado de cada
primitivo, w; é o peso de dependéncia da sintaxe com base na matriz dos pesos de substituicao e A;
(att) € o peso de dependéncia semantica que reflete na diferenca de valores entre os atributos de

duas strings.
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Os testes realizados por Araabi et al. (2000), envolveram um conjunto de 624 imagens para
uma populagdo de 164 golfinhos encontrados no Golfo do México, destes oito individuos possuiam
apenas uma imagem e por este motivo foram descartados da base de dados de testes. Para o restante
dos individuos uma imagem de cada foi selecionada para realizar a compara¢do com as demais

imagens inseridas na base de testes da aplicacéo.

A avaliacdo dos resultados abrange os testes considerando os métodos DR e a comparagao
da curvatura proposto no trabalho de Kreho et al. (1997), bem como o método de comparacéo de
string e uma versdo hibrida que junta a comparagédo de curva com a string. Os resultados obtidos
podem ser observados na Figura 27, o eixo vertical do grafico define a porcentagem de imagens
classificadas corretamente como top-1 do ranking, ja o eixo horizontal define o nimero de
individuos examinados antes de encontrar a primeira correspondéncia valida durante a comparacgéo
de dorsais.

Figura 27: Resultados obtidos por Araabi et al. (2000), ao avaliar os algoritmos de
correspondéncia das dorsais.
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3.2 THRESHQLD NAO SUPERVISIONADO PARA EXTRAC}AO
AUTOMARICA DA LI!\IHA DE CONTORNO DA DORSAL DE
GOLFINGOS ATRAVES DE FOTOGRAFIAS DIGITAIS NO
SOFTWARE DARWIN

O trabalho de Hale (2008), consiste em criar um método semiautomatico de extracdo do
contorno da dorsal dos golfinhos, utilizando a técnica de segmentacdo conhecida como threshold

ndo supervisionado.

O método proposto pelo autor adota duas abordagens distintas, com intuito de reduzir ao
méaximo o trabalho manual de sele¢do do contorno da dorsal dos golfinhos. A Figura 28 apresenta

0S passos para extracao da linha de contorno.

A primeira abordagem trabalha com a imagem colorida, sem executar qualquer tipo de

alteracdo antes do processamento. Esta abordagem € executada em trés etapas:

e Binarizacdo: com a imagem transformada em escala de cinza, o processo efetua a analise
do histograma para determinar o valor do threshold. Ao encontrar o primeiro vale do
histograma seleciona-se o valor da constante de intensidade da binarizagao;

e Processo morfoldgico: aplica-se técnicas de erosao e dilatacdo para remocao dos ruidos;

e

e Selecdo do contorno da dorsal: seleciona 0 maior elemento ap6s o processo morfolégico,
uma copia deste elemento é criada e aplica-se o procedimento de erosdao uma Unica vez,
em seguida os dois elementos sdo comparados utilizando o operador légico (XOR) que

resulta na linha de contorno da dorsal.
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Figura 28: Passos para a etapa de geracdo do contorno da
dorsal.

A== b = Sc

Fonte: Hale (2008).

O autor descreve que com a primeira abordagem, de 302 imagens processadas 96 néo
produziram linhas de contorno passivel de serem utilizadas na etapa de identificacdo de individuo.

Esta falha ocorreu devido a incidéncia da reflexdo de luz nas dorsais.

Portanto, para suprir esta deficiéncia o autor criou uma segunda abordagem, que consiste em
utilizar a cor ciano do sistema de cores CMYK para encontrar o valor do threshold para a etapa de

binarizacdo da imagem.

Quase todo o processo da segunda abordagem tem como base as etapas apresentadas na
primeira abordagem, com excecdo da etapa de binarizacdo. O autor adotou uma métrica de
avaliacdo da capacidade de construgdo de areas solidas através do método de segmentacéo.

Esta métrica avalia as conexdes de cada pixel com os seus vizinhos determinando um peso.
Uma media é gerada a partir dos pesos, 0 que permite avaliar a qualidade da segmentacdo. Este
processo € aplicado para os valores de threshold que variam de 0 a 160, onde o valor do primeiro
local minimo é selecionado como o ideal para a etapa de binarizacgéo (Figura 29).
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Figura 29: Grafico de qualidade de segmentacdo, primeiro valor minimo ideal para o threshold é t=65.
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Fonte: Hale (2008).

Os resultados apresentados pelos autores descrevem que de 302 imagens utilizadas para
teste 35.1% geraram linhas Uteis para o processo de identificacdo sem a necessidade de
modificacdo, 33.11% das imagens precisaram de algum tipo de modificacdo posterior para gerar
linhas uteis. Das imagens restantes 31,79%, ou seja, 96 imagens resultaram em linhas inconsistentes

para o processo de identificacéo.

Ja para a segunda abordagem os autores utilizaram 94 imagens diferentes do primeiro
conjunto de imagens aplicadas na primeira abordagem. Onde 48 imagens (51%) produziram linhas

Uteis para o processo de identificacdo, sem aplicar qualquer tipo de modificacdo na imagem.

Apesar do bom resultado apresentado no trabalho, é importante destacar que o processo de
extracdo do contorno da dorsal do golfinho nédo é totalmente automatizado.

O autor deixa claro no texto que, antes de executar o processo, 0 usuario € obrigado a
informar o ponto de inicio e término da dorsal. Esta acdo permite delimitar a area de busca,

reduzindo a chance de erros e melhorando a qualidade das informagdes do histograma da imagem.
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3.3 RECONHECIMENTO INDIVIDUAL DE GOLFINHOS UTILIZANDO A
PIGMENTACAO DA DORSAL
Este trabalho adotou uma abordagem oposta aos demais trabalhos encontrados na literatura,
ou seja, fez uso da pigmentacdo presente na dorsal do golfinho como atributo do processo de

identificacdo individual (Figura 30).

Conforme Gilman et al. (2016), a abordagem escolhida para a identificacdo individual se
justifica, pois, a pigmentacdo encontrada nos golfinhos ndo apresenta bordas ou pontos
pontiagudos, isso permite trabalhar com métodos de quantificacdo de pigmentacéo.

Figura 30: Pigmentac&o na dorsal dos golfinhos comuns (Delphinus
spp.), encontrados em New Zealand.

Fonte: Gilman et al. (2016).

Considerando que os valores das caracteristicas para cada individuo a ser identificado viriam
da pigmentacdo da dorsal, os autores decidiram aplicar um esquema de subdivisdo da dorsal em
areas menores, permitindo empregar um processo estatistico robusto para obtencdo dos valores

utilizados na etapa de identificagdo.

A subdivisdo é aplicada a duas abordagens, sendo a primeira com base na distancia mais
préxima da borda, ja a segunda consiste em segmentos de grade ao longo do eixo perpendicular a
base da dorsal, conforme apresentado pela Figura 31.
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Figura 31: Esquemas de subdivisdo da dorsal, grid a esquerda e baseado no contorno a direita.

Fonte: Gilman et al. (2016).

Os passos seguintes do processo de extracdo de caracteristicas envolvem, a normalizacdo de
valores dos pixels da imagem convertida para escala de cinza, subtraindo a média e dividindo pelo
desvio padrdo de todos os pixels. Bem como, aplicando o calculo estatistico da média, mediana e
intervalo interquartil nas 42 subdivis@es, seguido de varios métodos de desvio padréo.

A etapa de identificacdo do individuo foi construida pensando na classificacdo das imagens

dos individuos e divide-se em duas etapas:

e Ranking das caracteristicas: criagdo do subconjunto de caracteristicas que representarao
0 individuo durante a identificacdo. A correlacdo dos dados do conjunto é avaliada

através do método de correlacéo t-score.

e Treinamento: a etapa de classificacdo fez uso da técnica estatistica de combinacao linear
Linear Discriminant Analysis (LDA), sendo o ranking da classificagcdo determinado pelo
método de validacéo cruzada Leaveone-out Cross Validation (LOOCV).

A avaliacdo dos resultados da classificagdo mostrou que ao utilizar a divisdo da dorsal
baseado em grid, proporcionou um acerto de 71.2% ao identificar corretamente o individuo (top-1)
e 83.7% de acerto para o nivel de predicdo de caracteristicas similares com até cinco individuos
diferentes (top-5). Para o caso de subdivisdo baseado no contorno da dorsal, a classificagéo resultou
em um acerto de 53.5% (top-1) e 77.3% (top-5).

No entanto o melhor resultado foi juntando os dois tipos de divisdo que ficou em 75.5%
(top-1) e 86.3% (top-5). Comprovando a eficiéncia do método proposto para o caso de estudo ao
adotar as duas metodologias.
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3.4 FOTO IDENTIFIQAC;AO DE BALEIA AZUL PARA DISPOSITIVOS
MOVEIS ATRAVES DA NADADEIRA DORSAL USANDO
ALGORITMOS DE CLUSTERING E ESTIMATIVA DE
COMPLEXIDADE LOCAL DAS CORES

Almejando a criagdo de um sistema portatil e pratico para uso em areas remotas de

monitoramento e pesquisa de baleias azuis (Balaenoptera musculus), Carvajal-Gamez et al. (2017)

desenvolveram um aplicativo para dispositivos moveis com sistema operacional Android que

auxilia na identificagdo individual desses animais, através das nadadeiras dorsais.

Este aplicativo buscou atender a questéo relacionada ao poder de processamento limitado
dos dispositivos moveis, bem como 0 consumo excessivo de recursos, como por exemplo, bateria e
espaco de armazenamento de dados. A técnica de segmentacdo de imagem proposta para o trabalho,
precisa aplicar filtros de aprimoramento das linhas de contorno com o intuito de reduzir o tamanho
das imagens e melhorar o tempo de processamento, porém sem perder o detalhamento do objeto.
Além de implementar um método de reducéo das paletas de cores presentes na imagem, diminuindo

a quantidade de pixels de dificil classificacéo.

Para alcancar o objetivo do trabalho, os autores dividiram a técnica de segmentacdo em
cinco estagios.

Estagio 1 - banco de imagens: as imagens utilizadas no trabalho foram obtidas por
dispositivos mdveis de diferentes marcas e modelos, com cameras fotograficas de resolucbes que

variam entre 5 e 13 MP. Todas as imagens foram obtidas e processadas no padréo de cores RGB.

Estégio 2 - pré-processamento: faz uso do filtro de passa-banda Discrete Wavelet Transform
(DWT) para descrever a textura do corpo da baleia, bem como aplica o algoritmo de anélise de
sinais conhecido como Circular Haar Wavelet (CHW), compactando a imagem sem perder a
informacdo relacionada as linhas de contorno do animal. O pré-processamento é executado

separadamente para cada camada do padrdo RGB.

Estagio 3 - reducdo da paleta de cores: buscando o desempenho da aplicagdo em relacéo ao
tempo de processamento e uso de espaco para armazenamento da informacéo, este estagio introduz
um metodo de remogdo de corres redundantes existentes em cada canal RGB da imagem, aplicando
a técnica de quantificacdo de pixel descrito no trabalho de Carvajal-Gamez, Gallegos-Funes e
Rosales-Silva (2013).
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Estdgio 4 - segmentacdo adaptativa: visando melhorar a nitidez e o contraste da cena ao
destacar o objeto procurado do fundo da imagem, foi introduzido um método de segmentacao sobre
cada canal de cor R, G e B, utilizando um filtro de histograma dindmico combinado a técnicas de

analise de cluster.

Est&gio 5 - minimizando o numero de pixels classificados incorretamente: o ultimo estagio é
responsavel pela segmentacdo final da imagem, primeiro convertendo os canais RGB resultantes do

estagio 4 em valores de tons de cinza, finalizando com a binarizacéo.

O método proposto pelo trabalho, contempla a segmentacdo e classificacdo da imagem,
separando o individuo avistado do restante da cena. Contudo ndo aborda a etapa de identificacdo do
individuo, nem a de extracdo das caracteristicas individuais do animal como, a linha de contorno da

dorsal ou pigmentacédo do corpo.

Para avaliar a performance da técnica de segmentacdo desenvolvida, os autores realizaram

testes de validacdo tendo como parametro de medida imagens segmentadas manualmente.

O catdlogo de imagens para teste envolve 771 imagens distribuidas em trés categorias,
imagens de animais com dorsal triangular, deitada e curvada. Os resultados apresentam uma
acuracia no método de segmentacdo implementado que variam de 98.97% a 99.04% para a dorsal
triangular, 95.30% & 95.49% deitada e 97.56% a 98.05% curvada.

3.5 REPRESENTACAONDA CURVATURA INTE(NBRAL E ALGORITMOS
DE CLASSIFICACAO PARA IDENTIFICACAO DE GOLFINHOS E
BALEIAS

Weideman et al. (2017), propuseram em seu trabalho a medida da curvatura integral para a
representacdo e extracdo da linha de contorno das dorsais de golfinhos e das caudas de baleias, em

conjunto com dois algoritmos para classificacdo e identificagao individual dos animais.

O método da medida de curvatura integral proposto pelos autores, busca tornar a
representacdo da linha de contorno das dorsais e caudas dos individuos mais robusta. Ou seja,
pretende-se definir uma métrica confiavel de conversdo das linhas de contorno para uma curvatura
linear no eixo horizontal, independente do ponto de vista ou pose em que o individuo se encontra na

imagem (Figura 32).
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Figura 32: Conversao de curvatura da linha de contorno. (a) exemplo de linha do
contorno de uma dorsal de golfinho, (b) conversdo da linha de contorno em
curvatura integral.
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Fonte: Adaptado de Weideman et al. (2017).

A etapa que antecede a conversdo das linhas de contorno para o método proposto no
trabalho, visa a extracdo destas aplicando uma técnica de segmentacdo baseada em Rede Neural
Convolucional proposto por Long, Shelhamer e Darrell (2015). A imagens foram previamente
recortadas pelos pesquisadores antes da execucdo deste procedimento, reduzindo o esfor¢o de

analise do algoritmo de segmentacao.

Na etapa de identificacdo dos individuos os autores aplicaram duas técnicas para
comparacdo das linhas de contorno dos individuos, produzindo um ranking de individuos com
caracteristicas similares ao individuo consultado, deixando a cargo do pesquisador a selecdo da

correspondéncia exata entre os individuos avaliados.

A primeira técnica € a Dynamic Time-Warping (DTW), que permite comparar as

representacdes temporais de duas curvaturas, calculando o custo de alinhamento entre elas.

Ja a segunda técnica aplicada fez uso de um metodo de classificacdo chamado de Local
Naive Bayes Nearest Neighbor (LNBNN) (LOWE; MCCANN, 2012), que originalmente foi criado
para classificar imagens. Contudo, neste trabalho o foco foi a classificagdo do conjunto de dados

transformados em descritores de caracteristicas e pontos chave as linhas de contorno.
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Os testes da metodologia proposta foram realizados com um conjunto de 10713 imagens
para 401 individuos distintos de golfinhos nariz de garrafa (Tursiops truncatus) e 7173 imagens de

3572 individuos de baleia-jubarte (Megaptera novaeangliae).

Deste conjunto de imagens os autores selecionaram aleatoriamente para cada golfinho
arquivos de 10 encontros, nos casos onde o individuo apresentou um numero inferior a 10 de
encontros selecionou-se arquivos para n-1 encontro. Para montar a base de dados das baleias, as
amostras selecionadas representavam em sua maioria uma imagem por individuo devido ao baixo

ndmero de encontros.

Os resultados apresentados no trabalho indicam que, a identificagéo individual dos golfinhos
obteve melhor resultado com a técnica DTW que corresponde a acurécia de 74% no top-1 do
ranking e 69% com LNBNN. No entanto o oposto ocorreu para os testes dos dados das baleias onde

a técnica LNBNN apresentou 89% de acuracia no top-1 e 86% para DTW.

3.6 IDENTIFICACAO DE CETACEOS UTILIZANDO METADADO

Pollicelli, Coscarella e Delrieux (2017), buscaram validar a hipo6tese de identificacdo
individual dos golfinhos da espécie Cephalorhynchus commersoni, através dos metadados

levantados a partir da avaliacdo de imagens tiradas de 223 individuos ao longo de sete anos.

A abordagem ndo fez uso de técnicas de visdo computacional para extracdo das marcas
caracteristicas encontradas nas dorsais destes individuos, ou seja, todas as informagdes necessarias
para o estudo foram levantadas através da avaliacdo minuciosa dos pesquisadores para cada foto

tirada.

Conforme descrito pelos autores, os seguintes atributos foram selecionados nos metadados
coletados:

e Lado: posi¢do que o animal foi fotografado “direito” ou “esquerdo”;

e Qualidade: indice de 0 a 3 para efeitos de brilho, contraste e condicdo visual da dorsal,

e Distin¢do: também um indice de 0 a 3 para 0 quéo distinguivel estava as marcas das

dorsais;

e Cicatrizes: quantidade visiveis na dorsal;
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e Coloracéo: quantidade de pontos com coloracdo anormais presentes na dorsal;
e Zonas: divisdo da dorsal em areas para definir onde as marcas estavam presentes;
e Entalhes: quantidade de entalhes presentes no contorno da dorsal;

e Tamanhos das marcas: descricdo da quantidade de marcas com as seguintes definigcdes
de tamanhos, grande, comprida, estendida, média, pequena/minuscula; e

e Formato de marcas: descricdo da quantidade e formato das marcas com as seguintes

defini¢des, pouco, leve, imperceptivel, triangular arredondada e saliente.

Os métodos de classificacdo selecionados pelos autores para a etapa de identificacdo do

individuo foram:

e Redes neurais: Multilayer Perceptron;
e Classificador bayesiano: NaiveBayes;
e Arvore de decisdo: J48; e

e Algoritmo do K-vizinho mais proximo: KStar.

No entanto, uma avaliacdo preliminar foi efetuada utilizando Info Gain Attribute Eval, Gain
Ratio Attribute Eval e Chi Squared Attribute Eval em conjunto com o método de busca Ranker,
para encontrar a relevancia dos atributos escolhidos. Alguns foram descartados devido & baixa

relevancia para o processo de classificagéo.

O passo seguinte do trabalho foi a construcdo e validacdo dos modelos. Do conjunto de
dados contendo 869 instancias de 223 individuos, foram criados dois subconjuntos que
apresentavam o nimero de capturas entre 5 — 12 e maior ou igual a cinco, resultado respectivamente

em 373 instancias de 54 individuos e 515 instancias de 62 individuos.

Os subconjuntos foram testados estatisticamente com o classificador ZeroR, o qual
demostrou através do resultado de 2,4862%, que os dados classificaram corretamente, melhor até

que ao puro acaso que corresponde ao valor de 1,8%.

A execucdo dos testes foi aplicada aos dois subconjuntos removendo respectivamente 10% e
3% dos dados, simulando novos encontros de individuos. Conforme apresentado na Tabela 1 os
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resultados variaram de 72,72% a 90% para o conjunto de 3% de dados. J& para o0 caso contendo

10% das instancias a variacao dos resultados ficou entre 56,86% e 72,97%.

Tabela 1. Resultados obtidos para a etapa de identificacdo de individuos com base nos modelos escolhidos para a
classificacdo de metadados.

Dados de validacdo Base de dados Naive Bayes KStar J48  Multilayer Perceptron

5a12 7297%  75.67% 70.27% 70.27%
10% >5 68.62%  62.74% 64.70% 56.86%
5412 81.81%  81.81% 90% 72.72%
3% >5 875%  87.5% 81.25% 81.25%

Fonte: Adaptado de Pollicelli, Coscarella e Delrieux (2017).

3.7 IDENTIFICAQAO INDIVIDUAL AUTOMATIZADA DE TUBAROES
BRANCOS
Considerado como o primeiro trabalho voltado ao tema de identificacdo de individuos
através da nadadeira dorsal, que funciona de modo totalmente automatizados. Hughes e Burghardt
(2016), desenvolveram uma proposta que contempla a execucgédo das duas etapas principais de um

software de identificacdo individual.

Na etapa de extracdo das caracteristicas necessarias para a identificacdo, foi adotada uma
abordagem de segmentacao e deteccdo de contorno baseado em mapas ultra métricos de contorno e
descritores de atributos de componentes presentes na imagem. Em seguida foi desenvolvido um
método de codificacdo biométrica baseado na suavizacdo de objetos, adequando a regido de

contorno ao formato do contorno da dorsal dos tubardes brancos.

Conforme descrito pelos autores, 0 modelo de deteccdo de contorno e deteccdo de objetos

candidatos a dorsal divide-se em trés estagios:

Estagio 1, segmentacdo: utilizando como base o trabalho de Arbeléaez et al. (2014), que trata
de uma abordagem para segmentacgdo hierdrquica, que para o trabalho em questdo proporciona um
conjunto de 200 regides segmentadas, o qual posteriormente é classificado novamente para retiradas
de regides pequenas de mais para serem consideradas como uma dorsal, sobrando apenas 12 regifes

segmentadas por imagem analisada.
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Estégio 2, geracdo de candidatos a dorsal: como a imagem contempla pelo menos a dorsal
de um individuo, também considerando que a dorsal se trata de um contorno aberto que facilmente
mescla ao restante do corpo formando um unico objeto, aplicou-se o método de deteccdo de cantos
proposto por Zhang et al. (2009) na defini¢cdo dos pontos de inicio e término da linha de contorno da

dorsal.

Estégio 3, ranking dos candidatos a dorsal: o Ultimo estagio € responsével pelo treinamento
do classificador Random Forest Regressor (BREIMAN, 2001), que prevé a qualidade de hipdtese
de possiveis dorsais computadas pelo framework de deteccdo e avaliacdo de contorno BSDS
(MARTIN; FOWLKES; MALIK, 2004). Para o treinamento do classificador foram utilizadas 240
imagens de alta visibilidade e 120 imagens de baixa visibilidade, cujas as linhas de contorno dos

individuos foram delimitadas manualmente para criagdo dos descritores de caracteristicas.

Para validar a abordagem da primeira etapa foi adotado o teste proposto por Hariharan et al.
(2014), que visa medir a performance da segmentacéo e deteccdo dos objetos candidatos a dorsal.
Os resultados obtidos podem ser observados na Tabela 2 e Tabela 3.

Tabela 2. Resultados intermedidrios dos testes de desempenho para a detec¢do de objetos.

t=0.7 t=0.85 t=0.9 APV
Segmentation 1.0 0.99 0.99 0.99
Candidate gen. (H) 0.99 0.98 0.98 0.97
Candidate gen. (L) 1.0 0.99 0.92 0.96

Fonte: Adaptado de Pollicelli, Coscarella e Delrieux (2017).

Tabela 3. Resultados dos testes de desempenho para a detecc¢éo da dorsal.

Feature type t=0.7 t=0.85 t=0.9 APV
High Visibility (H)

OpponentSIFT 0.99 0.85 0.73 -
Normal 0.98 0.85 0.7 -
Combined 0.98 0.95 0.86 0.92
Lower Visibility (L)

Combined 1.0 0.93 0.62 0.89

Fonte: Adaptado de Pollicelli, Coscarella e Delrieux (2017).

A codificagdo biométrica da linha de contorno da dorsal pretende aumentar a precisdo da

identificacdo individual, aplicando um refinamento no contorno com um método de mascara de
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opacidade proposto por Zheng e Kambhamettu (2009), seguido pela definicdo dos pontos chaves
que descrevem a linha reaplicando o método descrito no Estagio 3, finalizando com a

implementacao de descritores de caracteristicas semi-locais e globais.

Para a etapa de identificacdo do individuo, os autores abordaram a técnica de classificagdo
Local Naive Bayes Nearest Neighbor (LNBNN) (LOWE; MCCANN, 2012). Esta técnica permite
interpretar os descritores de caracteristicas de um individuo e comparar com os descritores de

individuos que ja possuem identificacdo e encontram-se armazenados em uma base de dados.

Como resultado deste processo espera-se 0 retorno de um ranking de dorsais similares ao
individuo analisado, possibilitando ao pesquisador a identificacdo correta do novo individuo, que
terd os dados armazenados no banco de dados da aplicacao.

Os testes foram aplicados a um conjunto de 2456 imagens de 85 individuos, uma imagem
de cada individuo foi separada para montar o conjunto de testes sobrando 2371 imagens que foram

utilizadas para montar a base de dados de identificag&o.

Os resultados apresentados demonstraram que em 82% dos casos os individuos foram
identificados corretamente, sendo que em 91% das vezes a identificacdo correta encontrava-se entre

0s dez primeiros do ranking. Apenas 9% das instancias ndo foram classificadas corretamente.

3.8 SOFTWARE SEMI-AUTOMATIZADO PARA IDENTIFICACAO DE
INDIVIQUOS DA ESPECIE CARCHARODON CARCHARIAS
ATRAVES DE FOTOGRAFIAS DA NADADEIRA DORSAL

Com intuito de construir um software especifico para identificacdo individual de tubardo
branco Andreotti et al. (2017) desenvolveram uma proposta semelhante ao software DARWIN.

Esta semelhanca se caracteriza pelo fato de que o software proposto foi desenvolvido
pensando em uma aplicagéo desktop, que permite construir uma base de dados para comparagao dos
individuos e exige que o pesquisador informe os pontos de inicio e termino do contorno da dorsal

antes de passar para a etapa de identificacdo individual.

No entanto as técnicas aplicadas nas duas etapas do processo de identificagdo do individuo
diferem do software DARWIN.
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Na etapa de extracdo das caracteristicas do contorno da dorsal, os autores aplicaram a

técnica de deteccdo de contornos Sobel apenas na area delimitada pelo usuario.

De posse da linha de contorno o software automaticamente executa a etapa de identificacao
individual, aplicando a técnica Dynamic Time-Warping (DTW) no processo de comparagdo da nova
linha de contorno com as informagdes existentes no banco de dados. O processo de comparagédo
permite criar um ranking de probabilidade das melhores combinag¢des encontradas.

Os autores descrevem que a base de dados disponivel para testes consiste em 744 imagens
de 426 individuos identificados manualmente. Deste conjunto de individuos, 50 foram selecionados

aleatoriamente para montar a base de testes do software.

Os resultados apresentados no trabalho demonstram que das 50 imagens analisadas pelo
software, 40 delas foram comparadas corretamente ou seja 80%. Destas 62% encontraram 0
individuo correto nas duas primeiras posicdes do ranking. Contudo, ndo foi possivel encontrar

individuos correspondentes para 7 imagens e em um Unico caso a imagem nao pode ser classificada.

3.9 ANALISE COMPARATIVA

Como complemento da secdo de trabalhos relacionados o Quadro 3, apresenta uma analise

comparativa resumida das principais técnicas utilizadas nos mesmaos.



Quadro 3. Comparagao das técnicas utilizadas para extracao de caracteristicas da dorsal e identificacdo do
individuo, nos trabalhos relacionados.

N° | Artigo Extracdo das Classificacdo e
caracteristicas da |identificacdo do
dorsal individuo

1 |"Finscan", a Computer System for Photographic Laplacian of Gaussian | Curve matching

Identification of Marine Animals

(LoG)

String matching

2 | Unsupervised Thresholding for Automatic Threshold ndo Né&o abordado neste
Extraction of Dolphin Dorsal Fin Outlines from supervisionado trabalho
Digital Photographs in DARWIN
3 | Computer-assisted Recognition Of Dolphin Média dos valores Classificacdo com Linear
Individuals Using Dorsal Fin Pigmentations normalizados com Discriminant Analysis
base na pigmentacdo | (LDA) e identificacdo
da dorsal individual com Leaveone-
Out Cross Validation
(LOOCV)
4 | Photo-id of blue whale by means of the dorsal fin | Segmentacdo com N&o abordado neste
using clustering algorithms and color local filtro de passa-banda | trabalho
complexity estimation for mobile devices Discrete Wavelet
Transform (DWT),
analise de cluster com
Fuzzy C-means e K-
means nos canais
RGB e finalizando
com binarizacéo da
imagem em escala de
cinza
5 | Integral Curvature Representation and Matching | Segmentag¢do com Dynamic Time-Warping
Algorithms for Identification of Dolphins and rede neural (DTW)
Whales convolucional Local naive Bayes nearest
neighbor (LNBNN)
6 | Wild Cetacea Identification using Image Metadata | Metadado das Redes neurais: Multilayer
caracteristicas da Perceptron;
dorsal extraidas Classificador bayesiano:
manualmente NaiveBayes;
Arvore de decisdo: J48;
Algoritmo do K-vizinho
mais préximo: KStar.
7 | Automated Visual Fin Identification of Individual | Segmentacédo Local naive Bayes nearest
Great White Sharks hierarquica e neighbor (LNBNN)
identificacdo de
objetos com Random
Forest Regressora
8 | Semi-automated software for dorsal fin Deteccéo de contornos | Dynamic Time-Warping

photographic identification of marine species:
application to Carcharodon carcharias

com Sobel

(DTW)

73
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3.10 CONSIDERACOES

E possivel avaliar no Quadro 3, que os trabalhos listados empregaram diferentes técnicas
para a tarefa de extracdo de caracteristicas das nadadeiras dorsais. Técnicas que vdo desde a
abordagem classica como a deteccdo de contornos com Sobel de Andreotti et al. (2017), até o

desenvolvimento de técnicas hibridas como Hughes e Burghardt (2016).

Outro aspecto que se pode destacar, entre os oito trabalhos encontrados durante o
levantamento do estado da arte, apenas dois ndo adotam a linha de contorno da dorsal como

carateristica relevante para identificacéo individual.

Portanto isso faz refletir que em 75% dos trabalhos, a carateristica mais relevante para
identificacdo do individuo é a linha de contorno da dorsal e consequentemente valida as afirmac6es
levantadas pela maioria dos bidlogos de que se trata da principal caracteristica a ser utilizada no

processo de identificacdo individual ndo invasivo, justificando o uso desta no escopo do trabalho.

Também € valido ressaltar que a escolha do trabalho de Hughes e Burghardt (2016) como
referéncia para o desenvolvimento deste justifica-se, pois foi o Unico a apresentar uma solucdo
totalmente automatizada para as duas etapas de um software de identificagdo individual, bem como
apresentou testes consistentes que demonstraram a qualidade da solucdo proposta para a tarefa de
localizacdo da dorsal na imagem e extracdo da linha de contorno para a execucdo da etapa de

comparacao de individuos.

O capitulo a seguir apresentard um panorama detalhado das escolhas tomadas para o
desenvolvimento da solugdo proposta para este trabalho, bem como trara as justificativas para cada
técnica ou algoritmo escolhido para cada tarefa da etapa de extracao das caracteristicas do contorno

da dorsal.
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4 DESENVOLVIMENTO

Este capitulo contextualiza todas as etapas que envolvem a criacdo de uma ferramenta
automatizada para localizacdo e extracdo da linha de contorno das dorsais de cetdceos em imagens.
O desenvolvimento da ferramenta foi significantemente influenciado pelo trabalho desenvolvido
por Hughes e Burghardt (2016), pois foram os unicos que elaboraram um mecanismo totalmente
automatizado para resolucdo de um problema semelhante ao que esta sendo abordado neste
trabalho.

Contudo, se compararmos o trabalho Hughes e Burghardt (2016) com este, pode-se notar
uma visdo diferenciada na criagcdo das etapas que envolvem o processo de desenvolvimento da
ferramenta. A primeira diferenca trata da limitacdo do escopo para este trabalho, ou seja, a etapa de

identificacdo do individuo ndo sera implementada.

A segunda apoia-se na metodologia adotada para resolver o problema proposto. Enquanto
Hughes e Burghardt (2016) optam por um processo que exige a segmentacdo hierarquica da
imagem, passando pelo refinamento de limites dos segmentos para posterior classificacdo dos
candidatos a dorsal utilizando Random forests e finalizando com o tratamento de contorno da dorsal
para extracdo da linha e inferéncia do algoritmo de identificacdo individual (Figura 33). Este
trabalho fez uso do método de deteccdo de objetos para localizar e delimitar as dorsais dos
individuos nas imagens, bem como implantou-se a técnica de segmentacdo semantica que separa o
objeto de interesse do restante da cena, finalizando com o refinamento e extracdo da linha de

contorno da dorsal (Figura 34).



Figura 33: Modelo criado por Hughes e Burghardt (2016) para automatizar o processo de identificacéo

individual de tubardo branc
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Fonte: Hughes e Burghardt (2016).

Figura 34: Diagrama do processo de deteccéo e extragéo da linha de contorno da dorsal para a ferramenta
desenvolvida neste trabalho.
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4.1 DETECAO DE OBJETOS

Esta etapa fez uso do framework de codigo aberto TensorFlow Object Detection API criado
por Huang et al. (2016), que permite localizar e identificar multiplos objetos em uma Gnica imagem.
Trata-se de um framework construido na plataforma de aprendizado de maquina disponibilizado
pela Google, que facilita o treinamento de redes neurais para identificacdo de objetos visando a

construcdo de ferramentas cujo escopo sejam aplica¢des voltadas a computacao visual.

A API disponibiliza trés meta-arquiteturas de redes neurais e seis possiveis extratores de
caracteristicas. Algumas combinacdes destes recursos permitiram gue 0s autores criassem um total
de 15 modelos de redes neurais, evidenciando a diversidade e flexibilidade da ferramenta proposta
(HUANG et al., 2016). Tanto a diversidade de configuracdes disponiveis para a API, bem como o0s
resultados significativos apresentados pelos autores, levou a integracdo da mesma no processo de
desenvolvimento deste trabalho. O Quadro 4 apresenta as combinacdes de configuracdes criadas

pelos autores.

Quadro 4. Combinagdo de meta-arquiteturas e extratores de caracteristicas utilizados no trabalho de Huang et al. (2016).
Meta-arquitetura Extratores de caracteristicas utilizados

Faster R-CNN (REN et al., 2015) VGG-16 (SIMONYAN; ZISSERMAN, 2014)

Resnet-101 (HE et al., 2015)

Inception v2 (LOFFE; SZEGEDY, 2015)

Inception v3 (SZEGEDY et al., 2015)

Inception Resnet (SZEGEDY et al., 2016)

MobileNet (HOWARD et al., 2017)

R-FCN (DAl et al., 2016) Resnet-101 (HE et al., 2015)

Inception v2 (LOFFE; SZEGEDY, 2015)

Inception Resnet (SZEGEDY et al., 2016)

MobileNet (HOWARD et al., 2017)

SSD (LIU et al., 2016) VGG-16 (SIMONYAN; ZISSERMAN, 2014)

Resnet-101 (HE et al., 2015)

Inception v2 (LOFFE; SZEGEDY, 2015)

Inception Resnet (SZEGEDY et al., 2016)

MobileNet (HOWARD et al., 2017)

As combinacOes entre meta-arquitetura e extratores de caracteristicas, permitiu os autores da
API realizarem testes distintos com diversas configuragdes de tamanho de entrada, nimero de
passos, etc (HUANG et al., 2016). A Figura 35 apresenta os resultados obtidos onde é possivel
observar em alguns casos o equilibrio entre precisdo e tempo de processamento, bem como uma

representacéo significativa na curva de aprendizado dos modelos.



78

Figura 35: Precisdo x tempo, cada forma geométrica representa a meta-arquitetura e
as cores 0s extratores de caracteristicas.
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Fonte: Huang et al. (2016).

Bem como descrito por Huang et al. (2016) em seu trabalho, e também pode-se observar na
Figura 35, os modelos criados com as meta-arquiteturas R-FCN e SSD sdo rapidos e apresentam
uma boa precisdo. Por outro lado, o Faster R-CNN obteve as melhores precisdes, porém trata-se de

modelos lentos.

Tanto os resultados apresentados pelos autores da APl quanto a possibilidade de construcao
de modelos rapidos e eficientes, reforcaram mais ainda a necessidade de trabalhar com uma

plataforma unificada de redes neurais para detec¢édo de objetos.

Entretanto, neste trabalho a avaliacdo de resultado dos modelos focou apenas na precisao das
meta-arquiteturas, pois conforme sera explicado nas sessdes 4.1.4 e 4.1.5 o0 tempo de processamento
e uso de memoria estd limitado aos recursos computacionais disponiveis para o desenvolvimento
deste trabalho.

4.1.1 Base de dados

A tarefa inicial para treinar o detector de objetos consiste em montar uma base de dados de
imagens que represente o universo de objetos que se quer identificar. Para atender a esta demanda,
buscou-se por repositorios de dados ambientais que permitisse acessar imagens de cetaceos

avistados em seu habitat natural. A busca nos levou aos conjuntos de dados de avistagens do
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iNaturalist e dos dados de monitoramento de praias do Sistema de Informacéo de Monitoramento da
Biota Aquética (SIMBA) para o PMP-BS.

O iNaturalist ¢ um projeto de ciéncia cidada que motiva a colaboracdo de entusiastas da
natureza, ao registrar avistagens das mais diferentes espécies existentes em nosso planeta
(INATURALIST, 2018). O repositorio de dados do iNaturalist permite o registro de avistagens
contendo a localizacdo das ocorréncias, descricdo taxondmica de cada espécie e fotografias tiradas
pelos usuarios da plataforma. A vantagem de adotar as imagens provenientes do iNaturalist foi a
diversidade de espécies encontradas no repositério de dados, bem como a garantia de validacao dos

registros por pesquisadores e especialistas da area.

O SIMBA ¢ voltado a gestdo das informacgdes coletadas para o PMP-BS, e possibilita o
registro de dados de monitoramento, ocorréncias de fauna alvo do projeto, também contempla a
manutencdo dos dados de reabilitacdo dos animais encontrados vivos durante as atividades
rotineiras de praia. Todo animal encontrado vivo ou morto durante o monitoramento recebe um
cadastro no sistema, onde sdo inseridas fotografias tiradas pelas equipes de campo durante o

processo de registro do individuo.

Diferente do iNaturalist cuja maioria das imagens apresentam individuos inseridos em
ambiente aquatico, as imagens do PMP-BS retratam em sua maioria, cenas de animais encontrados
mortos nas praias, representando cendrios de caracteristica ambiental arenoso. Optou-se por utilizar
as imagens do SIMBA, por se tratar de avistagens de animais recorrentes ao litoral brasileiro, além
de possibilitar o enriquecimento de detalhes através da diversidade de cenarios onde as fotografias

foram obtidas.

Em ambos os repositorios se efetuou a pesquisa de dados visando encontrar registros de
avistagens para animais da ordem dos cetaceos, que apresentassem fotografias vinculadas aos
registros. A consulta foi realizada no dia 17 de dezembro de 2018, onde obteve-se o resultado de

8111 imagens provenientes do iNaturalist e 13822 imagens no SIMBA.

4.1.2 Selecéo das imagens

Como o principal objetivo da etapa de deteccdo de objetos para este trabalho é localizar as

dorsais dos individuos, foi necessario filtrar as imagens obtidas para atender a este escopo. No
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intuito de montar uma base de dados consistente para o treinamento de uma rede neural de deteccdo

de objetos, foram criadas regras para exclusdo das imagens que ndo atendiam ao propasito.

O primeiro critério consiste em excluir todas as imagens que ndo apresentem ao menos um
individuo com a area de interesse visivel, neste caso a dorsal. Portanto, foram excluidas imagens
onde a dorsal encontrava-se oclusa (Figura 36a), individuos da ordem dos cetaceos cuja espécies
ndo possuem nadadeira dorsal (Figura 36c), ou que ndo apresentem uma nadadeira relevante a

ponto de retratar um formato distinguivel pelo processo de treinamento da rede neural (Figura 36Db).

O segundo critério de excluséo foi criado para atender uma demanda das imagens obtidas
através do SIMBA. Como a maioria das imagens obtidas sdo de animais mortos, foi necessario
excluir as imagens cujo individuo apresentava-se em um estado de decomposi¢do avancgado (Figura

37b), mesmo que a nadadeira dorsal estivesse visivel.

Ja o terceiro e ultimo critério de exclusdo consiste na percep¢do visual empirica da pessoa
que esta selecionando as imagens, ao relacionar distancia aparente entre a camera e individuo na
cena (Figura 37a). Ou seja, se a pessoa que estiver avaliando a imagem identificar que a
representacdo do animal é pequena em relacdo ao tamanho total da imagem ou ao contexto da cena

presenciada, esta imagem deve ser removida da base de dados.

Figura 36: Exemplo de imagens que representam os critérios de exclusdo definidos para
0 processo de selecdo de imagens.

-

Fonte: Adaptado de iNaturalist (2018).
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Figura 37: Exemplo de imagens que representam o segundo e terceiro critérios de exclusdo.

Fonte: Adaptado de iNaturalist (2018); PMP-BS (2017).

Nos casos de imagens que apresentam mais de um individuo por imagem, se a0 menos um

individuo passa por todos os critérios de exclusdo o arquivo permanece na base de dados.

Apbs a avaliacdo manual das imagens, um total de 1913 imagens foram selecionadas, sendo
1489 do iNaturalist e 424 do SIMBA. A grande reducdo no numero de imagens resultantes do
SIMBA, decorreu-se pelo fato de que muitas imagens vinculadas aos registros representavam cenas
das atividades de resgate dos animais, ou seja, em alguns casos ndo mostravam o animal ou

apresentavam outras partes do corpo do individuo como, cabeca, cauda, etc.

4.1.3 Delimitacdo dos objetos de interesse

O treinamento dos modelos de redes neurais da API exige que seja informado a regido da
imagem que contém o objeto de interesse, ou seja, delimitar a regido utilizando caixas

delimitadoras, também conhecido pelo termo em inglés bounding box.

Para esta tarefa utilizou-se o software Labellmg (2015), que dispdem de uma ferramenta
para delimitar as regides dos objetos nas imagens, além de possibilitar que estes sejam rotulados.
Também ¢é possivel salvar arquivos contendo as marcacdes e rétulos no padrdo Extensible Markup
Language (XML) para 0 modelo de anota¢cdes do PASCAL VOC (EVERINGHAM et al., 2010).

Inicialmente, a marcacdo das areas de interesse focou no objeto alvo, ou seja, a dorsal.
Posteriormente decidiu-se ampliar de forma exploratoria o escopo do treinamento visando avaliar o

desempenho da API, ao incluir alguns exemplos que representassem os animais em seu habitat.
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Portanto, além de delimitar e rotular as regides contendo as dorsais dos individuos nas
imagens, foram criadas algumas caixas delimitadoras para identificar os individuos nas imagens,

bem como foi definido trés rotulos de identificacdo. Sendo estes:

e Animal: para identificar individuos com a maior parcela do corpo visivel, por exemplo,
animais fora da agua, fotografias subaquaticas ou de animais encalhados na areia (Figura
38a);

e Animal metade: animais cuja parte frontal e dorsal estdo visiveis, e o restante do corpo

encontra-se submerso ou ocluso na imagem (Figura 38b);

e Animal parcial: animais parcialmente visiveis fora da agua, na maioria dos casos trata-se

de imagens que apresentam a dorsal e parte das costas dos individuos (Figura 38c).

Figura 38: Exemplo de imagens rotuladas para o treinamento de detec¢do de objetos. Rétulos:
(a) animal, (b) animal metade e (c) animal parcial.
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4.1.4 Modelo pré-treinado de rede neural

A transferéncia de aprendizado em redes neurais € um recurso que pode melhorar o
desempenho da generalizacdo de um modelo para uma nova tarefa (YOSINSKI et al., 2014), e
consequentemente auxilia em casos de recursos computacionais limitados, tal como contribui em
situacOes restritivas de tempo de processamento e conhecimento técnico (GARCIA-GASULLA et
al., 2017).

Apoiando-se nessas premissas, fez-se uso de modelos pré-treinados durante a tarefa
treinamento com a base de dados construida para este trabalho, ao invés de abordar o método de

inicializacdo de pesos aleatdrios para o treinamento das redes neurais.

Os idealizadores da API de deteccdo de objetos descrevem em seu artigo (HUANG et al.,
2016), que o desenvolvimento desta focou em criar um framework que permita explorar os fatores
de tempo, desempenho e acuracia durante a criacdo dos modelos pré-treinados, para que atuem em

novas tarefas.

A Tabela 4 apresenta os modelos de redes neurais pré-treinados disponibilizados pela API e
as avaliagOes obtidas durante o treinamento destes com a base de dados COCO (LIN et al., 2014).
Para este trabalho, definiu-se que o critério de selecdo dos modelos a serem utilizados focaria nos
que apresentassem o melhor resultado de avaliagdo mAP para cada tipo de meta-arquitetura de rede

neural, portanto foram escolhidos os modelos 7, 15 e 20.
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Tabela 4. Comparativo de acuracia e velocidade de processamento para as meta-arquiteturas de redes neurais da API de
detec¢do de objetos, utilizando a base de dados COCO e caixas delimitadoras.

N° Nome do modelo Velocidade (ms) COCO mAP[™1]
1 ssd_mobilenet v1 coco 30 21
2 ssd_mobilenet_v1_0.75_depth_coco 26 18
3 ssd_mobilenet vl _quantized coco 29 18
4 ssd_mobilenet_v1 0.75 depth_quantized_coco 29 16
5 ssd_mobilenet_v1_ppn_coco 26 20
6 ssd_mobilenet_v1 fpn_coco 56 32
7 ssd_resnet 50 fpn_coco 76 35
8 ssd_mobilenet_v2 coco 31 22
9 ssd_mobilenet_v2_quantized_coco 29 22
10 ssdlite_mobilenet_v2 coco 27 22
11 ssd_inception_v2_coco 42 24
12 faster_rcnn_inception_v2_coco 58 28
13 faster_rcnn_resnet50 coco 89 30
14  faster_rcnn_resnet50_lowproposals_coco 64 -
15 rfcn_resnetl01_coco 92 30
16 faster_rcnn_resnet101_coco 106 32
17 faster_rcnn_resnet101_lowproposals_coco 82 -
18 faster_rcnn_inception_resnet_v2_atrous_coco 620 37
19 faster_rcnn_inception_resnet_v2_atrous_lowpro 241 -
posals_coco
20 faster_rcnn_nas 1833 43
21 faster_rcnn_nas_lowproposals_coco 540 -

Fonte: Adaptado de Tensorflow Object Detection API (2017).

Cada modelo dispde dos arquivos binarios com as respectivas redes neurais ja treinadas,
bem como um arquivo com as configuracdes utilizadas durante o treinamento. Os APENDICES A,
B e C demonstram os tipos de arquivos de configuracdo disponibilizados junto aos modelos e
utilizados para o treinamento do modelo de detecgé@o proposto para este trabalho.

Os parametros de configuracdo da rede neural podem ser alterados conforme a necessidade
do problema. Porém, para o problema deste trabalho foi necessario alterar apenas algumas
informagdes. O primeiro pardmetro a ser substituido € o nimero de classes de objetos a serem

identificados, originalmente o nimero de classes existente na base de dados COCO e de 90, para
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este trabalho sera necesséario identificar apenas 4 classes. O segundo parametro é o nimero de
exemplos para validagéo do treinamento, que em nosso caso trata-se de 20% das imagens da base
de dados, ou seja, 383 arquivos. Os demais parametros alterados restringem-se a localizagdo em
disco dos arquivos binarios contendo a base de dados do trabalho, 0 modelo pré-treinado e os

rotulos de identificacdo dos objetos.

O anico modelo que foi necessario uma alteracdo nos parametros originais foi o modelo de
nimero 20 descrito na Tabela 4. Foi necessario 0 ajuste do parametro de configuracdo de
redimensionamento da imagem, alterando-o de 1200x1200 para 1024x768, esta alteracdo buscou
reduzir o tempo de processamento ao minimizar o tamanho da matriz de dados processados. Os
demais modelos mantiveram os parametros de configuragdes originais definidos pelos autores da
API.

4.1.5 Treinamento

O treinamento das redes neurais foi executado em uma maquina com processador de 32
nacleos Intel Xeon CPU E5-2400 de 1.9GHz e 64GB de memdria. O sistema operacional instalado
é 0 Centos 7 com a versdo 1.12 do Tensorflow.

Por se tratar de uma maquina onde processador ndo foi construido apenas para
processamento de dados matriciais, como € o caso da Graphics Processing Unit (GPU). O tempo de
treinamento aumenta consideravelmente conforme pode ser observado na comparagédo de tempo de

processamento da Tabela 5.

E como o tempo para execucdo do treinamento e avaliacdo dos modelos era um fator crucial
para obter os resultados desta etapa do trabalho, limitou-se a quantidade de combinagdes de
treinamento para apenas os trés modelos descritos na se¢do anterior.

Tabela 5. Comparativo de tempo de processamento por passo em milissegundos. Primeiro os tempos obtidos pelos
autores da API utilizando uma GPU, na sequéncia o tempo alcangado neste trabalho utilizando um CPU de 32 ndcleos.

Nome do modelo Tempo (ms) / passo GPU  Tempo (ms) / passo CPU
Nvidia GeForce GTX Intel Xeon E5-2400 de
TITAN X 1.9GHz
ssd_resnet_50 fpn_coco 76 19000
rfcn_resnet101 _coco 92 5000

faster_rcnn_nas 1833 27000
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Por padréo, os arquivos de configuracdo das redes neurais estdo programados para rodar em
média 200 mil passos de treinamento para os modelos Faster R-CNN e R-FCN e 25 mil passos para
0 modelo SSD usando o banco de dados COCO. No entanto, devido ao longo tempo necessario para
processar todas estas iteracdes, decidiu-se que o treinamento seria finalizado em mais ou menos 35

mil passos para 0s modelos Faster R-CNN e R-FCN e 4500 passos para 0 modelo SSD.

Levando em consideracdo que o tamanho de lotes de treinamento esta configurado em um
para 0s modelos Faster R-CNN e R-FCN, ou seja, cada passo do treinamento equivale ao
processamento de apenas uma imagem por vez. E observando que a parcela de imagens destinadas
ao treinamento é de 1530 arquivos, obtivemos mais ou menos 22 épocas de treinamento para cada

modelo de rede neural, ou seja, cada imagem foi processada no minimo 22 vezes.

Ja para o caso do modelo SSD o tamanho de lote é equivalente a 32 imagens por passo
necessitando algo em torno de 47,81 passos para processar uma epoca de treinamento, considerando
0 numero total de passos treinados equivale a aproximadamente 94 épocas treinadas. As
informacdes referentes aos tempos de processamento e nimeros referentes a quantidade de passos e

épocas de treinamento estdo descritas na Tabela 6.

Tabela 6. Nimeros relacionados ao processo de treinamento dos modelos pré-treinados escolhidos para este trabalho.

Nome do modelo Tempo (ms) Tempo total de N°total N°total de
/ passo processamento (hrs) de passos épocas
ssd_resnet_50_fpn_coco 168000 210 4500 94,12
rfcn_resnet101 _coco 5000 48 34000 22,22
faster_rcnn_nas 27000 258 34349 22,45

4.2 SEGMENTACAO

A etapa de segmentacdo é executada em paralelo com a etapa de detec¢do de objetos e
consiste em separar a regido de interesse do restante da imagem. Ou seja, separar 0 objeto em
primeiro plano (foreground) do fundo (background). Em seguida extrai-se o contorno remanescente
do objeto segmentado. No texto a seguir serd retratado todas as etapas do desenvolvimento que
envolvem esta tarefa, também descreveremos as técnicas envolvidas justificando a escolha das

mesmas.
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4.2.1 Segmentacdo do objeto de interesse

Conforme pode-se observar no Capitulo 3 alguns dos trabalhos relacionados fazem uso de
métodos cléssicos de segmentacdo (HALE, 2008; ANDREOTTI et al., 2017; HILLMAN et al.,
2002), outros autores mesclam estas técnicas em uma unica aplicacio (CARVAJAL-GAMEZ et al.,
2017). Também houvena trabalhos que propuseram uma abordagem inovadora ao adotar o processo
de segmentacdo utilizando CNN (WEIDEMAN et al., 2017; HUGHES; BURGHARDT, 2016).
Contudo, estes métodos de segmentacdo ndo sdo capazes de descrever com precisdo os limites que
separam o foreground do background, deixando na maior parte dos casos um contetdo residual nas

regibes segmentadas.

Portanto, neste trabalho adotamos o método de segmentacdo semantica, que permite
classificar cada pixel da imagem como foreground e background (GUO et al., 2018). Contudo, €
valido salientar que este método apresenta duas limitacdes. Primeiramente, ao contrario dos
métodos classicos que simplificam a ldgica utilizando férmulas matematicas, a segmentacao
semantica exige o treinamento de uma rede neural contendo as classes de objetos que deseja
segmentar. A segunda limitacdo deste tipo de técnica de segmentacdo, é a incapacidade de

separacao de objetos sobrepostos em instancias distintas.

A limitacdo referente a separacdo de objetos sobrepostos pode ser um problema nos casos de
imagens que apresentem individuos aglomerados. No entanto, na maioria dos casos 0s
pesquisadores que trabalham no controle populacional de cetaceos tendem a obter imagens
individuais para cada animal da populacédo, e também costumam separar antes as instancias de cada
individuo em imagens com multiplos animais. Atitudes estas que viabilizam a adocdo do método de

segmentacgdo semantica para este trabalho.

Outro fator relevante para a adocao de tal método, fica a cargo da ferramenta escolhida para
esta tarefa também rodar para o framework TensorFlow, trata-se da ferramenta DeepLab. Além de
ser uma ferramenta desenvolvida para a mesma plataforma utilizada na tarefa de deteccdo de
objetos, 0 DeeplLab pode ser considerado atualmente como o estado da arte dos modelos de
aprendizagem profunda para segmentacdo semantica (CHEN et al., 2018), como pode ser
constatado através dos resultados obtidos para as avali¢cdes da ferramenta no conjunto de dados de
teste PASCAL VOC (2012) na Tabela 7 e Cityscapes (CORDTS et al., 2015) na Tabela 8.
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Tabela 7. Comparacgdo de resultados obtidos entre 0 DeeplLab v3+ e 0s demais modelos de alta performance, na base de
dados de teste do PASCAL VOC 2012.

Método mIOU
Deep Layer Cascade (LC) 82.7
TuSimple 83.1
Large Kernel Matters 83.6
Multipath-RefineNet 84.2
ResNet-38 MS COCO 84.9
PSPNet 85.4
IDW-CNN 86.3
CASIA IVA SDN 86.6
DIS 86.8
DeepLabv3 85.7
DeepLabv3-JFT 86.9
DeepLabv3+ (Xception) 87.8
DeepLabv3+ (Xception-JFT) 89.0

Fonte: Adaptado de Chen et al. (2018).

Tabela 8. Comparagéo de resultados obtidos entre o DeepLab v3+ e os demais modelos de alta performance, na base de
dados de teste Cityscapes com anota¢fes de contorno grosseiras.

Método Anotagéo grosseira mIOU
ResNet-38 X 80.6
PSPNet X 81.2
Mapillary X 82.0
DeepLabv3 X 81.3
DeepLabv3+ X 82.1

Fonte: Adaptado de Chen et al. (2018).

Assim como no caso da deteccdo de objetos, 0 DeepLab dispde de modelo pré-treinado para
o treinamento de modelos especificos através da transferéncia de aprendizado. Portanto também
fez-se uso do recurso para esta tarefa. No entanto, Chen et al. (2018) também adotaram o método de
treinamento sem um modelo pré-treinado em seu trabalho, produzindo resultados significativos ao
utilizar a base de dados PASCAL VOC. Deste modo, exploramos a mesma metodologia com a base

de dados construida para este trabalho, com intuito de avaliar a eficiéncia entre os dois métodos.
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Para realizar o treinamento da rede neural do DeepLab é necessario fornecer as imagens no
formato RGB e as respectivas mascaras com os objetos segmentados e classificados por valores em
escala de cinza em arquivo de imagem do tipo PNG sem a camada alfa. Sendo o valor 0 para

identificar o background e os valores maiores que este para identificar cada classe de objetos.

Deste modo, foram anotados os segmentos dos individuos em 1359 arquivos do banco de
dados das imagens provenientes do iNaturalist. O contorno foi feito utilizando a ferramenta VGG
Image Annotator (VIA) (DUTTA; GUPTA; ZISSERMAN, 2016), que pode ser utilizada em
navegadores para internet e permite delimitar os pontos de ligacdo do contorno dos objetos

presentes na cena (Figura 39), as informacdes geradas séo salvas no formato JavaScript Object
Notation JSON.

As anotacdes dos segmentos foram classificadas como animal, animal metade e animal
parcial, descartou-se a anotacdo para dorsal pois considerou-se que a mesma se trata de um
segmento de contorno aberto e por sua vez poderia influenciar negativamente no treinamento do
modelo. Utilizando a aleatoriedade para selecdo de arquivos, foram separadas 951 imagens (70%)

para o treinamento e 408 (30%) para testes e avaliacdo do modelo.

Figura 39: Interface do software VIA, para anotacdo de segmentos.
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Inicialmente o treinamento com o modelo pré-treinado foi executado na mesma méaquina
descrita na secdo 4.1.5 , no entanto o tempo demandado para a tarefa e o alto consumo de recurso de
memo©ria fez repensar sobre a influéncia do tamanho dimensional e em disco das imagens durante o
processo. Portanto, optou-se por redimensionar as imagens baseando-se na area ocupada pelos

individuos na cena.

Para redimensionar as imagens avaliou-se 0s pontos que delimitam a anotagéo de contorno
da mascara para cada individuo na imagem, visando encontrar as extremidades e executar o recorte
da mesma. Nos casos em que imagem apresenta varios individuos as areas eram somadas para
encontrar a regido que abrange todas as anotagdes. Posteriormente era acrescentado uma margem

extra de 30 pixels para cada lado da area delimitada e entdo efetuava-se o recorte da imagem.

Este ajuste na dimensdo da imagem, permitiu realizar o treinamento do modelo em uma
méaquina com GPU sem quebra de processo por falta de recurso de memdria, reduzindo o tempo de
processamento de 5 segundos por passo para 3.5 segundos por passo € 0 consumo de memoria de
18GB para 7GB. A maquina utilizada para o treinamento possui um processador Intel 17 com quatro
nicleos e 16GB de memoria e uma placa de video GTX745 com 384 niicleos CUDA!! e 4GB de

memoria.

O treinamento com modelo pré-treinado utilizou as configuracbes recomendadas na
documentacio da ferramenta, conforme descrito no APENDICE D. O processo rodou durante
46875 passos e como o tamanho do lote estava definido em 1 foram executados algo em torno de 49
ciclos de treinamento, sendo finalizado ao ser observado que o valor da funcdo de perda nao
apresentava uma alteracdo significativa de aprendizagem do modelo, como se pode observar através

do gréfico da Figura 40.

11 Abreviagdo para Compute Unified Device Architecture.



91

Figura 40: Grafico da funcéo de perda durante o treinamento com modelo pré-treinado. No eixo Y valor da
funcéo de perda, no eixo X nimero de passos do treinamento.
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Fonte: Compilacéo do autor.

No caso do treinamento sem o0 modelo pré-treinado, como os idealizadores do DeepLab nédo
descrevem em seu trabalho o tempo de treinamento nem o nimero de passos rodados, executou-se 0
treinamento da segmentacdo com as classes definidas por aproximadamente 366 mil passos, que
para 0 nosso conjunto de dados contendo 951 imagens equivale a algo em torno de 385 ciclos de
treinamento. O processo foi abordado ao observar que o modelo ndo apresentava uma melhora

significativa na fungéo de perda, conforme pode ser observado na Figura 41.

Figura 41: Gréfico da funcéo de perda durante o treinamento sem o modelo pré-treinado. No eixo Y valor da fungéo de
perda, no eixo X ndmero de passos do treinamento.
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Fonte: Compilacéo do autor.

Conforme sera apresentado no capitulo 5 o treinamento sem o modelo pré-treinado néo

obteve resultados significativos que justifiquem o uso deste na etapa de extracdo da linha de
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contorno da dorsal, portanto o mesmo foi desconsiderado para a definicdo do processo deste
trabalho.

4.3 EXTRACAO DA LINHA DE CONTORNO DA DORSAL

Apesar da segmentacdo semantica apresentar bons resultados ao gerar uma mascara do
objeto de interesse, estd mascara ndo fornece um bom detalhamento da dorsal. Por este motivo, fez-
se uso do método de refinamento abordado por Hughes e Burghardt (2016), trata-se dos algoritmos
para resolver o problema de fosqueamento do termo inglés matting ou digital image matting.

Em um trabalho preliminar dos autores (HUGHES; BURGHARDT, 2015), foram avaliados
trés algoritmos matting, o affinity matting e colour matting descrito por Zheng e Kambhamettu
(2009) e GrabCut por Rother, Kolmogorov e Blake, (2004). Os testes foram efetuados em 120
imagens de dorsais cujo contorno foi desenhado manualmente para comparar com 0s resultados
obtidos pelos algoritmos (Tabela 9). Ao finalizar os testes os autores concluiram que o melhor
algoritmo para o problema de reconstrucao de contorno da dorsal, devido ao auto indice de precisdo

é o affinity matting.

Tabela 9. Comparac¢do de resultados obtidos para os algoritmos matting no trabalho de Hughes e Burghardt (2015).

Meétodo Precisao (s) Robustez Tempo de processamento
(pixels) (s=0.016)(pixels) (s=0.016)(segundos)
Affinity matting 0.877 (0.009) 1.001 64.43
Colour matting 1.970 (0.005) >2.454 >302.5
GrabCut 1.366 (0.006) 1.9431 9.87

Fonte: Adaptado de Hughes e Burghardt (2015).

Os valores de precisdo apresentados na segunda coluna da Tabela 9, definem a avaliacdo do
menor erro produzido por um método ao comparar a linha desenhada a mdo com o resultado obtido
com algoritmo. Quanto menor o valor mais preciso é o algoritmo. J& a robustez apresentada na
terceira coluna, é calculada como erro médio da localizagdo em linhas de interseccdo entre

foreground e background com a maior espessura.

Apesar do trabalho de Hughes e Burghardt (2015) demostrar que o algoritmo affinity
matting obteve os melhores resultados, considerou-se a possibilidade de explorar outros algoritmos

descritos na literatura (SINGH; JALAL, 2013), visando avaliar o desempenho dos mesmos para o
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problema de refinamento da linha de contorno da dorsal dos animais da ordem dos cetaceos. Logo

escolheu-se os seguintes algoritmos:

1. Learning Based (ZHENG; KAMBHAMETTU, 2009);
2. Bayesian (CHUANG et al., 2001);

3. Knn (CHEN; LI; TANG, 2013);

4. Closed form (LEVIN; LISCHINSKI; WEISS, 2007);
5. Lkm (HE; SUN; TANG, 2010); e

6. Ifm (AKSOY; AYDIN; POLLEFEYS, 2017).

A escolha por estes algoritmos deu-se por tratar de implementacGes de codigo aberto em
Python, linguagem de programacdo também utilizada para deteccdo de objetos e segmentagdo®?.
Também ¢é valido ressaltar que o algoritmo 1 apesar de apresentar um nome diferente do que fora
descrito por Hughes e Burghardt (2015) como affinity matting, trata-se do mesmo algoritmo que
também foi implementado em um segundo trabalho de Hughes e Burghardt (2016), por este motivo
0 mesmo foi incluido a lista para comparar o seu desempenho perante aos demais algoritmos

escolhidos.

Antes de aplicar o refinamento de contorno com os algoritmos matting selecionados, é
necessario criar uma mascara da area de interesse contextualizando as regides de foreground,

background e area de intersec¢do. Processo este conhecido como trimap.

Para esta atividade, utiliza-se as caixas delimitadoras da dorsal encontradas durante a
execucdo da etapa de deteccdo de objetos para recortar a regido que representa o objeto na imagem
resultante da tarefa de segmentacdo, conforme exemplificado na Figura 42. Porém antes de efetuar
0 recorte aplica-se uma margem extra de 10% em relacdo ao tamanho total da caixa delimitadora,

para evitar o risco de perder alguma &rea da dorsal oclusa pela predigé&o.

12 Os algoritmos foram desenvolvidos e disponibilizados por Marco Forte em seu repositério de codigos
(https://github.com/MarcoForte/closed-form-matting) e Aksoy, Aydin e Pollefeys (2017) no repositorio de codigo
(https://github.com/99991/matting).
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Figura 42: Recorte da dorsal para imagem original e o respectivo segmento, usando a
caixa delimitadora obtida na etapa de deteccao de objetos.

= -

.

Fonte: Compilagdo do autor.

Ap0s o recorte da imagem segmentada, extrai-se a linha de contorno do segmento (Figura 43
(2)), que deve ser dilata e sobreposta ao segmento novamente para delimitar a regido de interseccao.
O resultado € a mascara trimap com as cores branco (foreground), preto (background) e a cor cinza

para a regido que sera analisada pelos algoritmos matting (Figura 43 (3)).

Considerando que em alguns segmentos das dorsais a linha extraida diverge da linha de
interesse da dorsal, foi escolhido duas espessuras para a regido de interseccdo. As duas
configuracGes de dilatacdo utilizam um kernel de 3x3 pixels com 2 e 3 interacGes, e conforme sera
apresentado no capitulo 5 passou por um processo de avaliacdo visual para definir a melhor

configuracdo para o problema proposto.

Figura 43: Passos para criagdo do trimap. (1) recorte do segmento na regido da dorsal; (2) extracéo da linha de
contorno do segmento; (3) criagdo da rea de intersecgdo do trimap e sobreposicdo desta no semento da dorsal.

Fonte: Compilacéo do autor.
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De posse da méascara, aplica-se 0 mesmo recorte da regido da dorsal feito para a imagem de
segmentagdo na imagem original no formato RGB. Estas entdo sdo processadas pelos algoritmos

matting.

O resultado final do processo consiste em uma matriz de valores entre 0 e 1, semelhante uma
camada alpha que descreve a intensidade dos pixels pertencentes ao conjunto de dados do
foreground e background. A Figura 44 demonstra alguns exemplos de camada alpha resultante do

processo de matting.

Com intuito de tornar visivel a representacdo da area de interseccdo entre a dorsal e 0
restante da cena na camada alpha, os valores entre 0 e 1 foram substituidos por valores da escala de
cores de tons de cinza (0-255). Sendo o foreground representado pela cor branca 255, background

cor preta 0 e a intersecc¢do das regides com os demais valores.

Figura 44: Exemplo dos resultados obtidos com os algoritmos matting. (a) Learning
Based; (b) Bayesian; (c) Knn; (d) Closed form.

A\
A

Fonte: Compilacéo do autor.
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Todavia, para extrair a linha de contorno da area de intersecgdo é necessario transformar a
maéscara resultante do processo de matting em uma representacao binéria. Ou seja, deve-se delimitar
um valor de corte que permita representar exatamente a area que representa a dorsal de um
individuo e area que contextualiza o background. Hughes e Burghardt (2015) adotaram um valor de
corte da camada alpha em 0,5, onde todo valor < 0,5 recebe o valor 0 e os valores >= 0,5 o valor 1.
Neste trabalho, adotamos a metodologia proposta pelos autores, além de propormos um método a
nivel exploratério, que consiste em calcular a média ponderada dos valores da camada alpha para

definir o limiar de corte para a binarizagéo.

Apos a binarizago, a linha de contorno € extraida com o algoritmo de detec¢do de contornos
Canny (1986). A Figura 45 apresenta alguns exemplos de resultados obtidos ao final da tarefa,
sobrepondo a linha resultante da etapa de extracdo da linha de contorno da dorsal na imagem

original.

Figura 45: Exemplos dos resultados obtidos na etapa de extracdo da linha de
contorno da dorsal. (a) Learning Based; (b) Bayesian; (c) Knn; (d) Closed form.

Fonte: Compilacéo do autor.
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5 RESULTADOS

5.1.1 Avaliacdo da etapa de deteccao de objetos

A avaliacdo da etapa de deteccdo de objeto fez uso das 383 imagens da base de dados que
foram separadas para testes e validagdo. As imagens contém as anotacOes das caixas delimitadoras
dos objetos de interesse, sendo 497 objetos do tipo dorsal, 131 animal, 67 animal parcial e 36
animal metade. Totalizando 695 objetos nas 383 imagens. Estes, por sua vez foram considerados

como o padréo verdade para o processo de avaliagéo.

Para produzir os resultados foi utilizado a funcionalidade de avaliagdo disponibilizado pela
API de deteccdo de objetos. O método implementado pela API segue as regras definidas pela
métrica de avaliacdo para deteccdo de objetos COCO (2015). Os resultados obtidos estdo presentes
na Tabela 10.

Tabela 10. Resultados obtidos durante a avaliagdo da etapa de detecc¢do de objetos.

Modelo APIOU:.SO:.QS APIOU:.SO APIOU:.75 APsmaII APmedium APIarge AR AR AR AR

max=100 small medium large

SSD 0.547 0.693 0649 0463 0.629 0.555 0.663 0.550 0.687 0.670
R-FCN 0.497 0.689 0.630 0360 0.556 0.506 0.590 0.475 0.608 0.599

Faster 0.523 0.672 0.636 0383 0.602 0532 0.670 0.500 0.683 0.677
R-CNN

Em um primeiro momento, ao examinar os resultados obtidos para cada modelo de rede
neural escolhida, pode-se observar que o modelo de rede neural SSD supera 0s demais em quase

todos os quesitos da avaliagdo, com excecdo de AR™=100 ¢ ARlarge,

Estes resultados representam um panorama global para as quatro classes de objetos, além de
fornecer indicios suficientes de que o modelo de rede neural SSD é a melhor escolha para a etapa de
deteccdo de objetos. No entanto, € preciso detalhar a avaliacdo entre as classes de objetos para

investigar se 0 bom desempenho do modelo se repete para a classe de objeto da dorsal.

Para obter resultados detalhados do desempenho dos modelos para cada objeto detectado,
aplicou-se a avaliacao utilizando a métrica disponibilizada em PASCAL VOC (2012). Que permite
avaliar o valor AP para cada classe de objetos, bem como calcula a média ponderada para todos 0s

resultados individuais de AP do processo de detec¢do. O limiar de corte para considerar se um
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objeto detectado € um verdadeiro positivo em relacdo ao padrdo verdade definido pela métrica é
loU=.50. Os resultados obtidos sao apresentados na Tabela 11 e Figura 46.

Tabela 11. Resultados obtidos para a avaliagdo da detec¢do de objetos com a métrica PASCAL VOC.

Modelo MAP % AP % AP % AP % AP %
dorsal animal animal metade animal parcial

SSD 69,62 95,97 90,85 46,06 45,61

R-FCN 68,86 95,62 93,08 42,73 44,00

Faster R-CNN 67,47 94,78 88,66 39,81 46,62

Figura 46: Grafico com o nimero de acertos e erros encontrados durante a deteccdo de objetos, utilizado o 1oU=0.5.

Acertos e erros na deteccao de objetos

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0

dorsal = dorsal dorsal animal | animal animal animal animal animal animal animal animal
parcial = parcial | parcial metade metade metade

X

SSD RFCN Faster- RFCN SSD Faster- | Faster- SSD RFCN SSD Faster- RFCN
RCNN RCNN RCNN RCNN

B Verdadeiro Positivo M Falso Positivo

Fonte: Compilacéo do autor.

Observa-se que, novamente o modelo SSD destacou-se em relacdo aos demais modelos com
o melhor resultado global mAP e também para a deteccdo de objetos do tipo dorsal e animal
metade, porém foi superado pelo modelo R-FCN na classe de objetos animal e pelo modelo Faster
R-CNN na classe animal parcial.
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O gréfico da Figura 46 mostra a distribuicdo de acertos e erros para cada classe de objeto
nos trés modelos, no caso da dorsal 0 modelo SSD obteve o0 maior nimero de detecgdes positivas
sendo apenas 44 destas consideradas falsas. Ao avaliar visualmente as detec¢fes consideradas como
falso positivo para este modelo, descobriu-se que apenas 18 eram efetivamente um erro conforme
apresentado nos exemplos da Figura 47. Os 26 falsos positivos restantes eram dorsais que nao
foram inicialmente anotadas no padrdo verdade por apresentarem as regides de interesse
parcialmente oclusas pela agua ou por apresentarem uma regido cuja quantidade de pixels é

pequena (Figura 48), demostrando a eficiéncia do modelo para a tarefa proposta.

Apesar dos bons resultados obtidos pelo modelo SSD, pode-se denotar que os demais
modelos avaliados apresentaram resultados aproximadamente equilibrados, confirmando o que fora
dito por Yosinski et al. (2014) sobre a melhora de um determinado modelo ao fazer uso da
transferéncia de aprendizado. Entretanto, a divisdo dos animais parcialmente oclusos entre as
classes animal metade e animal parcial geraram um desempenho abaixo do esperado, indicando

uma possivel limitagdo dos modelos em diferenciar os dois tipos de objetos.
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Figura 47: Exemplos de erros de deteccéo gerados pelo modelo SSD destacados em vermelho, em verde
das deteccdes corretas para os objetos do escopo. (a) detectou o pneu como dorsal; (b) detectou o animal
como dorsal; (c) detectou a nadadeira caudal como dorsal.
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Figura 48: Exemplos de deteccéo falso positivo gerados pelo modelo SSD destacados em amarelo, em verde
as detecgdes corretas de dorsais. (a) detec¢do de dorsal parcialmente oclusa pela 4gua; (b) detecgédo de dorsal
ndo anotada no padrdo verdade; (c) deteccdo de dorsal ndo anotado no padréo verdade devido ao seu

tamanho e distancia da cém;.rar.

Dorsal
-

Fonte: Compilacéo do autor.

5.1.2 Avaliacdo da etapa de segmentacao

Para avaliar a segmentacéo das trés classes de objetos nas 408 imagens separadas para testes
foi utilizado a métrica disponibilizada pelo proprio DeeplLab, que resulta na média de todos 0s

valores obtidos no célculo de interseccdo sobre a unido da area segmentada com a area delimitada

como padréo verdade (mloU).

Para o treinamento da segmentacdo semantica utilizando o modelo pré-treinado, obteve-se o
resultado mloU de 70,3%, ficando apenas 11,8% abaixo do melhor resultado obtido pelos
idealizadores do DeepLab ao utilizar uma base de dados de teste contendo 30 classes distintas e
anotacdes grosseiras (CHEN et al., 2018). Ja para o método de treinamento sem um modelo pré-
treinado, o resultado obtido pela avaliagdo foi um mloU de 36,68%, ou seja, 33,62% abaixo do

valor obtido com o modelo pré-treinado e distante dos 87,8% obtidos pelos autores citados.
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Estes resultados expdem a fragilidade do treinamento sem um modelo pré-treinado para a
tarefa de segmentacdo, bem como reforca a necessidade de abordar a transferéncia de aprendizado

para obter um resultado consistente e sem a necessidade de longos periodos de treinamento.

5.1.3 Andlise visual da etapa de segmentacao para criacéo do trimap

Levando em consideracdo que a avaliacdo da segmentacdo se restringe a um unico valor
global que representa a eficiéncia do modelo, decidiu-se analisar visualmente os segmentos gerados
durante os testes sobrepondo-os as imagens originais, com intuito de observar a cobertura do
segmento nas dorsais dos individuos e avaliar o potencial uso da etapa de segmentacao para criacdo

do recurso de trimap.

Das 408 imagens verificadas, 151 apresentaram algum tipo de inconsisténcia na regido da
dorsal que consequentemente influenciariam negativamente na criacdo do trimap. Observou-se em
algumas dorsais a regido segmentada extrapolava os limites entre a dorsal e o fundo (Figura 49a),
em outros momentos o segmento era inferior aos limites, ou seja, ocupava uma area menor que a
dorsal (Figura 49b).

Considerando o total de imagens inconsistentes, 81 apresentaram 0 excesso nNo segmento e
54 imagens a falta deste, resultando em um total de 33% de imagens que merecem atencdo ao
escolher espessura da regido de interseccdo do trimap para a etapa de extracdo da linha de contorno
da dorsal. As 16 imagens restantes que ndo entraram nestas duas classificacdes séo de dorsais que
ndo foram segmentadas (Figura 50), e consequentemente foram descartadas.

Figura 49: Exemplos de inconsisténcias geradas pela segmentacéo. (a) segmento extrapola
a area da dorsal; (b) segmento inferior aos limites da dorsal.

Fonte: Compilacéo do autor.
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Fonte: Compilacéo do autor.

Tendo em vista que na secdo 4.3 definiu-se duas espessuras para a area de interseccéo do
trimap, avaliou-se quais destas seria capaz de recrutar o maximo de imagens inconsistentes para o
processo de matting. Sobrepomos as dorsais originais com as duas configuracdes de espessuras
geradas a partir da linha de contorno dos respectivos segmentos (Figura 51). Os resultados obtidos

nessa avaliacdo podem ser observados na Tabela 12.

Figura 51: Exemplo de sobreposi¢do com a area de intersecgdo. (a) cobertura do segmento
gue extrapola a area da dorsal; (b) cobertura do segmento inferior aos limites da dorsal.

Fonte: Compilacéo do autor.
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Tabela 12. NUmero de imagens inconsistentes recrutadas para o processo de matting, apds a avaliagao visual das
configuracOes de espessura da area de intersecgao do trimap.

Configuracao N° recrutamento inconsisténcial N° recrutamento inconsisténcia 2
kernel 3x3 2 interacOes 26 15
kernel 3x3 3 interagdes 66 34

Esta avaliacdo revelou que para a primeira configuragao apenas 32% imagens com excesso
de segmento poderiam ser recrutadas novamente, opostamente com a segunda configuracdo é
possivel recrutar 81% das imagens. J& no caso das imagens com segmento inferior a largura da

dorsal, a primeira configuracao recrutou apenas 28% das imagens e a segunda configuracéo 63%.

Compreendendo que a segunda configuragdo permite recrutar um nimero maior de imagens
inconsistentes para 0 processo de matting, optou-se por utilizar esta como padréo para a etapa de

avaliacdo de extracdo da linha de contorno descrita na proxima secéo.

5.1.4 Avaliacdo da etapa de extracdo da linha de contorno da dorsal

A avaliacdo de desempenho das combinacdes criadas para o refinamento e extracdo da linha
de contorno da dorsal, consiste basicamente em comparar 0s resultados obtidos com um conjunto de
dados de contornos das dorsais desenhados a médo. O desenho manual define o padrdo verdade a ser

comparado e deve representar o contorno fino da dorsal com apenas um pixel de espessura.

Durante a criacdo da base de dados para o treinamento da segmentagdo foram desenhados 0s
contornos grosseiros tanto da dorsal quanto do animal. No entanto, estes ndo puderam ser utilizados
aqui devido a descricdo imprecisa de alguns detalhes, como por exemplo, os entalhes das dorsais.
Neste caso, decidiu-se que um novo conjunto de dados contendo os contornos finos necessarios

para a avaliacdo seria criado do zero.

Como os trabalhos relacionados ndo descrevem qualquer tipo de método para sele¢do do
conjunto de dados para avaliacdo, optou-se pela criacdo de um meétodo que ndo envolve a selecao
aleatoria ou manual. Portanto, as imagens escolhidas para esta avaliacdo sdo provenientes da base
de dados de teste da etapa de deteccdo de objetos. Como critério de selecdo da dorsal, definiu-se
que apenas as que alcancassem o valor superior ou igual de 75% loU ao comparar caixa

delimitadora da deteccéo de objetos e o padrdo verdade, seriam escolhidas para produzir a linha de
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contorno fino do padréo verdade. Das 383 imagens da base de testes, restaram 91 imagens com 98

dorsais que atendiam aos critérios.

Apdbs a criacdo do contorno fino feito a mdo, os mesmos arquivos contendo as dorsais
selecionadas passaram pelo processo de segmentacao e criacao do trimap. Porém 10 destas geraram
segmentos inconsistentes e por este motivo foram descartadas do conjunto de dados de avaliagéo.
As dorsais restantes foram submetidas ao processo de matting e binarizagdo com os limiares de
corte 0,5 e média ponderada. A Figura 52, demonstra alguns exemplos de resultados gerados ao

final do processo.

Figura 52: Resultados da etapa de extragdo da linha de contorno da dorsal, a esquerda a
linha gerada e a direita a linha sobreposta a imagem da dorsal.

T —

Fonte: Compilacéo do autor.

A métrica escolhida para avaliar os algoritmos faz uso dos conceitos definidos pela medida
F-Score e foi descrita por Martin, Fowlkes e Malik (2004), que posteriormente foi incorporada por
Arbelaez et al. (2010) como método de avaliacdo de deteccdo de contorno e segmentacéo, no centro

de pesquisas em computacao visual de Berkeley Universidade da California.
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Os resultados globais obtidos durante a avaliagdo dos algoritmos com o0s respectivos
limiares de corte da binarizacdo sdo apresentados na Tabela 13. Observa-se que quase todos 0s
algoritmos possuem uma variacdo de F-Score de até 2%, a excecdo é o Bayesian que apresentou
uma diferenca maior que 8% com relacdo aos demais. Entretanto, em um primeiro momento, 0s
valores de preciséo e revocacdo indicam que em quase todas as combinacdes existe uma relagéo
estreita entre a capacidade de encontrar e selecionar os pixels relevantes para a construgéo da linha

de contorno da dorsal.

Tabela 13. Resultados globais para cada combinacdo de algoritmo e limiar de corte da binarizacdo.

Algoritmo matting Limiar de corte binarizagéo Preciséo Revocagdo F-score
Ifm média 0,838 0,878 0,858
Ifm 0,5 0,834 0,875 0,854
Knn 0,5 0,822 0,883 0,851
Knn média 0,822 0,882 0,851
Lkm 0,5 0,827 0,869 0,848
Closed form média 0,838 0,852 0,845
Lkm média 0,822 0,869 0,845
Learning based média 0,835 0,854 0,844
Closed form 0,5 0,833 0,847 0,840
Learning based 0,5 0,827 0,847 0,837
Bayesian média 0,675 0,848 0,752
Bayesian 0,5 0,675 0,846 0,751

Todavia, conforme descrito anteriormente trata-se de uma avaliagdo global, por este motivo
os resultados individuais de precisdo e revocacdo para 0 conjunto de imagens avaliadas séo
detalhados nos dos gréaficos de distribuicdo da Figura 53 e Figura 54. Ao confrontar os graficos,
percebe-se que o algoritmo Bayesian apresenta um comportamento atipico no crescimento da curva
comparado aos demais, por este motivo algumas das discussdes expostas a seguir podem

desconsidera-lo durante a analise dos resultados.
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Figura 53: Gréfico de curvas para precisao e revocacao dos algoritmos matting com limiar de corte da binarizacdo 0,5.
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Figura 54: Gréficos de curvas para precisao e revocacao dos algoritmos matting com limiar de corte da binarizacdo
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Ao analisar as informacgdes dos gréficos, nota-se que o crescimento da linha segue um
comportamento compartilnado em todos os resultados. Ou seja, observa-se que valores de precisao
andam em paralelo ao crescimento dos valores de revocacgdo. Indicando a presenca de um nivel de
paralelismo na ocorréncia de pixels considerados falsos positivos e falsos negativos gerados pelos

algoritmos.

Também é perceptivel a presenca de algumas excec¢Bes onde o valor de revocagdo tende a
ser maior que a precisdo. Nestes casos, ao analisar visualmente as imagens constatou-se que 0S
algoritmos geraram linhas de contornos excedentes por retratar cenas de individuos parcialmente
oclusos e com a dorsal proxima a agua, caracteristica esta que acarretou na criacdo de uma area de
interseccdo do trimap entre o corpo do individuo e a &gua, gerando uma regido de limites nao
previstas durante a definicdo do padrdo verdade. Este tipo de situacdo foi presenciado em 6 imagens

do conjunto de dados da avaliacdo, na Figura 55 séo apresentados alguns exemplos da ocorréncia.

Figura 55: Dorsais com linhas de contornos excedentes, a esquerda o trimap
utilizado no processo de matting e a direita a linha resultante sobreposta a
imagem original da dorsal.

7
) N
4

Fonte: Compilacéo do autor.
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Outras 17 imagens apresentaram um comportamento semelhante, porém representam um
distanciamento entre a precisdo e revocagdo menor que os citados anteriormente. A verificacdo
destas imagens demostrou que estas divergéncias estavam ligadas a conjuntos de pixels entre dorsal
e 0 background que possuem a mesma intensidade de cores, esta inconsisténcia criou alguns
segmentos indesejados durante a tarefa de binarizacdo (Figura 56). E também foi mais recorrente

nos algoritmos knn e Ikm conforme pode ser observado nos respectivos gréaficos.

Figura 56: llhas de segmentos indesejados gerados durante a da tarefa de
binarizacdo.

Fonte: Compilacéo do autor.
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A leitura dos gréaficos de precisdo e revocacdo também nos levou aos seguintes

questionamentos:

1. Do conjunto de dados separados para esta avaliacdo, quantos resultaram em um valor de

precisdo abaixo do esperado?

2. Quais fatores influenciaram na ocorréncia dos valores de baixa precisdo?

Para responder ao primeiro questionamento foi necessario definir um valor de corte que
permitisse delimitar quais resultados seriam considerados aceitaveis para esta avaliagdo. Com
intuito de ndo ser muito rigoroso na escolha deste valor, definiu-se que seriam considerados
imprecisos apenas o0s resultados onde precisdo fosse inferior a 0,5. O resultado para este
levantamento ¢é apresentado na Tabela 14 e confirma que, com exce¢do do algoritmo Bayesian, 0s
demais casos resultaram em um indice de imprecisdo de no maximo 20%. Com destaque ao
algoritmo Ifm que combinado ao limiar de corte da binarizacdo usando a média ponderada obteve

apenas 14% de resultados imprecisos.

Tabela 14. Levantamento quantitativo das imagens com resultado de preciséo (PR) inferior e superior & 0,5.

Algoritmo matting Limiar de corte PR<05 PR>=05 %PR<05 %PR>=05

binarizacao
Bayesian média 30 58 34% 66%
Bayesian 0,5 30 58 34% 66%
Closed form média 13 75 15% 85%
Closed form 0,5 18 70 20% 80%
Ifm média 12 76 14% 86%
Ifm 0,5 15 73 17% 83%
Knn média 17 71 19% 81%
Knn 0,5 17 71 19% 81%
Learning based média 14 74 16% 84%
Learning based 0,5 17 71 19% 81%
Lkm média 15 73 17% 83%
Lkm 0,5 15 73 17% 83%

Os valores descritos Tabela 14 referem-se a um conjunto de 32 imagens que resultaram no
indice de precisdo inferior a 0,5, isso corresponde a 36% da base de dados construida para esta

avaliacdo. Ao efetuar uma verificagdo visual nas imagens para descobrir os fatores que
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influenciaram no baixo desempenho, apurou-se que 66% destas apresentaram algum tipo de
deslocamento na linha de contorno resultante dos algoritmos matting, devido a correlagédo de alguns
conjuntos de pixels que compartilhavam de tonalidades de cores aproximadas entre o background e
a dorsal (Figura 57a e Figura 57b). Também se constatou que em 22% dos casos a imprecisdo
estava ligada a problemas de foco ou reflexo da luz (Figura 57c e Figura 57d), os 12% restantes

correspondem a pequenas inconsisténcias relacionadas a area de cobertura do trimap (Figura 57e).

Figura 57: Imagens com resultado de precisdo inferior a 0,5, as linhas brancas correspondem ao padréo
verdade e as amarelas os resultados da extracdo da linha de contorno. (a) e (b) pixels com pouco contraste
foreground e background; (c) imagem tremida; (d) interferéncia do reflexo da luz; (e) erro na area de
cobertura do trimap.

Fonte: Compilacéo do autor.

As analises dos resultados desta secdo apontaram que quase todos os algoritmos matting
utilizados durante a avaliagdo apresentaram um bom desempenho. Bem como demostrou através do
levantamento quantitativo dos resultados imprecisos que a configuracdo de limiar de corte da
binarizacdo com a média ponderada tende a reduzir a imprecisao gerada em alguns algoritmos. A
avaliagdo também revelou que a principal causa de inconsisténcias geradas pelo processo de
matting estdo ligadas ao entrelagamento dos pixels do foreground e background, devido ao baixo

contraste entre as regides.
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6 CONCLUSAO

Pode-se observar no decorrer do desenvolvimento do presente trabalho, que os conceitos da
metodologia proposta por Hughes e Burghardt (2016) também se aplicam ao problema de pesquisa
desta dissertacdo. Contudo, para atender o principal objetivo deste trabalho, algumas das etapas de
construcdo do processo automatizado de extracdo das caracteristicas de identificacdo da nadadeira

dorsal, estes conceitos foram abordados por outra perspectiva.

Ou seja, 0 uso de técnicas sofisticadas de visdo computacional que se beneficiam da
versatilidade dos modelos de redes neurais artificias, bem como a adocdo de ferramentas que
facilitaram no desenvolvimento de uma solugcdo para o problema proposto. Proporcionou a
construcdo de um processo automatizado para a etapa de extracdo das caracteristicas de
identificacdo das nadadeiras dorsais cetaceos, através do uso de técnicas de aprendizado de maquina

consideradas no atual momento como estado da arte para este campo de pesquisa.

Entre as diferentes técnicas de visdo computacional adotadas durante a construcdo do
processo automatizado, duas se destacam por serem implementac6es que ndo foram abordadas nos
trabalhos relacionados, bem como permitiu atender os critérios do primeiro objetivo especifico.
Trata-se das técnicas de deteccdo de objetos e segmentacdo semantica, que foram incorporadas ao
trabalho através da criacdo de modelos treinados a partir de redes neurais convolucionais, com um
corpus especifico de imagens digitais de cetaceos. Esta abordagem possibilitou implementar um
novo método para detectar e extrair as dorsais de imagens digitais, além de fornecer o material

necessario para a avaliacdo do método proposto.

Conforme fora apresentado durante a analise dos resultados, todos os modelos de redes
neurais utilizados na deteccdo de objetos obtiveram bons resultados, principalmente na deteccédo da
dorsal onde a diferenca na média de precisdo entre os modelos foi pequena. Porém na avaliacao
global o modelo SSD se destacou aos demais, por este motivo foi o escolhido para integrar a versao
final da ferramenta proposta. Também € importante salientar que ao explorar a deteccdo de outras
classes de objetos, pode-se observar o potencial uso deste recurso, no desenvolvimento de uma
ferramenta de busca de cetaceos em imagens digitais envolvendo grandes bases de dados

ambientais.
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No que diz respeito a etapa de segmentacdo o modelo atendeu as expectativas deste trabalho,
porém devido a limitacdo que impossibilita separar objetos sobrepostos, faz-se necessario explorar a

implementacao de outros modelos, como por exemplo, a segmentacdo de instancias.

Para atender ao segundo objetivo especifico, incorporou-se a técnica de refinamento de linha
de contorno adotada por Hughes e Burghardt (2016). Portanto, seis algoritmos matting descritos na
literatura foram incluidos na etapa de extracéo da linha de contorno da dorsal. Em uma comparacéao
rigida dos resultados obtidos para esta etapa, pode-se dizer que o algoritmo Ifm superou os demais,
bem como apresentou um desempenho melhor que o algoritmo Learning Based adotado no trabalho
de Hughes e Burghardt (2016). Contudo, ndo se pode afirmar que este seria 0 melhor algoritmo
para o problema proposto, dado a ocorréncia de resultados equilibrados obtidos durante a avaliagéo,

onde dos seis algoritmos avaliados apenas o Bayesian ndo se aplica ao contexto do problema.

Esta pequena diferenca apresentada pelos resultados, pode estar relacionada ao fato de que a
avaliacdo foi realizada com um conjunto pequeno de dados de teste. Portanto recomenda-se que em
trabalhos futuros a avaliacdo seja efetuada em um conjunto maior de dados. Por outro lado, a
analise individual dos resultados para 0 mesmo conjunto de dados avaliados, demonstrou que
independente das condi¢cdes ambientais retratadas nas cenas, os algoritmos sdo ineficientes quando

aplicados a imagens de baixa qualidade ou com pouco contraste entre o foreground e background.

O terceiro e ultimo objetivo especifico consiste no desenvolvimento de uma ferramenta que
disponibilize os dados da extragdo das linhas de contornos das dorsais para que possam ser
utilizadas por qualquer software que seja capaz de utilizar esta informacdo na etapa de identificacéo
individual. Este objetivo foi atendido ao longo da construcdo de cada etapa do processo de
automatizacdo do extrator de caracteristicas de identificacdo individual dos cetaceos, e pode ser
incorporado a qualquer método de identificacdo individual descrito nos trabalhos relacionados.

Em relagdo as perguntas de pesquisa, esta dissertacdo demonstrou que foi possivel
implementar uma soluc¢do similar ao método proposto por Hughes e Burghardt (2016), em uma
ferramenta de extracdo das caracteristicas de identificagdo individual de cetaceos. Bem como
permitiu evidenciar a eficiéncia das técnicas de visdo computacional empregadas a imagens com
condi¢bes ambientais adversas, através da avaliagdo quantitativa dos resultados obtidos em cada

etapa do processo.
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6.1 CONTRIBUICOES

A principal contribuicdo que este trabalho trouxe para a area de computacdo foi o
desenvolvimento de um processo automatizado para extracdo das caracteristicas de identificacdo
das nadadeiras dorsais para cetdceos, utilizando técnicas de visdo computacional que misturam
algoritmos classicos e de aprendizado de méaquina para producdo de recursos computacionais

considerados como estado da arte pelos pesquisadores da area.

Este trabalho também contribuiu indiretamente com a possibilidade de criacdo de novas
ferramentas para gestdo ambiental em trabalhos futuros. Ou seja, ao explorar a deteccdo de
multiplos objetos, observou-se o potencial desta técnica na producdo de ferramentas que auxiliem
no monitoramento ambiental de cetdceos. Um exemplo disto seria a busca e identificacdo de
cetaceos em grandes bases de dados de imagens ambientais, e monitoramento de cetdceos em tempo
real utilizando imagens provenientes de cameras de video instaladas em regifes costeiras, portos,

etc.

Outra contribuicdo deixada foi a criacdo de um corpus de imagens de cetaceos, baseado em
repositérios de dados ambientais de extrema importancia no que diz respeito ao monitoramento
ambiental e controle populacional. Contendo as anotacdes de caixa delimitadora para as quatro
classes descritas no desenvolvimento, além de um nudmero consideravel de segmentos dos

individuos criados manualmente e que podem ser reaproveitados em trabalhos futuros.

6.2 SUGESTOES PARA TRABALHOS FUTUROS

Ao finalizar este trabalho obteve-se o conhecimento de que algumas etapas do processo
automatizado de extracdo das caracteristicas de identificacdo das nadadeiras dorsais para animais da

ordem dos cetaceos, poderiam ser melhorados ao efetuar alguns ajustes.
Sendo estes:

e Melhorar o desempenho dos modelos de deteccdo de objetos e segmentacdo, adicionado

um namero maior de exemplos durante o processo de treinamento;

e Implementar um modelo de segmentacdo de instancias para atender a limitacdo deixada

pelo modelo de segmentacdo semantica;
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e Incluir novas classes de objetos presenciados nas cenas ambientadas pelas imagens,

visando reduzir os erros de deteccdo de objetos e as inconsisténcias geradas pela etapa
de segmentacéo; e

e Ampliar o conjunto de dados de teste e validacdo dos algoritmos empregados na etapa de

extracdo da linha de contorno da dorsal.

Para atender as recomendac0es listadas, sugere-se a ampliacdo do corpus de imagens de

cetaceos efetuando uma nova consulta nas bases de dados citadas neste trabalho, ou buscando novas

fontes de dados ambientais.
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Framework
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Passo de treinamento
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Alfa é um valor que define a opacidade de um pixel numa imagem.

API é um conjunto de rotinas e padrdes de programacao para acesso a um
aplicativo de software ou plataforma. A sigla API refere-se ao termo em
inglés "Application Programming Interface” que significa em traducdo para
0 portugués "Interface de Programacéo de Aplicativos".

Termo em inglés utilizado para descrever a regido imagem ou contexto da
cena nédo ocupado pelo foreground.

Classificacdo dos pixels de uma imagem em apenas duas cores, como por
exemplo, preto e branco.

Conjunto de valores que definem as intensidades de opacidades para 0s
pixels de uma imagem.

Abreviatura do sistema de cores subtrativas formado por Ciano (Cyan),
Magenta (Magenta), Amarelo (Yellow) e Preto (Black (Key ou para néo
confusdo com o B de "Blue" no padrdo Hi-Fi com RGB)).

Um conjunto de documentos ou dados sobre determinado assunto.

Unidade de medida que descreve a quantidade de vezes que todos os dados
de treinamento de uma rede neural artificial foram totalmente processados.

Termo em inglés utilizado para descrever 0s objetos em primeiro plano de
uma imagem ou cena.

Trata-se de uma abstracdo que une cddigos comuns entre varios projetos de
software provendo uma funcionalidade genérica. Um framework pode
atingir uma funcionalidade especifica, por configuracdo, durante a
programacéo de uma aplicacao.

Unidade de medida de informacéo que equivale a um bilhdo de bytes.

Unidade de medida que define a quantidade de dados processados em um
passo de treinamento de uma rede neural artificial.

Termo em inglés utilizado para descrever a analise de correspondéncia entre
a imagem analisada e as imagens armazenadas em uma base de dados.

Conjunto de dados descritivos das caracteristicas fisicas ou morfologicas de
um grupo de individuos.

Termo que define a execucdo de um determinado algoritmo uma ou mais
vezes durante a atividade de treinamento de uma rede neural artificial.



Perseptrom

Peso
Pixel

PNG

Ranking

RGB

Threshold

top-1

top-5

Viés

XOR
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O perceptron é um classificador binario analogo a um neuroénio, que mapeia
sua entrada x (um vetor de valor real) para um valor de saida f(x) (um valor
binario simples) através de uma matriz.

Representacdo analoga das sinapses neurais em uma rede neural artificial.
O menor componente de uma imagem digital.

Um formato de dados utilizado para imagens que permite comprimi-las sem
perda de qualidade e retirar o fundo de imagens com o uso do canal alfa.

Termo em inglés que define um processo de posicionamento de itens
individuais conforme a sua relevancia em uma lista de classificagéo.

Abreviatura de um sistema de cores aditivas em que o Vermelho (Red), o
Verde (Green) e o Azul (Blue) sdo combinados de varias formas de modo a
reproduzir um largo espectro cromatico.

Definicdo utilizada para descrever o limiar de corte de uma funcéao ou tarefa.

Utilizado para descrever que um determinado elemento foi encontrado
corretamente em uma lista de classificacao.

Utilizado para descrever que um determinado elemento foi encontrado entre
as cinco posic¢des iniciais de uma lista de classificacao.

Utilizado como sinal de excitagdo do neurdnio em uma rede neural artificial.

Ou exclusivo ou disjuncdo exclusiva, conhecido geralmente por XOR ou
por EXOR (também XOU ou EOU), é uma operacdo ldgica entre dois
operandos que resulta em um valor l6gico verdadeiro se e somente se 0
namero de operandos com valor verdadeiro for impar.
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APENI?ICE A — ARQUIVO DE CONFIGURACAO DO MODELO
PRE-TREINADO ssd_resnet 50 fpn_coco

model {
ssd {
num_classes: 4
image_resizer {
fixed_shape_resizer {
height: 640
width: 640
}
}

feature_extractor {
type: "ssd_resnet50_v1 fpn"
depth_multiplier: 1.0
min_depth: 16
conv_hyperparams {
regularizer {
12_regularizer {
weight: 0.000399999989895
}
}
initializer {
truncated_normal_initializer {
mean: 0.0
stddev: 0.0299999993294
}

}
activation: RELU_6

batch_norm {
decay: 0.996999979019
scale: true
epsilon: 0.0010000000475
}
}
override_base_feature_extractor_hyperparams: true
}
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}

matcher {
argmax_matcher {

matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
use_matmul_gather: true



127

similarity_calculator {
iou_similarity {

}

box_predictor {
weight_shared_convolutional_box_predictor {
conv_hyperparams {
regularizer {
12_regularizer {
weight: 0.000399999989895

}
}
initializer {
random_normal_initializer {
mean: 0.0
stddev: 0.00999999977648

}

}
activation: RELU_6

batch_norm {
decay: 0.996999979019
scale: true
epsilon: 0.0010000000475

}

}

depth: 256

num_layers_before_predictor: 4
kernel_size: 3

class_prediction_bias_init: -4.59999990463

}
}

anchor_generator {
multiscale_anchor_generator {

min_level: 3

max_level: 7

anchor_scale: 4.0
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 0.5
scales_per_octave: 2

}
}

post_processing {
batch_non_max_suppression {
score_threshold: 0.300000011921
iou_threshold: 0.600000023842
max_detections_per_class: 100
max_total detections: 100

}

score_converter: SIGMOID
}
normalize_loss_by num_matches: true
loss {

localization_loss {
weighted_smooth_|1 {
}

}

classification_loss {
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weighted_sigmoid_focal {
gamma: 2.0
alpha: 0.25

}
}

classification_weight: 1.0
localization_weight: 1.0

encode_background_as_zeros: true
normalize_loc_loss_by codesize: true
inplace_batchnorm_update: true
freeze_batchnorm: false

}
}

train_config {
batch_size: 32
data_augmentation_options {
random_horizontal_flip {
}
}
data_augmentation_options {
random_crop_image {
min_object_covered: 0.0
min_aspect_ratio: 0.75
max_aspect_ratio: 3.0
min_area: 0.75
max_area: 1.0
overlap_thresh: 0.0
}
}
sync_replicas: true
optimizer {
momentum_optimizer {
learning_rate {
cosine_decay_learning_rate {
learning_rate_base: 0.0399999991059
total_steps: 4250
warmup_learning_rate: 0.0133330002427
warmup_steps: 2000

}

}
momentum_optimizer_value: 0.899999976158

}
use_moving_average: false
}
fine_tune_checkpoint:
"path_to_models/ssd_resnet50_v1 fpn_shared_box_predictor_640x640_cocol4 sync 2018 07_03/model.
ckpt"
from_detection_checkpoint: true
num_steps: 25000
startup_delay_steps: 0.0
replicas_to_aggregate: 8
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
}
train_input_reader {
label_map_path: "path_to_labelmap/labelmap.pbtxt"



tf_record_input_reader {

}

}

eval_config {
num_examples: 383
max_evals: 1
use_moving_averages: false
metrics_set:"coco_detection_metrics"
include_metrics_per_category: true
visualize_groundtruth_boxes: true
export_path: "path_to_evaluating/result.json"
keep_image_id_for_visualization_export: true,
visualization_export_dir: "path_to_visualization/visualization/
save_graph: true
num_visualizations: 383

}

eval_input_reader {
label_map_path: "path_to_labelmap/labelmap.pbtxt"
shuffle: false
num_readers: 1
tf_record_input_reader {

}
}
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APENDICE B - ARQUIVO DE CONFIGURAQAO DO MODELO
PRE-TREINADO rfcn_resnet101_coco

model {
faster_rcnn {
num_classes: 4
image_resizer {
keep_aspect_ratio_resizer {
min_dimension: 600
max_dimension: 1024
}
}

feature_extractor {
type: "faster_rcnn_resnet101"
first_stage_features_stride: 16
}
first_stage_anchor_generator {
grid_anchor_generator {
height_stride: 16
width_stride: 16
scales: 0.25
scales: 0.5
scales: 1.0
scales: 2.0
aspect_ratios: 0.5
aspect_ratios: 1.0
aspect_ratios: 2.0
}
}
first_stage_box_predictor_conv_hyperparams {
op: CONV
regularizer {
12_regularizer {
weight: 0.0

}
}
initializer {
truncated_normal_initializer {
stddev: 0.00999999977648

}
}
}
first_stage_nms_score_threshold: 0.0
first_stage_nms_iou_threshold: 0.699999988079
first_stage_max_proposals: 100
first_stage localization_loss_weight: 2.0
first_stage objectness_loss_weight: 1.0
second_stage box_predictor {
rfcn_box_predictor {
conv_hyperparams {
op: CONV
regularizer {
12_regularizer {
weight: 0.0



}

initializer {
truncated_normal_initializer {
stddev: 0.00999999977648
}
}
}
num_spatial_bins_height: 3
num_spatial_bins_width: 3
crop_height: 18
crop_width: 18
}
}

second_stage_post_processing {
batch_non_max_suppression {
score_threshold: 0.300000011921
iou_threshold: 0.600000023842
max_detections_per_class: 100
max_total_detections: 100
}
score_converter: SOFTMAX
}
second_stage_localization_loss_weight: 2.0
second_stage_classification_loss_weight: 1.0
}
}

train_config {
batch_size: 1
data_augmentation_options {
random_horizontal_flip {
}
}
optimizer {
momentum_optimizer {
learning_rate {
manual_step_learning_rate {
initial_learning_rate: 0.000300000014249
schedule {
step: 1
learning_rate: 0.000300000014249

schedule {
step: 900000
learning_rate: 2.99999992421e-05

schedule {
step: 1200000
learning_rate: 3.00000010611e-06

}
}
}
momentum_optimizer_value: 0.899999976158
}

use_moving_average: false

}
gradient_clipping_by_norm: 10.0

fine_tune_checkpoint: "path_to_models/rfcn_resnet101_coco_2018 01_28/model.ckpt”
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from_detection_checkpoint: true
num_steps: 34000
}
train_input_reader {
label_map_path: "path_to_labelmap/labelmap.pbtxt"
tf_record_input_reader {

}

eval_config {
num_examples: 383
max_evals: 1
use_moving_averages: false
metrics_set:"coco_detection_metrics"
include_metrics_per_category: true
visualize_groundtruth_boxes: true,
export_path: "path_to_evaluating/result.json"
keep_image_id_for_visualization_export: true,
visualization_export_dir: "path_to_visualization/"
save_graph: true
num_visualizations: 383

}

eval_input_reader {
label_map_path: "path_to_labelmap/labelmap.pbtxt"
shuffle: false
num_readers: 1
tf_record_input_reader {

}
}
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APENDICE C - ARQUIVO DE CONFIGURAQAO DO MODELO
PRE-TREINADO faster_rcnn_nas

model {
faster_rcnn {
num_classes: 4
image_resizer {
fixed_shape_resizer {
height: 768
width: 1024

}
}
feature_extractor {
type: "faster_rcnn_nas"
}
first_stage_anchor_generator {
grid_anchor_generator {
height_stride: 16
width_stride: 16
scales: 0.25
scales: 0.5
scales: 1.0
scales: 2.0
aspect_ratios: 0.5
aspect_ratios: 1.0
aspect_ratios: 2.0
}
}
first_stage_box_predictor_conv_hyperparams {
op: CONV
regularizer {
12_regularizer {
weight: 0.0
}
}
initializer {
truncated_normal_initializer {
stddev: 0.00999999977648
}
}
}
first_stage_nms_score_threshold: 0.0
first_stage_nms_iou_threshold: 0.699999988079
first_stage_max_proposals: 300
first_stage_localization_loss_weight: 2.0
first_stage objectness_loss_weight: 1.0
initial_crop_size: 17
maxpool_kernel_size: 1
maxpool_stride: 1
second_stage_box_predictor {
mask_rcnn_box_predictor {
fc_hyperparams {
op: FC
regularizer {



12_regularizer {
weight: 0.0

}
}
initializer {
variance_scaling_initializer {
factor: 1.0
uniform: true
mode: FAN_AVG

}
}
}

use_dropout: false
dropout_keep_probability: 1.0

}
}

second_stage_post_processing {
batch_non_max_suppression {
score_threshold: 0.300000011921
iou_threshold: 0.600000023842
max_detections_per_class: 100
max_total_detections: 100

}
score_converter: SOFTMAX

}
second_stage_localization_loss_weight: 2.0
second_stage_classification_loss_weight: 1.0
}
}

train_config {
batch_size: 1
data_augmentation_options {
random_horizontal_flip {
}
}
optimizer {
momentum_optimizer {
learning_rate {
manual_step_learning_rate {
initial_learning_rate: 0.000300000014249
schedule {
step: 1
learning_rate: 0.000300000014249

schedule {
step: 900000
learning_rate: 2.99999992421e-05

schedule {

step: 1200000

learning_rate: 3.00000010611e-06
}

}
}

}

use_moving_average: false

}

momentum_optimizer_value: 0.899999976158
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gradient_clipping_by_norm: 10.0

fine_tune_checkpoint: "path_to_models/faster_rcnn_nas_coco_2018 01_28/model.ckpt

from_detection_checkpoint: true
num_steps: 200000
}
train_input_reader {
label_map_path: "path_to_labelmap/labelmap.pbtxt"
tf_record_input_reader {

}

eval_config {
num_examples: 383
max_evals: 1
use_moving_averages: false
metrics_set:"coco_detection_metrics”
include_metrics_per_category: true
visualize_groundtruth_boxes: true,
export_path: "path_to_evaluating/result.json"
keep_image_id_for_visualization_export: true,
visualization_export_dir: "path_to_visualization/"
save_graph: true
num_visualizations: 383

}

eval_input_reader {
label_map_path: "path_to_labelmap/labelmap.pbtxt"
shuffle: false
num_readers: 1
tf_record_input_reader {

}
}
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APENDICE D — CONFIGURACOES PARA O TREINAMENTO
DO DEEPLAB

python deeplab/train.py
--logtostderr
--training_number_of steps=50000
--train_split="train"
--model_variant="xception_65"
--atrous_rates=6
--atrous_rates=12
--atrous_rates=18
--output_stride=16
--decoder_output_stride=4
--train_crop_size=513
--train_crop_size=513
--train_batch_size=1
--dataset="dolphin"
--tf_initial_checkpoint="path_to_initial_trained_model/deeplabv3_pascal_train_aug/model.ckpt"
--train_logdir="path_to_training_log"
--dataset_dir="path_to_training_dataset"
--fine_tune_batch_norm=False



