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RESUMO 

A identificação individual de organismos presentes na natureza é uma poderosa ferramenta 

de observação do comportamento animal, dinâmica demográfica e padrões de migração das 

espécies. No entanto, na maioria dos casos o trabalho de identificação individual pode ser muito 

dispendioso, devido ao constante processo de captura e recaptura de indivíduos para controle, 

através de marcadores artificiais, como por exemplo, colares e anilhas. Porém este conceito mudou 

a partir dos anos 1970 com a introdução da foto identificação, que possibilitou o reconhecimento de 

cada indivíduo de uma determinada espécie através de características únicas registradas nas 

imagens. No contexto da biologia marinha, existem trabalhos promissores que focam na 

identificação adotando técnicas de visão computacional e algoritmos de classificação baseados em 

inteligência artificial, para construir catálogos de imagens das populações do objeto de estudo. 

Contudo ainda existem vários obstáculos a serem ultrapassados, principalmente quando se trata de 

identificação individual de cetáceos, cuja a identificação é efetuada através da análise de marcas 

encontradas nas nadadeiras dorsais. Muitos trabalhos já foram desenvolvidos para solucionar o 

problema, no entanto poucos se aventuraram na construção de um processo automatizado de 

identificação do objeto de estudo. Assim sendo, este trabalho desenvolveu um processo 

automatizado para a etapa de extração da linha de contorno da dorsal de cetáceos, visando extinguir 

o processo de seleção manual de características do indivíduo. A criação deste processo, bem como a 

construção de uma ferramenta para a execução da tarefa foi dividida em três etapas: (i) localização e 

detecção de dorsais; (ii) segmentação da dorsal para destaca-la do contexto da cena; e (iii) extração 

da linha de contorno. Na primeira etapa utilizou-se a técnica de detecção de objetos com Redes 

Neurais Convolucionais SSD disponibilizada pela API do Tensorflow, cujos resultados da avaliação 

foram de AP 95,97%. A segunda etapa fez uso da técnica de segmentação semântica conhecida 

como DeepLab, que também apresentou resultados significativos ao atingir um valor mIoU de 



 

70,3% para todas as classes envolvidas no processo. Já na etapa de extração das linhas de 

contornos, adotou-se a técnica de visão computacional conhecida como matting, dos seis algoritmos 

avaliados para esta tarefa, apenas um apresentou um comportamento atípico, os demais resultaram 

em uma precisão global acima de 82%, bem como um valor de F-score superior a 0,83. 
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ABSTRACT 

The individual identification of organisms in nature is a powerful tool for observing animal 

behavior, demographic dynamics and species migration patterns. However, in most cases individual 

identification can be very demanding due to the constant process of capturing and recapturing 

individuals for control, using artificial markers such as necklaces and rings. However, this concept 

changed from the 1970s with the introduction of photo identification, which allowed the recognition 

of individuals of a particular species through the presence unique characteristics recorded in images. 

In the context of marine biology, there are promising works that focus on identification by adopting 

computer vision techniques and classification algorithms based on artificial intelligence, to build 

image catalogs of the populations under study. However, there are still several obstacles to be 

overcome, especially when it comes to the individual identification of cetaceans, whose 

identification uses marks found on the dorsal fins. Much research has been done to solve the 

problem, but few have ventured to build an automated process for identifying the object of study. 

Therefore, this work developed an automated process for the extraction of cetacean’s dorsal contour 

line, aiming to eliminate the process of manual selection of individual characteristics. The creation 

of this process, as well as the construction of a tool for the task was divided into three steps: (i) 

dorsal location and detection; (ii) dorsal segmentation to separate it from the context of the scene; 

and (iii) extraction of the contour line. In the first stage we used an object detection technique with 

SSD Convolutional Neural Networks provided by the Tensorflow API, with evaluation results of 

AP 95.97%. The second step made use of the semantic segmentation technique known as DeepLab, 

which also presented significant results reaching a value of mIoU 70.3% for all classes involved in 

the process. In the contour lines extraction stage, we adopted the computer vision technique known 

as matting. Of the six algorithms evaluated for this task, only one presented an atypical behavior, 

the others resulted in an overall accuracy above 82%, as well as as an F-score greater than 0.83. 
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1  INTRODUÇÃO 

A identificação individual de organismos presentes na natureza é de grande valia para os 

biólogos. Este tipo de trabalho, permite explorar o comportamento de cada espécie, a dinâmica 

demográfica de grupos e os padrões de migração (BEARZI et al., 2005). 

O método de identificação de indivíduos mais difundido no meio científico, exige a fixação 

de marcas artificiais como, por exemplo, etiquetas, anilhas, dispositivos de monitoramento via rádio 

ou Global Positioning System (GPS) (IRVINE; WELLS; SCOTT, 1982; OSBOURN et al., 2011; 

HOOVER et al., 2017). 

Na maioria dos casos, esta técnica de identificação envolve o processo de captura e 

recaptura do indivíduo para fixação da marca ou observação de marcas existentes. Trabalhos como 

Saraux et al. (2011), Heide-Jørgensen et al. (2017) e Norman et al. (2018), evidenciam que o uso 

desta abordagem nos animais pode ocasionar estresse, mudanças no comportamento, ocorrência de 

infecções devido a perfurações e em alguns casos a morte de espécimes. 

Em alguns grupos de animais, como os cetáceos (baleias e golfinhos), a captura não era um 

processo viável, fazendo com que os pesquisadores buscassem métodos alternativos para a 

identificação individual. Nos anos 1970 iniciou-se a técnica de identificação de cetáceos através de 

fotografias, mais difundida nas últimas décadas devido à popularização de máquinas fotográficas 

digitais (PERRIN; WÜRSIG; THEWISSEN, 2008). Essa técnica, tornou-se uma importante 

ferramenta no processo de identificação individual, em virtude de sua característica não invasiva de 

abordagem dos indivíduos do objeto de estudo. 

Esta técnica não invasiva, faz uso de padrões de características presentes no corpo dos 

animais, durante o processo de identificação. Assim como as digitais de uma pessoa servem para 

identificá-la dentro de um grupo ou população, no reino animal é possível identificar um indivíduo 

de uma determinada espécie através de algum padrão de marcas (ARZOUMANIAN; HOLMBERG; 

NORMAN, 2005; CARTER et al., 2014; ZHELEZNIAKOV et al., 2015). 

Em mamíferos marinhos da ordem dos cetáceos, as marcas de identificação, podem ser 

cortes nas bordas das nadadeiras dorsais dos golfinhos (MARKOWI; HARLIN; WURSIG, 2003), 
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coloração ou padrão da linha de contorno das nadadeiras das baleias jubarte (FRIDAY et al., 2000) 

ou calosidades na parte superior da cabeça das baleias francas (YURKOV; CHERNUKHA, 2015). 

Com a difusão da técnica de identificação individual por meio de imagens digitais, houve 

um aumento no volume de dados gerados durante esse processo. Em vista disso, observou-se que o 

trabalho mecânico de avaliação visual das características de um indivíduo, em um catálogo de 

imagens, torna-se dispendioso e cansativo, podendo levar o pesquisador a cometer erros após 

longos períodos de trabalho. 

Visando a redução do esforço necessário para esta atividade, pesquisadores das áreas de 

Ciências Biológicas e Ciência da Computação, juntaram esforços com intuito de criar softwares 

capazes de avaliar grandes volumes de dados, apresentando apenas os resultados relevantes 

encontrados durante o processo de comparação das características dos indivíduos. Permitindo dessa 

forma, maior precisão e agilidade na tomada de decisão do pesquisador. 

Alguns exemplos de softwares que analisam o padrão das marcas nas imagens são: 

DARWIN (1993) que possibilita o usuário criar um catálogo de identificação de golfinhos através 

da avaliação de padrões das marcas existentes no contorno das nadadeiras dorsais; e a plataforma de 

softwares do Wildbook (Wildbook: Software to Combat Extinction, 2016), iniciativa que consiste 

em juntar vários pesquisadores do mundo, com intuito de criar algoritmos que possam auxiliar no 

processo de identificação de indivíduos de diferentes espécies de animais. 

O conceito básico de funcionamento dos softwares de identificação individual se divide em 

duas etapas. A primeira, consiste em extrair as características de interesse do animal, aplicando 

técnicas de visão computacional sobre as imagens digitais, como a extração do contorno das dorsais 

de golfinhos (HALE, 2008) ou padrão de texturas da pelagem (ZHELEZNIAKOV et al., 2015). Na 

segunda, aplica-se algum tipo de algoritmo de análise e classificação de padrões nas características 

encontradas para o indivíduo avaliado, como por exemplo, Dynamic Time-Warping ou Naive 

Bayesian Classifier. 

O processo de execução das duas etapas do software, resulta em um ranking dos indivíduos 

encontrados com as características de interesse similares ao indivíduo avaliado. Desse modo, o 

pesquisador poderá selecionar com maior precisão o indivíduo correspondente, incrementando as 

informações relacionadas a ele nos dados do catálogo de imagens do objeto de estudo. 
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Dentro do contexto apresentado, este trabalho focou na construção de um processo 

automatizado para extração das características de identificação das nadadeiras dorsais dos animais 

da ordem dos cetáceos, utilizando técnicas de detecção de objetos e segmentação semântica 

baseadas em Redes Neurais Convolucionais, que até o presente momento são consideradas como o 

estado da arte para este conjunto de técnicas de visão computacional. A construção deste processo 

permitiu a criação de uma ferramenta automatizada para extração da linha de contorno, que permite 

compartilhar os resultados obtidos com ferramentas que possam executar a etapa de identificação 

individual. O desenvolvimento deste trabalho também viabilizou a criação de um corpus de imagens 

de cetáceos com as devidas anotações de localização, segmentação e classificação dos indivíduos, 

para que possam ser utilizados em trabalhos futuros. 

1.1 PROBLEMA DE PESQUISA 

Apesar dos esforços relatados, sobre o desenvolvimento de softwares que auxiliam no 

processo de identificação individual de animais, ainda existem alguns obstáculos a serem 

transpassados. 

Tratando-se de animais marinhos, mais especificamente os cetáceos, o principal obstáculo 

encontrado é a ausência de um mecanismo automatizado, que permita localizar o indivíduo na 

imagem e extrair das características necessárias para a identificação. 

Este tipo de limitação pode ser constatado no software DARWIN, pois após a seleção da 

imagem do indivíduo que será identificado, o pesquisador é obrigado a informar manualmente a 

localização das extremidades inferiores de início e término da dorsal na imagem para delimitar a 

área de extração do contorno da dorsal. 

Outro exemplo, é o trabalho de Weideman et al. (2017), onde o software desenvolvido 

demanda que o pesquisador realize o trabalho manual de recorte da imagem onde a dorsal do 

tubarão está localizada, antes de encaminha-la para a execução da identificação. 

A principal justificativa apresentada pelos autores dos softwares citados, para a ausência de 

tal mecanismo, concentra-se no problema relacionado a qualidade das imagens obtidas pelos 

pesquisadores. Em imagens de animais marinhos, existem fatores presentes no habitat que podem 
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dificultar a automatização dos softwares de identificação individual, como por exemplo, reflexo da 

luz, ondas, esguichos de água e pouco contraste entre a coloração do indivíduo e do ambiente. 

Contudo, iniciativas como o trabalho desenvolvido por Hughes e Burghardt (2016), para 

identificação de tubarões brancos através da nadadeira dorsal, bem como o trabalho de Yurkov e 

Chernukha (2015), identificação baleias franca usando as calosidades presente em suas cabeças. 

Ambos apresentaram bons resultados ao adotar técnicas hibridas que juntam algoritmos de visão 

computacional e aprendizado de máquina, para automatizar a primeira etapa de um software de 

identificação individual. 

Apesar do bom desempenho apresentado nos resultados dos trabalhos citados, os autores não 

apresentam evidências que validem a eficiência das técnicas escolhidas para automatizar o processo 

de identificação individual, em imagens com condições distintas de iluminação, contraste e nitidez. 

Portanto, este fato faz refletir sobre outro problema de pesquisa que deve ser explorado 

nesse trabalho. Mesmo sendo factível a possibilidade de replicação dos processos presentes nos 

trabalhos citados, para o desenvolvimento de um software de identificação de pequenos cetáceos. 

Será necessário buscar um meio de avaliar a eficiência deste software, aplicando testes em imagens 

que apresente condições adversas de ambiente. 

Observando os fatos apresentados se faz pertinente o levantamento dos seguintes 

questionamentos para este projeto de dissertação:  

 É possível implementar uma solução similar ao proposto no trabalho de Hughes e 

Burghardt (2016), em uma ferramenta de extração das características de identificação 

individual de cetáceos? 

 De que maneira é possível avaliar a eficiência das técnicas adotadas na resolução do 

problema proposto, em imagens que apresentem condições adversas de ambiente, 

visando resultados qualitativos ou quantitativos? 

1.1.1  Solução Proposta 

Diversas abordagens utilizando técnicas de visão computacional já foram propostas para a 

solução do problema levantado (HALE, 2008; ANDREOTTI et al., 2017; CARVAJAL-GÁMEZ et 

al., 2017). No entanto, técnicas hibridas que misturam conceitos clássicos do processamento de 
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imagens digitais e algoritmos de aprendizado de máquina vem se destacando nos últimos quinze 

anos, principalmente na área de identificação individual de animais marinhos. 

Portanto, este trabalho irá adotar como referência o trabalho de Hughes e Burghardt (2016), 

cujo objetivo foi a construção de uma ferramenta automatizada para identificação individual de 

grandes tubarões brancos. 

Ao adotar os conceitos metodológicos propostos por Hughes e Burghardt (2016) no contexto 

de identificação de pequenos cetáceos, busca-se confirmar a seguinte hipótese: 

h1: A implementação de algoritmos de visão computacional similares ao apresentado para 

tubarões brancos no trabalho de Hughes e Burghardt (2016), para a etapa de localização e extração 

do contorno da dorsal, também se aplica a cetáceos. 

1.1.2  Delimitação de Escopo 

Durante o levantamento dos trabalhos relacionados foi possível observar que em quase todos 

os casos, os pesquisadores focaram no desenvolvimento solução completa para o problema de 

identificação individual. Contudo, este trabalho focará apenas na automatização do processo de 

localização da nadadeira dorsal e extração da linha de contorno, em imagens digitais, bem como, na 

avaliação dos recursos incorporados nesse processo. 

1.1.3  Justificativa 

O Laboratório de Informática da Biodiversidade e Geomática (LIBGEO) da Univali executa 

várias atividades de pesquisa voltadas a espécies marinhas. Desde 2005 vem hospedando um 

sistema de gestão de dados sobre ocorrência de mamíferos marinhos, o Sistema de Monitoramento 

de Mamíferos Marinhos – SIMMAM (BARRETO et al., 2006), que atualmente possui mais de 

30.000 registros de ocorrência armazenados em sua base de dados. O LIBGEO coordena o Projeto 

de Monitoramento de Praias da Bacia de Santos (PMP-BS), que é uma atividade desenvolvida para 

o atendimento da condicionante de licenciamento ambiental federal das atividades da Petrobras de 

produção e escoamento de petróleo e gás natural no Polo Pré-Sal da Bacia de Santos. O objetivo do 

projeto é avaliar o impacto de produção e escoamento de petróleo sobre as aves, tartarugas e 

mamíferos marinhos, através do monitoramento das praias e do atendimento veterinário aos animais 
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debilitados e coleta dos mortos. Uma das atribuições do LIBGEO é a gestão dos dados destas 

ocorrências de animais na área do projeto. 

Um dos pontos importantes para avaliar o possível impacto é conhecer a distribuição dos 

organismos e como estas podem variar ao longo do tempo. Um dos modos de se realizar esta 

avaliação é o desenvolvimento de modelos de distribuição das espécies encontradas durante as 

atividades de monitoramento, predição dos possíveis motivos de ocorrência de encalhes 

correlacionando as variáveis ambientais envolvidas e as ocorrências de interações antrópicas 

evidenciados no momento do atendimento das ocorrências. 

Portanto, uma forma de contribuir com a construção de um modelo de distribuição de 

espécies e que vem de encontro à proposta deste trabalho, trata-se de melhorar o desempenho do 

trabalho dos pesquisadores na atividade de identificação individual de pequenos cetáceos, buscando 

a construção de um software consistente que automatize a etapa de localização e extração das 

características da dorsal de cada indivíduo, encontrados durante as atividades de monitoramento do 

PMP-BS. A identificação destes indivíduos utilizando imagens do próprio PMP-BS em conjunto 

com outras bases de dados de imagens de projetos como, as imagens obtidas durante a execução do 

Projeto de Monitoramento de Cetáceos da Bacia de Santos (PMC-BS) (SISPMC, 2016), permitirá 

avaliar a distribuição espacial destes indivíduos na Bacia de Santos e consequentemente servirá 

como uma ferramenta que contribuirá com a avaliação do impacto das atividades de produção e 

escoamento de petróleo e gás sobre estes animais. 

Adicionalmente, este trabalho também terá um papel importante nas pesquisas que 

envolvem o uso de algoritmos de visão computacional, tendo em vista que os métodos apresentados 

até o momento desconsideram a variabilidade da qualidade das imagens obtidas, bem como o 

envolvimento de condições ambientais adversas que interferem na visualização do objeto do estudo. 
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1.2 OBJETIVOS 

1.2.1  Objetivo Geral 

Construir um processo para automatização da etapa de extração das características de 

identificação das nadadeiras dorsais para cetáceos, através de técnicas de visão computacional. 

1.2.2  Objetivos Específicos 

1. Implementar e avaliar um método para detecção e extração de nadadeiras dorsais em 

imagens de cetáceos. 

2. Implementar e avaliar uma técnica de extração da linha de contorno da nadadeira dorsal 

3. Desenvolver uma ferramenta que entregue as linhas de contornos das dorsais extraídas 

de imagens digitais em arquivos do formato Portable Network Graphics (PNG), para que 

possam ser utilizados em um software de identificação individual de cetáceos. 

1.3 METODOLOGIA 

Nesta seção, serão apresentados os procedimentos metodológicos que conduziram a 

pesquisa, bem como as atividades executadas para cumprir os objetivos do trabalho.  

1.3.1  Metodologia da Pesquisa 

Este trabalho adotará o método indutivo, tendo em vista a necessidade de confirmar a 

hipótese levantada para o problema proposto. 

A pesquisa terá abordagem quantitativa, pois pretende avaliar os resultados obtidos durante 

os testes de desempenho da solução proposta para o trabalho, através do uso de métricas adotadas 

pelos pesquisadores da área de visão computacional. 

Quanto a natureza da pesquisa, pode-se considerar que esta pesquisa é aplicada, pois tem por 

objetivo aplicar na prática uma solução para o problema proposto, considerando o interesse do 

LIBGEO em ter um produto que contribua com os temas de pesquisas realizados no laboratório. 
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1.3.2  Procedimentos Metodológicos 

Do ponto de vista metodológico, foi efetuada uma pesquisa bibliográfica através do processo 

de revisão sistemática, para definir o estado da arte das aplicações que empregam técnicas de visão 

computacional na extração das características biométricas das nadadeiras dorsais, com intuito de 

utiliza-las na identificação individual de animais marinhos. 

1.4 ESTRUTURA DA DISSERTAÇÃO 

O trabalho está dividido em seis capítulos. O Capítulo 1 contextualiza do tema proposto para 

o trabalho. 

O Capítulo 2 aborda a fundamentação teórica para compreender melhor o contexto da 

proposta deste trabalho, passando pelos conceitos de biometria animal e as principais técnicas de 

visão computacional utilizadas neste trabalho, detecção de objetos, segmentação de imagens e 

extração da linha de contorno. 

No Capítulo 3 é apresentado os resultados obtidos da pesquisa efetuada, buscando levantar 

as informações relacionadas ao estado da arte do processo de obtenção das características de 

identificação dos animais marinhos da ordem dos cetáceos.  Durante a pesquisa abordou-se alguns 

conceitos voltados à revisão sistemática da literatura. 

O Capítulo 4 descreve as etapas da construção do processo de automatização da etapa de 

extração das características de identificação das nadadeiras dorsais. 

Tanto a avalição de cada etapa desenvolvida no Capitulo 4, bem como as discussões destas 

estão presentes no Capítulo 5.  

Já o Capítulo 6 é destinado ao fechamento do tralho e contempla as conclusões e sugestões 

para trabalhos futuros. 
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2  FUNDAMENTAÇÃO TEÓRICA 

Este capítulo apresentará alguns conceitos teóricos que embasam as pesquisas realizadas 

para o desenvolvimento deste trabalho. Entre os assuntos apresentados estão, a definição de 

biometria animal e os conceitos de detecção de objetos, segmentação, algoritmos matting e métricas 

de avaliação. 

2.1 BIOMETRIA ANIMAL 

Trata-se de um campo de pesquisa em constante evolução, onde os pesquisadores das áreas 

de ciências biológicas e ecologistas avaliam os padrões de características dos animais visando a 

classificação das espécies e identificação de indivíduos (KUMAR et al., 2017). 

Uma das técnicas mais populares neste contexto de estudo é conhecida como foto 

identificação (SPEED; MEEKAN; BRADSHAW, 2007). Esta técnica consiste na aquisição de 

fotografias dos animais do objeto de estudo, buscando descrever as características relevantes que 

permitam a identificação dos indivíduos, através da observação das particularidades morfológicas e 

comportamentais de cada espécie (KUMAR et al., 2017). 

A identificação dos indivíduos através da observação das características biométricas dos 

mesmos, é considerada um recurso importante em estudos relacionados ao comportamento animal, 

controle populacional e rastreamento individual ao longo do tempo (PERRIN; WÜRSIG; 

THEWISSEN, 2008). 

O levantamento dos padrões morfológicos e comportamentais dos animais conduzidos pelos 

pesquisadores, consiste em capturar informações visuais de diferentes ângulos e fontes, aplicando 

métodos de amostragem conhecidos como captura e recaptura de marcas (SPEED; MEEKAN; 

BRADSHAW, 2007). 

Alguns exemplos de marcas avaliadas que pode-se citar são: 

 Os padrões de listras em zebras Equus quagga (LAHIRI et al., 2011) (Figura 1b); 
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 Os pontos presentes na pelagem dos guepardos Acinonyx jubatus (KELLY, 2001) e 

girafas Giraffa camelopardalis thornicrofti (HALLORAN; MURDOCH; BECKER, 

2014) (Figura 1a e Figura 1c); e 

 A pigmentação aparente na cauda das baleias jubarte Megaptera novaeangliae (TITOVA 

et al., 2018) (Figura 1d).  

Figura 1:  Exemplos de marcas únicas para identificação individual das espécies, (a) Giraffa camelopardalis 

thornicrofti, (b) Equus quagga, (c) Acinonyx jubatus, (d) Megaptera novaeangliae. 

 
Fonte: Adaptado de Halloran, Murdoch e Becker (2014); Lahiri et al. (2011); Kelly (2001); Perrin, Würsig e 

Thewissen (2008). 

No caso de cetáceos, as características de identificação mais evidentes são, a pigmentação da 

nadadeira dorsal ou caudal (GILMAN et al., 2016) (Figura 2a), e os entalhes no entorno das dorsais 

gerados por interações ambientais ou antrópicas (KREHO et al., 1997) (Figura 2b), sendo a 

segunda, o tipo de marca natural adotada com mais frequência por pesquisadores no processo de 

identificação individual de golfinhos, uma vez que nem todas as espécies destes tipos de animais 

apresentam pigmentação nas dorsais. 
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Figura 2:  Exemplos de características de identificação, (a) pigmentação e (b) 

entalhes no contorno da dorsal. 

 
Fonte:  Adaptado de Gilman et al. (2016); Kreho et al. (1997). 

Assim como a impressão digital serve para identificar os seres humanos, o modelo 

biométrico baseado nos entalhes no entorno das dorsais destes animais, funciona como um padrão 

de identificação que permite distinguir cada indivíduo em um grupo ou população. Este tipo de 

padrão é observado e fotografado pelos pesquisadores quando os animais expõem as dorsais para 

fora da água durante o seu ciclo respiratório. 

Além disso, este tipo de abordagem de identificação possui duas vantagens importantes. A 

primeira é a permanência a longo prazo, pois apesar de ocorrer a cicatrização dos entalhes nas 

dorsais, as marcas ficarão presentes ao longo de toda a vida do animal, ou seja, o local afetado não 

se regenera. Já a segunda, refere-se ao fato de que as marcas podem ser vistas mesmo que a dorsal 

do indivíduo esteja posicionada para a direita ou esquerda (PERRIN; WÜRSIG; THEWISSEN, 

2008). 

2.1.1  Sistemas de reconhecimento de biometria animal 

Os sistemas especializados em reconhecimento de biometria animal são também conhecidos 

e categorizados como sistemas de classificação de espécies ou identificação individual. Tem por 

objetivo a detecção e classificação de animais através do reconhecimento dos padrões de 

características (PERRIN; WÜRSIG; THEWISSEN, 2008). 

Apesar de existir sistemas cujo objetivo é a classificação de animais de diferentes espécies, 

como por exemplo o iNaturalist (2018). A maioria dos sistemas disponíveis para identificação 
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individual focam na identificação de uma única espécie como o caso do Wildbook for Whale 

Sharks (2018), voltado a identificação de tubarões baleia. 

 Basicamente, estes sistemas fazem uso de técnicas de visão computacional como meio de 

detecção, aquisição e representação computacional das características morfológicas e biométricas 

dos animais. Os dados coletados são extraídos e categorizados para a geração de modelos 

morfológicos da espécie, onde posteriormente são processados por algoritmos desenvolvidos para a 

etapa de identificação individual, também conhecida como etapa de comparação de indivíduos ou 

do termo em inglês matching. 

Kumar et al. (2017), descreve que um software consistente para identificação individual 

baseado em biometria animal, conta com seis componentes importantes (Figura 3): 

1. Sensores: equipamentos utilizados para aquisição de dados, por exemplo, máquinas 

fotográficas ou câmeras de armadilhas fotográficas (trapping camera). 

2. Detecção da espécie: utilizando como base as características morfológicas e biométricas 

dos animais. 

3. Armazenamento: capacidade de armazenar os dados coletados e processados. 

4. Matching: análise de correspondência de similaridade das imagens consultadas em 

relação as imagens armazenadas no banco de dados, ou seja, execução do processo de 

comparação e identificação dos indivíduos. 

5. Ranking: classificação dos resultados encontrados no processo de identificação 

individual, através da delimitação de um valor de corte dos resultados. 

6. Apresentação: visualização dos resultados obtidos. 
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Figura 3:   Diagrama dos principais componentes presentes em um software de identificação individual. 

 
Fonte: Kumar et al. (2017). 

2.2 DETECÇÃO DE OBJETOS 

A detecção de objetos é uma das técnicas de visão computacional cujo o objetivo é 

determinar onde os objetos estão localizados em uma imagem e definir a qual categoria cada objeto 

pertence. Conforme Zhao et al. (2018), nos últimos anos tanto na área de pesquisa quanto no 

desenvolvimento de aplicações o uso desta técnica foi impulsionado pela adoção de recursos de 

aprendizado de máquina, como por exemplo, as Redes Neurais Artificiais (RNA). As RNA 

permitiram melhorar o desempenho dos algoritmos de detecção ao proporcionar recursos capazes de 

entender a complexidade da dinâmica dos objetos na cena. 

Zhao et al. (2018) descreve que a detecção de objetos é basicamente composta por três 

passos: 

1. Seleção de região informativa: consiste em utilizar uma técnica de busca de objetos em 

qualquer região da imagem, como por exemplo, a janela deslizante multi-escala; 
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2. Extração de características: técnica de reconhecimento de objetos, que utiliza descritores 

de características como, SIFT1, HOG2 e Haar-like; e 

3. Identificação: identifica o objeto entre as distintas classes de um modelo, alguns 

exemplos de técnicas implementadas neste passo são, Support Vector Machine (SVM) e 

AdaBoost. 

Apesar da forma simplista que foi descrita a técnica de detecção de objetos, os modelos 

adotados neste trabalho utilizam alguns recursos sofisticados para melhorar o desempenho da tarefa, 

como por exemplo, as redes neurais convolucionais do termo inglês Convolutional Neural Network 

(CNN), descritores de região de interesse e classificadores de objetos. Contudo antes de descrever 

sobre as principais características para cada arquitetura de detector de objetos, será necessário 

contextualizar alguns elementos que constituem uma RNA e também descrever os componentes 

necessários para transforma-la em uma CNN. 

2.2.1  Redes Neurais Artificiais (RNA) 

Nielsen (2015) descreve a RNA como um paradigma de programação inspirado 

biologicamente no cérebro humano, que permite um computador aprender a partir de um conjunto 

de dados. Ou seja, a RNA consiste em uma coleção de perceptrons (neurônios), que estão 

conectados através de unidades de camadas ocultas e por sua vez são ativados através de funções de 

ativação, uma representação análoga das sinapses neurais. 

As funções de ativação possuem um papel importante na rede neural, elas evitam que esta 

transforme-se em um modelo linear, ao decidir quando um perceptron deve ou não ser ativado 

(SHANMUGAMANI, 2018).  

Algumas das funções mais utilizadas são: 

 Sigmoide: pode transformar valores em probabilidades, e também pode ser utilizada em 

classificações binárias (Figura 4 (a)); 

                                                 

 

 

 
1 Scale-invariant feature transform (SIFT) ou do português, Transformação de recurso invariante de escala.  
2 Histogram of oriented gradientes (HOG) termo em inglês para Histograma de gradientes orientados. 
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 Tangente hiperbólica: semelhante a sigmoide permite suavizar e diferenciar os valores, 

porém é mais estável (Figura 4b); e 

 Unidade linear retificada3: gera esparsidade entre os neurônios da rede uma vez que 

pode deixar passar apenas os valores maiores, isto gera o desuso de alguns neurônios na 

rede (Figura 4c). 

Figura 4:  Funções de ativação. (a) Sigmoide; (b) Tangente hiperbólica; (c) Unidade linear 

retificada. 

 
Fonte: Adaptado de Shanmugamani (2018). 

Um modelo básico de RNA pode ser definido conforme a Figura 5, neste caso a primeira 

camada é a de entrada de dados, as camadas do meio ou camadas ocultas formam a base não linear 

que mapeia as camadas de entrada para última camada, a de saída. Os modelos de aprendizados de 

uma rede são gerados a partir do cálculo ponderado dos pesos e vieses, e estes são atualizados a 

cada passo do treino através do cálculo de uma função de perda utilizando os dados do padrão 

verdade como referência (SHANMUGAMANI, 2018). 

                                                 

 

 

 
3 Tradução em português para o termo em inglês Rectified Linear Unit (ReLU) 



33 

 

Figura 5:  Modelo de RNA. 

 
Fonte: Adaptado de Nielsen (2015). 

A função de perda é de extrema importância na construção de um modelo de RNA, pois está 

diretamente ligada à camada de saída de uma rede neural e consequentemente calcula o erro gerado 

pelo modelo ao produzir um valor de saída (NIELSEN, 2015). Outra funcionalidade que pode ser 

atribuída a função de perda está relacionada a observação dos valores retornados durante o 

treinamento para definir se o mesmo deve ou não ser encerrado, ou seja, o encerramento poderá ser 

efetuado ao observar que o erro não pode ser reduzido ou que o valor não apresenta uma variação 

significativa. 

Em problemas em que o resultado final do modelo deve gerar uma classificação dos dados 

de entrada, a RNA deve contar com uma função de ativação na camada de saída, que permita 

classificar corretamente as informações. A função comumente utilizada nestes casos é a Softmax, 

que converte todos os valores de saída em probabilidades de pertencerem a uma determinada classe 

do modelo, ou seja, divide cada valor pela soma dos demais para criar o grau de confiança para a 

classificação (NIELSEN, 2015).  

Alguns modelos de rede neural tendem a ter problemas de sobreajuste, também conhecido 

pelo termo em inglês overfitting. Trata-se dos casos onde o modelo adapta-se aos dados de 

treinamento, porém com a entrada de novos valores gera vários erros nos resultados (NIELSEN, 

2015). Para resolver este problema as RNA contam com métodos de regularização, como o Dropout 

que remove aleatoriamente algumas unidades das camadas da rede, o L1 penaliza os valores 

absolutos dos pesos tendendo a zera-los e o L2 que penaliza os valores quadrados dos pesos para 

reduzi-los durante o treinamento (SHANMUGAMANI, 2018). 
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2.2.2  CNN 

As redes convolucionais essencialmente são muito parecidas com as RNA, porém não 

possuem os neurônios totalmente conectados. Os neurônios de uma CNN são organizados 

volumetricamente, transformando um determinado volume de dados de entrada em um volume 

diferente de dados de saída (SHANMUGAMANI, 2018). Em aplicações voltadas a visão 

computacional, este volume de dados pode ser representado pelas camadas de cores RGB da 

imagem (Figura 6). 

Figura 6:  Arquitetura básica de uma CNN. 

 
Fonte: Adaptado de Shanmugamani (2018). 

2.2.2.1 Kernel 

A operação de convolução de uma CNN funciona como extrator de características de uma 

imagem, preservando o relacionamento entre um conjunto de pixels ao aplicar um determinado 

filtro com uma configuração de kernel. O kernel é formado por dois parâmetros, o primeiro diz 

respeito ao tamanho do mesmo (e.g. 3x3), já o segundo parâmetro remete ao número de passos 

executados durante deslocamento (SHANMUGAMANI, 2018), a Figura 7 demostra um exemplo 

de funcionamento do kernel. 

Figura 7: CNN kernel. 

 
Fonte: Adaptado de Shanmugamani (2018). 
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2.2.2.2 Pooling 

As camadas de pooling são inseridas entre as camadas convolucionais, com intuito de 

reduzir a dimensão dos dados para acelerar o processamento da informação e também é utilizada 

como uma técnica de regularização para evitar o overfitting. As operações mais comuns para esta 

camada consistem em obter o valor máximo (max-pooling) ou o valor médio para cada conjunto de 

pixels (SHANMUGAMANI, 2018). A Figura 8 demonstra um exemplo das operações para a 

camada. 

Figura 8: Operação de pooling. 

 
Fonte: Adaptado de Shanmugamani (2018). 

2.2.3  Regions of the Convolutional Neural Network (R-CNN) 

Este modelo de detecção de objetos é o precursor da família R-CNN, bem como foi o 

primeiro a utilizar a busca seletiva descrita por Uijlings et al. (2013), para criar algumas propostas 

de regiões de interesse4 (SHANMUGAMANI, 2018). A arquitetura do modelo está representada na 

Figura 9. 

                                                 

 

 

 
4 Regiões de interesse termo em português para Regions of Interest (RoI). 
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Figura 9: Arquitetura R-CNN. 

 
Fonte: Adaptado de Girshick et al. (2014). 

Conforme Girshick et al. (2014), 2000 propostas de regiões são extraídas a partir de uma 

imagem de entrada, cada região é redimensionada para um tamanho fixo e processada por uma 

CNN com intuito de obter os mapas de características de identificação do objeto. No final estes 

mapas fazem uso de uma SVM linear para classificar o objeto a partir das características obtidas na 

etapa anterior. 

Shanmugamani (2018) aponta três fatores que trazem desvantagens ao modelo proposto. O 

primeiro é que o número de regiões propostas a serem processadas é muito grande, tornando a 

tarefa de detecção lenta. Outro fator negativo é a presença de três classificadores que precisam ser 

treinados e isto aumenta o número de parâmetros da rede. O último é a ausência de um treinamento 

ponta a ponta. 

2.2.4  Fast R-CNN 

Na nova versão do modelo desenvolvido por Girshick (2015), dado uma imagem de entrada 

e um conjunto de regiões de interesse o processo de identificação passa por uma rede totalmente 

convolucional, para posteriormente extrair os mapas de características fixos através de uma camada 

de max-pooling para cada região de interesse. Finalizando o processo em camadas totalmente 

conectadas que produzem na saída um vetor de probabilidades gerados pelo softmax e outro vetor 

de caixas delimitadoras de regressão. A Figura 10 descreve a arquitetura para esta atualização do 

modelo. Girshick (2015) descreve em seu trabalho que esta alteração do novo modelo deixou o 

processo 9 vezes mais rápido que o seu antecessor. 
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Figura 10: Arquitetura Fast R-CNN. 

 
Fonte: Girshick (2015). 

2.2.5  Faster R-CNN 

Este modelo foi o último da família R-CNN a ser desenvolvido, e também é um dos modelos 

adotados neste trabalho. A Figura 11 apresenta a arquitetura do modelo com o ajuste efetuado para 

o mesmo. 

Figura 11: Arquitetura Faster R-CNN. 

 
Fonte: Adaptado de Ren et al. (2015). 
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Ren et al. (2015), descrevem que a principal alteração deste modelo em relação aos demais, 

foi a substituição do algoritmo gerador de regiões propostas, por uma rede totalmente convolucional 

que cria um mapa de características para gerar um conjunto de regiões propostas com objetos 

retangulares, e cada um com sua respectiva pontuação de objetividade. 

2.2.6  Single Shot MultiBox Detector (SSD) 

Enquanto os modelos da família R-CNN apresentam uma arquitetura que utiliza mais de 

uma rede para obter a localização dos objetos. O modelo SSD desenvolveu uma arquitetura de rede 

unificada, para prever a localização de múltiplos objetos e descrever as caixas delimitadoras dos 

mesmos, bem como entrega uma rede de alta performance capaz de rodar a 22 FPS com imagens de 

resolução 500x500 pixels (SHANMUGAMANI, 2018). A Figura 12 apresenta o desenho da 

arquitetura criada para este modelo de rede. 

Figura 12: Arquitetura SSD. 

 
Fonte: Liu et al. (2016). 

Conforme pode-se observar na Figura 12, cada etapa do modelo convolucional representa 

uma camada de caracteríscas com diferentes tamanhos de kernel e profundidades. Esta 

característica do modelo permite a identificação de objetos em várias escalas de tamanho (LIU et 

al., 2016). Para classificar os possíveis objetos de uma determinada imagem, o processo de 

convolução percorre o mapa de características gerados para a mesma utilizando diferentes tamanhos 

de kernel, e para cada kernel gerados no mapa são previstas mais quatro caixas delimitadoras com 

deslocamento relativo a mesma região (Figura 13), além de calcular a pontuação que indica a 

presença para cada classe do modelo. 
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Figura 13: Caixas delimitadoras geradas pelas previsões dos kernels da rede. 

 
Fonte: Adaptado de Liu et al. (2016). 

Como o resultado final de todo o processo gera um grande número de caixas delimitadoras 

dos possíveis objetos encontrados na imagem, bem como os respectivos valores de confiança para 

as predições, foi necessário implementar uma forma de delimitar o número de itens preditos. 

Portanto, Liu et al. (2016) adotaram o método non-maximum suppression5 para definir um valor 

mínimo de confiança que irá determinar se uma caixa delimitadora pode ou não ser considerada 

como uma predição verdadeira. 

2.2.7  Region-based Fully Convolutional Networks (R-FCN) 

Dai et al. (2016), propuseram um modelo de rede para detecção de objetos semelhante ao R-

CNN, ou seja, possui duas etapas, uma para localização das regiões propostas e outra para 

classificação destas. Contudo abordaram uma arquitetura de redes convolucional totalmente 

conectada, ao compartilhar os recursos gerados entre as duas etapas do modelo, conforme pode ser 

observado na representação da Figura 14. 

                                                 

 

 

 
5 Non-maximum suppression termo em inglês para supressão não máxima. 
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Figura 14: Arquitetura R-FCN. 

 
Fonte: Adaptado de Dai et al. (2016). 

Para cada região de interesse gerada a partir da etapa de localização, o modelo R-FCN 

calcula a probabilidade de ocorrência para o número de classes definidas durante o treinamento 

mais o background para cada posição relativa da grade espacial k * k. O final do processo resulta 

em 9 pontuações de classificação cuja a classificação geral é a média destas pontuações, que por sua 

vez responderá se o objeto foi detectado corretamente. 

2.3 SEGMENTAÇÃO SEMÂNTICA 

A tarefa da segmentação semântica consiste em atribuir um rótulo de classificação para cada 

pixel na imagem (SHANMUGAMANI, 2018), conforme apresentado no exemplo da Figura 15. 

Para atribuir estes rótulos de classificação aos pixels, torna-se necessário implementar recursos 

precisos de identificação dos contornos dos objetos separando-os em segmentos distintos. Esta 

metodologia definida para construção deste tipo de recurso, faz com que a arquitetura do modelo 

seja mais rigorosa do que a própria detecção de objetos com caixas delimitadoras (LATEEF; 

RUICHEK, 2019). 
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Figura 15: Classificação dos pixels da imagem. 

 
Fonte: Adaptado de DeepLab (2018). 

2.3.1  DeepLab 

O DeepLab é considerado até o momento como o estado da arte dos modelos de 

segmentação semântica. O mesmo foi desenvolvido por pesquisadores da área de visão 

computacional da Google, a sua distribuição como código aberto ocorreu em 2018 e atualmente 

encontra-se na versão v3+. 

Este modelo de segmentação é composto basicamente por duas etapas. A etapa de 

codificação que consiste na extração de informações essenciais da imagem utilizando uma CNN 

pré-treinada, como por exemplo, a localização dos objetos. E a etapa de decodificação, que faz uso 

das informações extraídas para reconstruir a saída nas dimensões originais da imagem de entrada 

(LATEEF; RUICHEK, 2019).  

Para contextualizar as etapas que envolvem o modelo, serão apresentados nas subseções a 

seguir as técnicas implementadas na construção da arquitetura do DeepLab. 

2.3.1.1 Convolução dilatada 

Os primeiros modelos de redes totalmente convolucionais implementadas para a 

segmentação semântica demonstrou-se eficiente e proporcionou bons resultados. No entanto, o uso 

excessivo das operações de pooling em consecutivas camadas convolucionais reduziram 
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significativamente a resolução dos mapas de características. Esta característica limita o uso deste 

modelo em diferentes escalas de imagens (Chen et al., 2017). 

Portanto, os idealizadores do DeepLab, adotaram a técnica de convolução dilatada6, que 

altera o campo de visão do kernel inserindo um parâmetro extra para definir a taxa de dilatação. 

Conforme pode-se observar o exemplo desta operação na Figura 16, ao utilizar um kernel de 5x5 

com taxa de dilatação 1, a operação de convolução dilatada gera um campo de visão de 9 pixels 

enquanto na operação convencional ocupa 25 pixels. 

Figura 16: Tipos de convoluções. (a) convolução dilatada; (b) 

convolução padrão. 

 
Fonte: Adaptado de DeepLab (2018). 

 

Chen et al., (2017) relatam que a adoção desta técnica permite calcular as respostas das 

camadas extratoras de características de uma rede para qualquer escala de mapas geradas pelas 

mesmas, conforme pode ser observado através de um exemplo básico de funcionamento da mesma 

na Figura 17. Dado uma imagem de entrada, primeiramente aplica-se a redução de seu tamanho por 

um fator de 2, em seguida aplica-se uma operação de convolução padrão. O mapa de características 

gerado pela operação passa por um filtro com furos do mesmo tamanho da imagem de entrada para 

ajustar os pixels do mapa de características ao mesmo tamanho, onde os espaços vazios 

remanescentes são preenchidos com o valor zero. Por sua vez a convolução dilatada analisa a 

imagem no tamanho original gerando o mapa correspondente aos valores vazios, os resultados das 

operações são somados para gerar o mapa de características final. 

                                                 

 

 

 
6 Convolução dilatada, uma tradução informal para o termo em inglês Atrous convolution. 
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Figura 17: Passos para criação do mapa de características com convolução dilatada. 

 
Fonte: Adaptado de Chen et al., (2017). 

2.3.1.2 Pooling da pirâmide espacial de dilatação 

Considerando que um mesmo tipo de objeto pode ser representado por diferentes escalas em 

uma imagem, Chen et al. (2017) introduziram ao DeepLab a técnica de pooling da pirâmide 

espacial de dilatação7 para a etapa de codificação. A operação une paralelamente as convoluções de 

dilatação com diferentes taxas de dilatação na entrada do mapa de características para reconstruir as 

informações geradas em diferentes tamanhos nas camadas de convolução padrão (Figura 18). 

                                                 

 

 

 
7 Pooling da pirâmide espacial de dilatação, tradução do termo em inglês Atrous Spatial Pyramid Pooling (ASPP) 
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Figura 18: Operação de múltiplas convoluções de dilatação. 

 
Fonte: Adaptado de Chen et al., (2017). 

2.3.1.3 Decodificador 

Chen et al. (2018) implementaram em seu trabalho, o recurso de decodificação para refinar o 

resultado da segmentação no contorno dos limites dos objetos. A arquitetura da recente versão do 

DeepLab, é descrita através do diagrama da Figura 19. 

Como pode-se observar, o decodificador faz uso das camadas de características de baixo 

nível obtidas através das operações de convoluções de dilatação, que posteriormente passa por uma 

operação básica de convolução 1x1 para concatenar com o resultado da etapa de codificação, 

seguido de algumas convoluções 3x3 para refinar as características dos objetos e finalizando com o 

redimensionamento de fator 4 para remontar os segmentos ao tamanho original da imagem. 
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Figura 19: Arquitetura do DeepLab. 

 
Fonte: Chen et al., (2018). 

2.4 MATTING 

Wang e Cohen (2007) descrevem que o matting é uma técnica de visão computacional 

destinada a separação precisa de um determinado objeto em primeiro plano (foreground) do 

contexto residual em segundo plano (background)8. Uma tradução literal de matting para português 

seria fosqueamento, ou seja, tornar o contexto do foreground fosco, que também pode ser 

interpretado como a produção de uma camada de transparência (alpha). A camada alpha define a 

opacidade dos pixels do foreground, através da faixa de valores entre 0 e 1 (BODA; PANDYA, 

2018). 

Conforme Boda e Pandya (2018), as técnicas de matting estão divididas em três categorias: 

 Baseado em amostragem: trata-se de algoritmos como o de Chuang et al. (2001), que 

trabalham com a estimativa de cores entre foreground e background para calcular a cada 

pixel alpha, os modelos clássicos desta categoria trabalham com o relacionamento 

existente entre as amostras de pixels vizinhos e os parâmetros alpha. Já os métodos 

                                                 

 

 

 
8 Os respectivos termos em inglês para primeiro plano e plano de fundo foreground e background, serão utilizados no 

decorrer da dissertação sempre que for necessário contextualizar a separação entre um objeto e o plano de fundo. 
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otimizados coletam um conjunto de pixels próximos ao foreground e background 

utilizando-os para adaptar o algoritmo matting; 

 Baseado em propagação: este tipo de técnica foca na propagação da camada alpha 

através de modelos híbridos que fazem uso dos algoritmos baseados em amostragem. 

Como é o caso do algoritmo Knn criado por Chen, Li e Tang (2013), que aborda esta 

metodologia ao determinar que os pixels vizinhos ao pixel avaliado incorporem os 

valores alpha semelhantes ao mesmo. Neste mesmo contexto estão os algoritmos Closed 

form de Levin, Lischinski e Weiss (2007) e Large Kernel Matting (Lkm) de He, Sun e 

Tang (2010), que operam em uma área em torno do pixel avaliado para determinar o 

fluxo de dados presente no local e propagar os valores adequadamente, algo semelhante 

acontece no algoritmo Information Flow Matting (Ifm) de Aksoy, Aydin e Pollefeys, 

2017), que controla o fluxo de dados das regiões de foreground e background para a 

região de intersecção através das definições de afinidade entre os pixels; e 

 Baseado em aprendizado: as técnicas baseadas em aprendizado local aprendem sobre a 

distribuição dos pixels alpha vizinhos do que está sendo estimado para gerar o valor do 

mesmo. Nos casos de aprendizado global como o modelo implementado por Zheng e 

Kambhamettu (2009), o algoritmo aprende sobre algum pixel previamente rotulado que 

esteja mais próximo ao pixel avaliado para adequar-se ao melhor matting baseado em 

trimap. 

2.4.1  Trimap 

O trimap é um mapa de segmentos que divide a imagem em três regiões definitivas, 

foreground, background e região desconhecida ou a área de intersecção entre o objeto e o restante 

da cena. Esta abordagem é utilizada na maioria dos algoritmos matting, e permite delimitar a região 

de interesse que deve ser processada pelo algoritmo (WANG; COHEN, 2007). A Figura 20 

demonstra os passos da operação de matting utilizando o trimap.  
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Figura 20:  Exemplo da operação de matting. 

 
Fonte:  Adaptado de Wang e Cohen (2007). 

Comumente o trimap é gerado manualmente pelo usuário e a definição da área de 

intersecção deve ser precisa, cobrindo apenas os pixels que realmente interessam para o contexto do 

objeto. Portanto, quanto mais fino o trimap, menor será o número de pixels que deverá ser 

estimado. 

Contudo, como este trabalho almeja a construção de um processo totalmente automatizado, 

a criação do trimap será guiado com base na linha gerada pela etapa de segmentação, ou seja, a 

linha do segmento substituirá a descrição manual da área de intersecção. A metodologia adotada 

para a criação do trimap está descrita na seção 4.3. 

2.5 MÉTRICAS DE AVALIAÇÃO 

Conforme Shanmugamani (2018), as métricas de avaliação são de extrema importância para 

as tarefas de aprendizado de máquina, pois permitem entender o comportamento dos modelos 

criados ao avaliar o quão preciso são ao executar uma determinada tarefa.  

Nas tarefas de detecção de objetos a métrica comumente utilizada é a Precisão Média 

também conhecida pelo termo em inglês Average Precision (AP). No entanto, para avaliar se o 

recurso de detecção de objetos localizou corretamente um determinado objeto em uma imagem, 

utiliza-se a unidade de medida conhecida como Intersecção Sobre a União ou Intersection Over 

Union (IoU) (SHANMUGAMANI, 2018). 

2.5.1  Intersection Over Union (IoU) 

O IoU avalia o percentual de sobreposição de duas caixas delimitadoras, sendo uma destas 

caixas o padrão verdade criado a mão por uma pessoa e a outra resultante da detecção de objetos, 

conforme pode ser observado na Figura 21 (EVERINGHAM et al., 2010). 
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Figura 21:  Avaliação da sobreposição das caixas delimitadoras para a detecção de 

objetos. 

 
 

Fonte: Compilação do autor. 

Portanto, o valor resultante do IoU é dado pela Equação (1). Onde 𝐵𝑝 é a caixa prevista, 

𝐵𝑔𝑡 é a caixa do padrão verdade, 𝐵𝑝  ∩  𝐵𝑔𝑡 denota a interseção e 𝐵𝑝  ∪  𝐵𝑔𝑡 a união. 

𝑎𝑜 =
𝑎𝑟𝑒𝑎(𝐵𝑝  ∩  𝐵𝑔𝑡)

𝑎𝑟𝑒𝑎(𝐵𝑝  ∪ 𝐵𝑔𝑡)
  

(1) 

Através do valor resultante é possível declarar se uma determinada detecção do modelo é 

verdadeira ou falsa. Para isto basta definir um limiar de corte, como por exemplo, o valor 0,5 

definido pelo PASCAL VOC (EVERINGHAM et al., 2010), ou a escala de valores entre 0,5 à 0,95 

determinado pelo conjunto de métricas de avaliação do COCO (2015).  

Durante a avaliação dos resultados para este trabalho o IoU também foi adotado como 

métrica de avaliação da etapa de segmentação. Contudo, conforme será apresentado na seção 5.1.2 

do capítulo 5 , os valores obtidos representam a média ponderada para IoU (mIoU). 
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2.5.2  Average Precision (AP) 

Conforme Everingham et al. (2010), o AP resume a forma da curva de precisão e revocação9 

a partir dos resultados de classificação para um determinado método, ou seja, o AP é basicamente a 

média da precisão sobre todos os valores de revocação entre 0 e 1. Para melhor entendimento de 

como o valor de avaliação é obtido, será necessário explicar os conceitos que envolvem a obtenção 

dos resultados da curva de precisão e revocação.  

2.5.2.1 Precisão e revocação 

A precisão mede a porcentagem de previsões verdadeiras positivas que foram encontradas 

por um determinado modelo, cujo valor é obtido através da Equação (2). Já a revocação quantifica a 

capacidade de um modelo prever todas as informações relevantes e seu valor é dado pela Equação 

(3). Sendo tp os verdadeiros positivos ou previsões corretas, valor definido pelo limiar de corte da 

avaliação do IoU (e.g. ≥ 0,5). O fp é o equivalente aos falsos positivos ou detecções erradas IoU 

(e.g. < 0,5) e o fn são as definições do padrão verdade que não foram previstas pelo modelo 

(EVERINGHAM et al., 2010). 

𝑃𝑟𝑒𝑐𝑖𝑠ã𝑜 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
  

(2) 

𝑅𝑒𝑣𝑜𝑐𝑎çã𝑜 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
  

(3) 

2.5.2.2 AP - PASCAL VOC 

O PASCAL VOC foi uma competição voltada a avaliação de desempenho de modelos de 

detecção de objetos e segmentação que ocorreu entre os anos de 2005 a 2012, onde incorporou a 

métrica AP a partir de 2007 como o método de avaliação padrão para as detecções de objetos 

(EVERINGHAM et al., 2010). 

                                                 

 

 

 
9 Revocação é uma tradução não literal para o termo em inglês Recall. 
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O cálculo de AP definido pela Equação (4), infere a interpolação dos valores de precisão 

sobre os 11 pontos de revocação entre 0 e 1. Onde r é a precisão medida no ponto de revocação 𝑟′. 

𝐴𝑃 =
1

11
 ∑ 𝑃𝑖𝑛𝑡𝑒𝑟𝑝(𝑟)

𝑟∈{0,0.1,…,1}

 

 onde 

𝑃𝑖𝑛𝑡𝑒𝑟𝑝(𝑟) = max
𝑟′:𝑟′≥ 𝑟

𝑝(𝑟′) 

(4) 

A métrica AP do PASCAL VOC é calculada para todas as classes presentes em um modelo 

preditivo, no entanto um valor global também é calculado ao final do processo de avaliação. Trata-

se da média ponderada sobre os produtos de AP para todas as classes do modelo (mAP). 

2.5.2.3 AP - COCO 

O cálculo de AP para a métrica de avaliação COCO (2015) compartilha de alguns dos 

conceitos da avaliação do PASCAL VOC, as diferenças ficam para o número de interpolações que 

sai de 11 para 101 (e.g. {0,0.01,...1}), além do valor de mAP que é gerado a partir de 10 valores de 

IoU entre 0,5 à 0,95. 

2.5.3  F-score 

O F-score ou medida F, mede a precisão de um determinado teste baseando-se na média 

harmônica da curva de precisão e revocação (MARTIN; FOWLKES; MALIK, 2004). E seu valor é 

dado pela Equação (5). 

𝐹 = 2 ∗  
𝑝𝑟𝑒𝑐𝑖𝑠ã𝑜 ∗ 𝑟𝑒𝑣𝑜𝑐𝑎çã𝑜

𝑝𝑟𝑒𝑐𝑖𝑠ã𝑜 + 𝑟𝑒𝑣𝑜𝑐𝑎çã𝑜
  

(5) 

Este método é comumente utilizado na avaliação de técnicas de detecção de contorno, como 

por exemplo, o algoritmo desenvolvido por Canny (1986).  
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No entanto, ao avaliar os pixels de um contorno gerado pela tarefa e o contorno criado como 

padrão verdade por um humano, a probabilidade de se obter a correspondência exata destes pixels é 

baixa, principalmente quando comparado a uma única amostra de padrão verdade (Figura 22). 

Portanto, este tipo de abordagem pode declarar que os resultados obtidos pela tarefa de detecção são 

imprecisos, mesmo que este tenha gerado contornos utilizáveis (ARBELAEZ et al., 2010). 

Prevendo este tipo de limitação Martin, Fowlkes e Malik (2004), criaram um algoritmo de 

avaliação de detecção de contorno mais flexível que a medida F-score padrão, ou seja, esta 

avaliação tende a ser mais tolerante no que diz respeito a pequenos deslocamentos da linha 

detectada. 

Figura 22:  Correspondências dos pixels da linha de contorno. Em vermelho 

a linha do padrão verdade, em amarelo a linha predita pelo algoritmo. 

 
Fonte: Compilação do autor. 

Portanto, neste trabalho optou-se por utilizar a métrica criada por Martin, Fowlkes e Malik 

(2004) durante a avaliação da etapa de extração da linha de contorno, pois os resultados obtidos não 

se enquadram ao modelo de avaliação restrito do F-score padrão.  
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3  TRABALHOS RELACIONADOS 

Buscando apresentar o estado da arte dos trabalhos voltados a identificação individual de 

mamíferos marinhos da ordem dos cetáceos, foi realizada uma pesquisa seguindo alguns conceitos 

da revisão sistemática. 

A pesquisa do tema foi realizada em fevereiro de 2018 e focou na consulta dos repositórios 

de artigos, IEEE, Science Direct, ACM, Springer Link, Scopus e Google Scholar.  

Como critério de inclusão definiu-se que os artigos deveriam ser todos em inglês e não seria 

adotado o critério temporal relacionado ao período de publicação, devido a necessidade de 

contextualizar a evolução das soluções adotadas para a resolução do problema proposto até o 

presente momento. Por outro lado, o critério de exclusão que foi estabelecido ignora qualquer 

trabalho cuja as características adotadas para a identificação individual não sejam provenientes das 

nadadeiras dorsais dos indivíduos. 

Outro objetivo da pesquisa realizada é responder os seguintes questionamentos: 

 Q1: Quais trabalhos fazem uso de técnicas de visão computacional para extrair as 

características necessárias para identificação individual a partir da linha de contorno da 

dorsal dos indivíduos? 

 Q2: Dos trabalhos que satisfazem a Q1, quais realizam o processo de extração das 

características do contorno da dorsal sem a interação humana, ou seja, automatiza o 

processo? 

 Q3: entre os trabalhos avaliados, quais aplicam testes de validação do desempenho para 

etapa de extração das características do contorno da dorsal? 

A string de busca foi construída pensando encontrar artigos voltados principalmente na 

identificação individual baseada em fotografias tiradas das nadadeiras dorsais dos indivíduos. 
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String de busca: 

 ("photo-id" OR "photo identification" OR "individual identification" OR "animal 

identification" OR "animal biometric") AND ("fin" OR "dorsal") AND ("dolphin" OR 

"cetacea" OR "delphinidae"). 

O Quadro 1 apresenta dos resultados obtidos com as buscas efetuadas nos repositórios. 

Quadro 1. Lista de títulos dos trabalhos relacionados. 

Repositório Quantidade de artigos 

retornados na consulta 

Quantidade de artigos 

encontrados relacionados ao 

tema do trabalho 

IEE 4 1 

Science Direct 247 0 

Springer Link 160 3 

ACM 0 0 

Scopus 72 0 

Google Scholar 4550 4 
 

Considerando os termos escolhidos para definir os critérios da string de busca observa-se 

que, a pesquisa realizada no Google Scholar encontrou dois artigos que remetem ao repositório 

IEEE, vide Quadro 2. Contudo, as buscas nestes repositórios com a mesma string não retornaram os 

artigos em questão. 

A busca realizada na Scopus retornou como resultado o trabalho de Genov et al. (2018). No 

entanto, este foi desconsiderado pois o método de identificação abordado no trabalho faz uso das 

caraterísticas faciais dos indivíduos para identificação, fugindo do escopo definido para este 

trabalho. 

É importante ressaltar um detalhe sobre os trabalhos 7 e 8 listados no Quadro 2 como 

trabalhos relacionados. Apesar de tratarem da identificação individual de animais que não 

pertencem a ordem dos cetáceos, ao comparar as nadadeiras dorsais de um tubarão branco e um 

golfinho é possível observar a semelhança morfológica entre as diferentes espécies, viabilizando a 

implementação da metodologia apresentada nesses trabalhos para os dois tipos de animais. 
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Quadro 2. Lista de títulos dos trabalhos relacionados. 

Nº Artigo Autor/Ano Repositório 

1 "Finscan", a Computer System for Photographic 

Identification of Marine Animals 

Hillman et al., 

(2002) 

IEEE 10 

2 Unsupervised Thresholding for Automatic Extraction 

of Dolphin Dorsal Fin Outlines from Digital 

Photographs in DARWIN 

Hale (2008) Google Scholar 

3 Computer-assisted Recognition Of Dolphin Individuals 

Using Dorsal Fin Pigmentations 

Gilman et al. 

(2016) 

IEEE 

4 Photo-id of blue whale by means of the dorsal fin using 

clustering algorithms and color local complexity 

estimation for mobile devices 

Carvajal-

Gámez et al. 

(2017) 

Springer Link 

5 Integral Curvature Representation and Matching 

Algorithms for Identification of Dolphins and Whales 

Weideman et 

al. (2017) 

IEEE 1 

6 Wild Cetacea Identification using Image Metadata Pollicelli, 

Coscarella e 

Delrieux (2017) 

Google Scholar 

7 Automated Visual Fin Identification of Individual 

Great White Sharks 

Hughes e 

Burghardt 

(2016) 

Springer Link 

8 Semi-automated software for dorsal fin photographic 

identification of marine species: application to 

Carcharodon carcharias 

Andreotti et al. 

(2017) 

Springer Link 

A seguir será explorado com mais detalhes os trabalhos citados no Quadro 2. 

3.1 FINSCAN, UM SISTEMA DE IDENTIFICAÇÃO FOTOGRÁFICA PARA 

ANIMAIS MARINHOS 

O Finscan foi um software desenvolvido para auxiliar os pesquisadores no processo de 

identificação de animais marinhos como, golfinhos, baleias e tubarões (HILLMAN et al., 2002). 

O software foi alterado ao longo de anos, almejando sempre a evolução do processo de 

identificação individual (ARAABI et al., 2000). A Figura 23, apresenta o diagrama das etapas de 

execução do software. 

 

                                                 

 

 

 
10 Artigos mantidos pela IEEE, porém foram encontrados durante a pesquisa no Google Scholar. 
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Figura 23: Diagrama de execução do software Finscan. 

 
Fonte: Fonte: Araabi et al. (2000). 

Os dois primeiros módulos apresentados no diagrama da Figura 23 foram desenvolvidos e 

descritos no trabalho de Kreho et al. (1997). No primeiro módulo foi implementada a técnica de 

detecção de contornos Laplacian of Gaussian (LoG), já o segundo módulo focou na implementação 

do descritor da curvatura. 

O trabalho de Kreho et al. (1997), também abordou dois métodos de comparação as linhas 

de contorno. 

O método Dorsal Ratio Matching, conhecido como um método manual de identificação 

Dorsal Ratio (DR), determina que a comparação é realizada a partir da distância entre os dois 

entalhes mais significantes da dorsal dividido pela distância do menor entalhe encontrado no topo 

da mesma, conforme representado na Figura 24. No entanto, este método não era eficiente quando 

confrontado a dorsais de indivíduos que apresentem mais que dois entalhes significativos. 
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Figura 24:  DR, método manual de 

identificação individual 

 
Fonte: Araabi et al. (2000). 

Portanto, para suprir esta deficiência os autores implementaram o Curve Matching que 

apresentou resultados melhores que o DR. Este método utiliza uma função de diferença para avaliar 

a semelhança entre as curvas dos entalhes da dorsal ao comparar dois indivíduos. 

Contudo, percebeu-se que o modelo de comparação de curvas em algumas ocasiões 

contribuiu mais ao avaliar entalhes menos significativos do que os mais significativos. Por este 

motivo Hillman et al. (2002), resolveram adotar o método de comparação baseado em uma 

representação de cadeia de caracteres “string”. 

O método em questão considera que os entalhes no contorno da dorsal dos indivíduos 

podem ser representados por funções de curvatura, onde atributos de medição como largura, 

comprimento, altura, profundidade, área, posição podem ser representados por notações primitivas 

como “a” e “b” (Figura 25). 

Figura 25:  Notações primitivas e atributos de medidas 

do contorno da dorsal. 

 
Fonte: Araabi et al. (2000). 
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Dois modelos de notação foram implementados, o Low-level String Representation (LLS) e 

High-level String Representation (HLS) baseado no LLS. O LLS caracteriza-se como uma 

representação tolerante a flutuações ou ruídos, já o HLS mescla as características insignificantes, 

considerando apenas as representações mais significativas geradas pelo LSS. A Figura 26 denota a 

forma de representação de cada modelo. 

Figura 26: (a) notações primitivas do contorno da dorsal, (b) modelo 

de representação LSS e (c) modelo de representação HLS. 

 
Fonte: Araabi et al. (2000). 

Para a etapa de comparação e identificação de indivíduos foi criado um método de medida 

das distâncias sintáticas/semânticas para as representações primitivas LSS e HLS. O método é 

modelado no trabalho pela Equação (6). 

𝐷𝑎𝑡𝑡(𝑠1, 𝑠2) = ∑ ∆𝑖

𝑖

(𝑎𝑡𝑡)(𝑑𝑖 / 𝑑)𝑤𝑖 
(6) 

Onde i é o index dos valores primitivos, (𝑑𝑖 / 𝑑) é o comprimento normalizado de cada 

primitivo, 𝑤𝑖 é o peso de dependência da sintaxe com base na matriz dos pesos de substituição e ∆𝑖 

(𝑎𝑡𝑡) é o peso de dependência semântica que reflete na diferença de valores entre os atributos de 

duas strings. 
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Os testes realizados por Araabi et al. (2000), envolveram um conjunto de 624 imagens para 

uma população de 164 golfinhos encontrados no Golfo do México, destes oito indivíduos possuíam 

apenas uma imagem e por este motivo foram descartados da base de dados de testes. Para o restante 

dos indivíduos uma imagem de cada foi selecionada para realizar a comparação com as demais 

imagens inseridas na base de testes da aplicação. 

A avaliação dos resultados abrange os testes considerando os métodos DR e a comparação 

da curvatura proposto no trabalho de Kreho et al. (1997), bem como o método de comparação de 

string e uma versão hibrida que junta a comparação de curva com a string. Os resultados obtidos 

podem ser observados na Figura 27, o eixo vertical do gráfico define a porcentagem de imagens 

classificadas corretamente como top-1 do ranking, já o eixo horizontal define o número de 

indivíduos examinados antes de encontrar a primeira correspondência válida durante a comparação 

de dorsais. 

Figura 27: Resultados obtidos por Araabi et al. (2000), ao avaliar os algoritmos de 

correspondência das dorsais. 

 
Fonte: Araabi et al. (2000). 
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3.2 THRESHOLD NÃO SUPERVISIONADO PARA EXTRAÇÃO 

AUTOMÁRICA DA LINHA DE CONTORNO DA DORSAL DE 

GOLFINGOS ATRAVÉS DE FOTOGRAFIAS DIGITAIS NO 

SOFTWARE DARWIN 

O trabalho de Hale (2008), consiste em criar um método semiautomático de extração do 

contorno da dorsal dos golfinhos, utilizando a técnica de segmentação conhecida como threshold 

não supervisionado. 

O método proposto pelo autor adota duas abordagens distintas, com intuito de reduzir ao 

máximo o trabalho manual de seleção do contorno da dorsal dos golfinhos. A Figura 28 apresenta 

os passos para extração da linha de contorno. 

A primeira abordagem trabalha com a imagem colorida, sem executar qualquer tipo de 

alteração antes do processamento. Esta abordagem é executada em três etapas: 

 Binarização: com a imagem transformada em escala de cinza, o processo efetua a análise 

do histograma para determinar o valor do threshold. Ao encontrar o primeiro vale do 

histograma seleciona-se o valor da constante de intensidade da binarização; 

 Processo morfológico: aplica-se técnicas de erosão e dilatação para remoção dos ruídos; 

e 

 Seleção do contorno da dorsal: seleciona o maior elemento após o processo morfológico, 

uma cópia deste elemento é criada e aplica-se o procedimento de erosão uma única vez, 

em seguida os dois elementos são comparados utilizando o operador lógico (XOR) que 

resulta na linha de contorno da dorsal. 
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Figura 28: Passos para a etapa de geração do contorno da 

dorsal. 

 
Fonte: Hale (2008). 

O autor descreve que com a primeira abordagem, de 302 imagens processadas 96 não 

produziram linhas de contorno passível de serem utilizadas na etapa de identificação de indivíduo. 

Esta falha ocorreu devido a incidência da reflexão de luz nas dorsais. 

Portanto, para suprir esta deficiência o autor criou uma segunda abordagem, que consiste em 

utilizar a cor ciano do sistema de cores CMYK para encontrar o valor do threshold para a etapa de 

binarização da imagem. 

Quase todo o processo da segunda abordagem tem como base as etapas apresentadas na 

primeira abordagem, com exceção da etapa de binarização. O autor adotou uma métrica de 

avaliação da capacidade de construção de áreas sólidas através do método de segmentação. 

Está métrica avalia as conexões de cada pixel com os seus vizinhos determinando um peso. 

Uma média é gerada a partir dos pesos, o que permite avaliar a qualidade da segmentação. Este 

processo é aplicado para os valores de threshold que variam de 0 à 160, onde o valor do primeiro 

local mínimo é selecionado como o ideal para a etapa de binarização (Figura 29). 
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Figura 29: Gráfico de qualidade de segmentação, primeiro valor mínimo ideal para o threshold é t=65. 

 
Fonte: Hale (2008). 

Os resultados apresentados pelos autores descrevem que de 302 imagens utilizadas para 

teste 35.1% geraram linhas úteis para o processo de identificação sem a necessidade de 

modificação, 33.11% das imagens precisaram de algum tipo de modificação posterior para gerar 

linhas úteis. Das imagens restantes 31,79%, ou seja, 96 imagens resultaram em linhas inconsistentes 

para o processo de identificação. 

Já para a segunda abordagem os autores utilizaram 94 imagens diferentes do primeiro 

conjunto de imagens aplicadas na primeira abordagem. Onde 48 imagens (51%) produziram linhas 

úteis para o processo de identificação, sem aplicar qualquer tipo de modificação na imagem. 

Apesar do bom resultado apresentado no trabalho, é importante destacar que o processo de 

extração do contorno da dorsal do golfinho não é totalmente automatizado.  

O autor deixa claro no texto que, antes de executar o processo, o usuário é obrigado a 

informar o ponto de início e término da dorsal. Esta ação permite delimitar a área de busca, 

reduzindo a chance de erros e melhorando a qualidade das informações do histograma da imagem. 
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3.3 RECONHECIMENTO INDIVIDUAL DE GOLFINHOS UTILIZANDO A 

PIGMENTAÇÃO DA DORSAL 

Este trabalho adotou uma abordagem oposta aos demais trabalhos encontrados na literatura, 

ou seja, fez uso da pigmentação presente na dorsal do golfinho como atributo do processo de 

identificação individual (Figura 30). 

Conforme Gilman et al. (2016), a abordagem escolhida para a identificação individual se 

justifica, pois, a pigmentação encontrada nos golfinhos não apresenta bordas ou pontos 

pontiagudos, isso permite trabalhar com métodos de quantificação de pigmentação. 

Figura 30: Pigmentação na dorsal dos golfinhos comuns (Delphinus 

spp.), encontrados em New Zealand. 

  

Fonte: Gilman et al. (2016). 

Considerando que os valores das características para cada indivíduo a ser identificado viriam 

da pigmentação da dorsal, os autores decidiram aplicar um esquema de subdivisão da dorsal em 

áreas menores, permitindo empregar um processo estatístico robusto para obtenção dos valores 

utilizados na etapa de identificação. 

A subdivisão é aplicada a duas abordagens, sendo a primeira com base na distância mais 

próxima da borda, já a segunda consiste em segmentos de grade ao longo do eixo perpendicular a 

base da dorsal, conforme apresentado pela Figura 31. 
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Figura 31: Esquemas de subdivisão da dorsal, grid a esquerda e baseado no contorno a direita. 

 
Fonte: Gilman et al. (2016). 

Os passos seguintes do processo de extração de características envolvem, a normalização de 

valores dos pixels da imagem convertida para escala de cinza, subtraindo a média e dividindo pelo 

desvio padrão de todos os pixels. Bem como, aplicando o cálculo estatístico da média, mediana e 

intervalo interquartil nas 42 subdivisões, seguido de vários métodos de desvio padrão. 

A etapa de identificação do indivíduo foi construída pensando na classificação das imagens 

dos indivíduos e divide-se em duas etapas: 

 Ranking das características: criação do subconjunto de características que representarão 

o indivíduo durante a identificação. A correlação dos dados do conjunto é avaliada 

através do método de correlação t-score. 

 Treinamento: a etapa de classificação fez uso da técnica estatística de combinação linear 

Linear Discriminant Analysis (LDA), sendo o ranking da classificação determinado pelo 

método de validação cruzada Leaveone-out Cross Validation (LOOCV). 

A avaliação dos resultados da classificação mostrou que ao utilizar a divisão da dorsal 

baseado em grid, proporcionou um acerto de 71.2% ao identificar corretamente o indivíduo (top-1) 

e 83.7% de acerto para o nível de predição de características similares com até cinco indivíduos 

diferentes (top-5). Para o caso de subdivisão baseado no contorno da dorsal, a classificação resultou 

em um acerto de 53.5% (top-1) e 77.3% (top-5). 

No entanto o melhor resultado foi juntando os dois tipos de divisão que ficou em 75.5% 

(top-1) e 86.3% (top-5). Comprovando a eficiência do método proposto para o caso de estudo ao 

adotar as duas metodologias. 
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3.4 FOTO IDENTIFICAÇÃO DE BALEIA AZUL PARA DISPOSITIVOS 

MÓVEIS ATRAVÉS DA NADADEIRA DORSAL USANDO 

ALGORITMOS DE CLUSTERING E ESTIMATIVA DE 

COMPLEXIDADE LOCAL DAS CORES 

Almejando a criação de um sistema portátil e prático para uso em áreas remotas de 

monitoramento e pesquisa de baleias azuis (Balaenoptera musculus), Carvajal-Gámez et al. (2017) 

desenvolveram um aplicativo para dispositivos móveis com sistema operacional Android que 

auxilia na identificação individual desses animais, através das nadadeiras dorsais. 

Este aplicativo buscou atender a questão relacionada ao poder de processamento limitado 

dos dispositivos móveis, bem como o consumo excessivo de recursos, como por exemplo, bateria e 

espaço de armazenamento de dados. A técnica de segmentação de imagem proposta para o trabalho, 

precisa aplicar filtros de aprimoramento das linhas de contorno com o intuito de reduzir o tamanho 

das imagens e melhorar o tempo de processamento, porém sem perder o detalhamento do objeto. 

Além de implementar um método de redução das paletas de cores presentes na imagem, diminuindo 

a quantidade de pixels de difícil classificação. 

Para alcançar o objetivo do trabalho, os autores dividiram a técnica de segmentação em 

cinco estágios. 

Estágio 1 - banco de imagens: as imagens utilizadas no trabalho foram obtidas por 

dispositivos móveis de diferentes marcas e modelos, com câmeras fotográficas de resoluções que 

variam entre 5 e 13 MP. Todas as imagens foram obtidas e processadas no padrão de cores RGB. 

Estágio 2 - pré-processamento: faz uso do filtro de passa-banda Discrete Wavelet Transform 

(DWT) para descrever a textura do corpo da baleia, bem como aplica o algoritmo de análise de 

sinais conhecido como Circular Haar Wavelet (CHW), compactando a imagem sem perder a 

informação relacionada as linhas de contorno do animal. O pré-processamento é executado 

separadamente para cada camada do padrão RGB. 

Estágio 3 - redução da paleta de cores: buscando o desempenho da aplicação em relação ao 

tempo de processamento e uso de espaço para armazenamento da informação, este estágio introduz 

um método de remoção de corres redundantes existentes em cada canal RGB da imagem, aplicando 

a técnica de quantificação de pixel descrito no trabalho de Carvajal-Gamez, Gallegos-Funes e 

Rosales-Silva (2013). 
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Estágio 4 - segmentação adaptativa: visando melhorar a nitidez e o contraste da cena ao 

destacar o objeto procurado do fundo da imagem, foi introduzido um método de segmentação sobre 

cada canal de cor R, G e B, utilizando um filtro de histograma dinâmico combinado à técnicas de 

análise de cluster. 

Estágio 5 - minimizando o número de pixels classificados incorretamente: o último estágio é 

responsável pela segmentação final da imagem, primeiro convertendo os canais RGB resultantes do 

estágio 4 em valores de tons de cinza, finalizando com a binarização. 

O método proposto pelo trabalho, contempla a segmentação e classificação da imagem, 

separando o indivíduo avistado do restante da cena. Contudo não aborda a etapa de identificação do 

indivíduo, nem a de extração das características individuais do animal como, a linha de contorno da 

dorsal ou pigmentação do corpo. 

Para avaliar a performance da técnica de segmentação desenvolvida, os autores realizaram 

testes de validação tendo como parâmetro de medida imagens segmentadas manualmente. 

O catálogo de imagens para teste envolve 771 imagens distribuídas em três categorias, 

imagens de animais com dorsal triangular, deitada e curvada. Os resultados apresentam uma 

acurácia no método de segmentação implementado que variam de 98.97% à 99.04% para a dorsal 

triangular, 95.30% à 95.49% deitada e 97.56% à 98.05% curvada. 

3.5 REPRESENTAÇÃO DA CURVATURA INTEGRAL E ALGORITMOS 

DE CLASSIFICAÇÃO PARA IDENTIFICAÇÃO DE GOLFINHOS E 

BALEIAS 

Weideman et al. (2017), propuseram em seu trabalho a medida da curvatura integral para a 

representação e extração da linha de contorno das dorsais de golfinhos e das caudas de baleias, em 

conjunto com dois algoritmos para classificação e identificação individual dos animais. 

O método da medida de curvatura integral proposto pelos autores, busca tornar a 

representação da linha de contorno das dorsais e caudas dos indivíduos mais robusta. Ou seja, 

pretende-se definir uma métrica confiável de conversão das linhas de contorno para uma curvatura 

linear no eixo horizontal, independente do ponto de vista ou pose em que o indivíduo se encontra na 

imagem (Figura 32). 
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Figura 32: Conversão de curvatura da linha de contorno. (a) exemplo de linha do 

contorno de uma dorsal de golfinho, (b) conversão da linha de contorno em 

curvatura integral. 

 
Fonte: Adaptado de Weideman et al. (2017). 

A etapa que antecede a conversão das linhas de contorno para o método proposto no 

trabalho, visa a extração destas aplicando uma técnica de segmentação baseada em Rede Neural 

Convolucional proposto por Long, Shelhamer e Darrell (2015). A imagens foram previamente 

recortadas pelos pesquisadores antes da execução deste procedimento, reduzindo o esforço de 

análise do algoritmo de segmentação. 

 Na etapa de identificação dos indivíduos os autores aplicaram duas técnicas para 

comparação das linhas de contorno dos indivíduos, produzindo um ranking de indivíduos com 

características similares ao indivíduo consultado, deixando a cargo do pesquisador a seleção da 

correspondência exata entre os indivíduos avaliados. 

A primeira técnica é a Dynamic Time-Warping (DTW), que permite comparar as 

representações temporais de duas curvaturas, calculando o custo de alinhamento entre elas.   

Já a segunda técnica aplicada fez uso de um método de classificação chamado de Local 

Naive Bayes Nearest Neighbor (LNBNN) (LOWE; MCCANN, 2012), que originalmente foi criado 

para classificar imagens. Contudo, neste trabalho o foco foi a classificação do conjunto de dados 

transformados em descritores de características e pontos chave as linhas de contorno. 
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Os testes da metodologia proposta foram realizados com um conjunto de 10713 imagens 

para 401 indivíduos distintos de golfinhos nariz de garrafa (Tursiops truncatus) e 7173 imagens de 

3572 indivíduos de baleia-jubarte (Megaptera novaeangliae).  

Deste conjunto de imagens os autores selecionaram aleatoriamente para cada golfinho 

arquivos de 10 encontros, nos casos onde o indivíduo apresentou um número inferior a 10 de 

encontros selecionou-se arquivos para n-1 encontro. Para montar a base de dados das baleias, as 

amostras selecionadas representavam em sua maioria uma imagem por indivíduo devido ao baixo 

número de encontros. 

Os resultados apresentados no trabalho indicam que, a identificação individual dos golfinhos 

obteve melhor resultado com a técnica DTW que corresponde à acurácia de 74% no top-1 do 

ranking e 69% com LNBNN. No entanto o oposto ocorreu para os testes dos dados das baleias onde 

a técnica LNBNN apresentou 89% de acurácia no top-1 e 86% para DTW. 

3.6 IDENTIFICAÇÃO DE CETACEOS UTILIZANDO METADADO 

Pollicelli, Coscarella e Delrieux (2017), buscaram validar a hipótese de identificação 

individual dos golfinhos da espécie Cephalorhynchus commersoni, através dos metadados 

levantados a partir da avaliação de imagens tiradas de 223 indivíduos ao longo de sete anos. 

A abordagem não fez uso de técnicas de visão computacional para extração das marcas 

características encontradas nas dorsais destes indivíduos, ou seja, todas as informações necessárias 

para o estudo foram levantadas através da avaliação minuciosa dos pesquisadores para cada foto 

tirada. 

Conforme descrito pelos autores, os seguintes atributos foram selecionados nos metadados 

coletados: 

 Lado: posição que o animal foi fotografado “direito” ou “esquerdo”; 

 Qualidade: índice de 0 a 3 para efeitos de brilho, contraste e condição visual da dorsal; 

 Distinção: também um índice de 0 a 3 para o quão distinguível estava as marcas das 

dorsais; 

 Cicatrizes: quantidade visíveis na dorsal; 
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 Coloração: quantidade de pontos com coloração anormais presentes na dorsal; 

 Zonas: divisão da dorsal em áreas para definir onde as marcas estavam presentes; 

 Entalhes: quantidade de entalhes presentes no contorno da dorsal; 

 Tamanhos das marcas: descrição da quantidade de marcas com as seguintes definições 

de tamanhos, grande, comprida, estendida, média, pequena/minúscula; e 

 Formato de marcas: descrição da quantidade e formato das marcas com as seguintes 

definições, pouco, leve, imperceptível, triangular arredondada e saliente. 

Os métodos de classificação selecionados pelos autores para a etapa de identificação do 

indivíduo foram: 

 Redes neurais: Multilayer Perceptron; 

 Classificador bayesiano: NaïveBayes; 

 Árvore de decisão: J48; e 

 Algoritmo do K-vizinho mais próximo: KStar. 

No entanto, uma avaliação preliminar foi efetuada utilizando Info Gain Attribute Eval, Gain 

Ratio Attribute Eval e Chi Squared Attribute Eval em conjunto com o método de busca Ranker, 

para encontrar a relevância dos atributos escolhidos. Alguns foram descartados devido à baixa 

relevância para o processo de classificação. 

O passo seguinte do trabalho foi a construção e validação dos modelos. Do conjunto de 

dados contendo 869 instancias de 223 indivíduos, foram criados dois subconjuntos que 

apresentavam o número de capturas entre 5 – 12 e maior ou igual a cinco, resultado respectivamente 

em 373 instancias de 54 indivíduos e 515 instâncias de 62 indivíduos. 

Os subconjuntos foram testados estatisticamente com o classificador ZeroR, o qual 

demostrou através do resultado de 2,4862%, que os dados classificaram corretamente, melhor até 

que ao puro acaso que corresponde ao valor de 1,8%. 

A execução dos testes foi aplicada aos dois subconjuntos removendo respectivamente 10% e 

3% dos dados, simulando novos encontros de indivíduos. Conforme apresentado na Tabela 1 os 
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resultados variaram de 72,72% à 90% para o conjunto de 3% de dados. Já para o caso contendo 

10% das instâncias a variação dos resultados ficou entre 56,86% e 72,97%. 

Tabela 1. Resultados obtidos para a etapa de identificação de indivíduos com base nos modelos escolhidos para a 

classificação de metadados. 

Dados de validação Base de dados Naive Bayes KStar J48 Multilayer Perceptron 

 

10% 

5 a 12 72.97% 75.67% 70.27% 70.27% 

≥ 5 68.62% 62.74% 64.70% 56.86% 

 

3% 

5 a 12 81.81% 81.81% 90% 72.72% 

≥ 5 87.5% 87.5% 81.25% 81.25% 

Fonte: Adaptado de Pollicelli, Coscarella e Delrieux (2017). 

3.7 IDENTIFICAÇÃO INDIVIDUAL AUTOMATIZADA DE TUBARÕES 

BRANCOS 

Considerado como o primeiro trabalho voltado ao tema de identificação de indivíduos 

através da nadadeira dorsal, que funciona de modo totalmente automatizados. Hughes e Burghardt 

(2016), desenvolveram uma proposta que contempla a execução das duas etapas principais de um 

software de identificação individual. 

Na etapa de extração das características necessárias para a identificação, foi adotada uma 

abordagem de segmentação e detecção de contorno baseado em mapas ultra métricos de contorno e 

descritores de atributos de componentes presentes na imagem. Em seguida foi desenvolvido um 

método de codificação biométrica baseado na suavização de objetos, adequando a região de 

contorno ao formato do contorno da dorsal dos tubarões brancos. 

Conforme descrito pelos autores, o modelo de detecção de contorno e detecção de objetos 

candidatos à dorsal divide-se em três estágios: 

Estágio 1, segmentação: utilizando como base o trabalho de Arbeláez et al. (2014), que trata 

de uma abordagem para segmentação hierárquica, que para o trabalho em questão proporciona um 

conjunto de 200 regiões segmentadas, o qual posteriormente é classificado novamente para retiradas 

de regiões pequenas de mais para serem consideradas como uma dorsal, sobrando apenas 12 regiões 

segmentadas por imagem analisada. 
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Estágio 2, geração de candidatos a dorsal: como a imagem contempla pelo menos a dorsal 

de um indivíduo, também considerando que a dorsal se trata de um contorno aberto que facilmente 

mescla ao restante do corpo formando um único objeto, aplicou-se o método de detecção de cantos 

proposto por Zhang et al. (2009) na definição dos pontos de início e término da linha de contorno da 

dorsal. 

Estágio 3, ranking dos candidatos a dorsal: o último estágio é responsável pelo treinamento 

do classificador Random Forest Regressor (BREIMAN, 2001), que prevê a qualidade de hipótese 

de possíveis dorsais computadas pelo framework de detecção e avaliação de contorno BSDS 

(MARTIN; FOWLKES; MALIK, 2004). Para o treinamento do classificador foram utilizadas 240 

imagens de alta visibilidade e 120 imagens de baixa visibilidade, cujas as linhas de contorno dos 

indivíduos foram delimitadas manualmente para criação dos descritores de características.  

Para validar a abordagem da primeira etapa foi adotado o teste proposto por Hariharan et al. 

(2014), que visa medir a performance da segmentação e detecção dos objetos candidatos a dorsal.  

Os resultados obtidos podem ser observados na Tabela 2 e Tabela 3. 

Tabela 2. Resultados intermediários dos testes de desempenho para a detecção de objetos. 

 t=0.7 t=0.85 t=0.9 𝐴𝑃𝑣𝑜𝑙 

Segmentation 1.0 0.99 0.99 0.99 

Candidate gen. (H) 0.99 0.98 0.98 0.97 

Candidate gen. (L) 1.0 0.99 0.92 0.96 

Fonte: Adaptado de Pollicelli, Coscarella e Delrieux (2017). 

Tabela 3. Resultados dos testes de desempenho para a detecção da dorsal. 

Feature type t=0.7 t=0.85 t=0.9 𝐴𝑃𝑣𝑜𝑙 

High Visibility (H)     

OpponentSIFT 0.99 0.85 0.73 - 

Normal 0.98 0.85 0.7 - 

Combined 0.98 0.95 0.86 0.92 

Lower Visibility (L)     

Combined 1.0 0.93 0.62 0.89 

Fonte: Adaptado de Pollicelli, Coscarella e Delrieux (2017). 

A codificação biométrica da linha de contorno da dorsal pretende aumentar a precisão da 

identificação individual, aplicando um refinamento no contorno com um método de máscara de 
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opacidade proposto por Zheng e Kambhamettu (2009), seguido pela definição dos pontos chaves 

que descrevem a linha reaplicando o método descrito no Estágio 3, finalizando com a 

implementação de descritores de características semi-locais e globais. 

Para a etapa de identificação do indivíduo, os autores abordaram a técnica de classificação 

Local Naive Bayes Nearest Neighbor (LNBNN) (LOWE; MCCANN, 2012). Esta técnica permite 

interpretar os descritores de características de um indivíduo e comparar com os descritores de 

indivíduos que já possuem identificação e encontram-se armazenados em uma base de dados. 

Como resultado deste processo espera-se o retorno de um ranking de dorsais similares ao 

indivíduo analisado, possibilitando ao pesquisador a identificação correta do novo indivíduo, que 

terá os dados armazenados no banco de dados da aplicação. 

 Os testes foram aplicados a um conjunto de 2456 imagens de 85 indivíduos, uma imagem 

de cada indivíduo foi separada para montar o conjunto de testes sobrando 2371 imagens que foram 

utilizadas para montar a base de dados de identificação. 

Os resultados apresentados demonstraram que em 82% dos casos os indivíduos foram 

identificados corretamente, sendo que em 91% das vezes a identificação correta encontrava-se entre 

os dez primeiros do ranking. Apenas 9% das instancias não foram classificadas corretamente. 

3.8 SOFTWARE SEMI-AUTOMATIZADO PARA IDENTIFICAÇÃO DE 

INDIVÍDUOS DA ESPÉCIE CARCHARODON CARCHARIAS 

ATRAVÉS DE FOTOGRAFIAS DA NADADEIRA DORSAL 

Com intuito de construir um software específico para identificação individual de tubarão 

branco Andreotti et al. (2017) desenvolveram uma proposta semelhante ao software DARWIN. 

Esta semelhança se caracteriza pelo fato de que o software proposto foi desenvolvido 

pensando em uma aplicação desktop, que permite construir uma base de dados para comparação dos 

indivíduos e exige que o pesquisador informe os pontos de início e termino do contorno da dorsal 

antes de passar para a etapa de identificação individual. 

No entanto as técnicas aplicadas nas duas etapas do processo de identificação do indivíduo 

diferem do software DARWIN. 
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Na etapa de extração das características do contorno da dorsal, os autores aplicaram a 

técnica de detecção de contornos Sobel apenas na área delimitada pelo usuário. 

De posse da linha de contorno o software automaticamente executa a etapa de identificação 

individual, aplicando a técnica Dynamic Time-Warping (DTW) no processo de comparação da nova 

linha de contorno com as informações existentes no banco de dados. O processo de comparação 

permite criar um ranking de probabilidade das melhores combinações encontradas. 

Os autores descrevem que a base de dados disponível para testes consiste em 744 imagens 

de 426 indivíduos identificados manualmente. Deste conjunto de indivíduos, 50 foram selecionados 

aleatoriamente para montar a base de testes do software. 

Os resultados apresentados no trabalho demonstram que das 50 imagens analisadas pelo 

software, 40 delas foram comparadas corretamente ou seja 80%. Destas 62% encontraram o 

indivíduo correto nas duas primeiras posições do ranking. Contudo, não foi possível encontrar 

indivíduos correspondentes para 7 imagens e em um único caso a imagem não pode ser classificada. 

3.9 ANÁLISE COMPARATIVA 

Como complemento da seção de trabalhos relacionados o Quadro 3, apresenta uma análise 

comparativa resumida das principais técnicas utilizadas nos mesmos. 
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Quadro 3. Comparação das técnicas utilizadas para extração de características da dorsal e identificação do 

indivíduo, nos trabalhos relacionados. 

Nº Artigo Extração das 

características da 

dorsal 

Classificação e 

identificação do 

indivíduo 
1 "Finscan", a Computer System for Photographic 

Identification of Marine Animals 

Laplacian of Gaussian 

(LoG) 

Curve matching 

String matching 

2 Unsupervised Thresholding for Automatic 

Extraction of Dolphin Dorsal Fin Outlines from 

Digital Photographs in DARWIN 

Threshold não 

supervisionado 

Não abordado neste 

trabalho 

3 Computer-assisted Recognition Of Dolphin 

Individuals Using Dorsal Fin Pigmentations 

Média dos valores 

normalizados com 

base na pigmentação 

da dorsal 

Classificação com Linear 

Discriminant Analysis 

(LDA) e identificação 

individual com Leaveone-

Out Cross Validation 

(LOOCV) 

4 Photo-id of blue whale by means of the dorsal fin 

using clustering algorithms and color local 

complexity estimation for mobile devices 

Segmentação com 

filtro de passa-banda 

Discrete Wavelet 

Transform (DWT), 

análise de cluster com 

Fuzzy C-means e K-

means nos canais 

RGB e finalizando 

com binarização da 

imagem em escala de 

cinza 

Não abordado neste 

trabalho 

5 Integral Curvature Representation and Matching 

Algorithms for Identification of Dolphins and 

Whales 

Segmentação com 

rede neural 

convolucional 

Dynamic Time-Warping 

(DTW) 

Local naive Bayes nearest 

neighbor (LNBNN) 

6 Wild Cetacea Identification using Image Metadata Metadado das 

características da 

dorsal extraídas 

manualmente 

Redes neurais: Multilayer 

Perceptron; 

Classificador bayesiano: 

NaïveBayes; 

Árvore de decisão: J48; 

Algoritmo do K-vizinho 

mais próximo: KStar. 

7 Automated Visual Fin Identification of Individual 

Great White Sharks 

Segmentação 

hierárquica e 

identificação de 

objetos com Random 

Forest Regressora 

Local naive Bayes nearest 

neighbor (LNBNN) 

8 Semi-automated software for dorsal fin 

photographic identification of marine species: 

application to Carcharodon carcharias 

Detecção de contornos 

com Sobel 

Dynamic Time-Warping 

(DTW) 
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3.10 CONSIDERAÇÕES 

É possível avaliar no Quadro 3, que os trabalhos listados empregaram diferentes técnicas 

para a tarefa de extração de características das nadadeiras dorsais. Técnicas que vão desde a 

abordagem clássica como a detecção de contornos com Sobel de Andreotti et al. (2017), até o 

desenvolvimento de técnicas hibridas como Hughes e Burghardt (2016). 

Outro aspecto que se pode destacar, entre os oito trabalhos encontrados durante o 

levantamento do estado da arte, apenas dois não adotam a linha de contorno da dorsal como 

caraterística relevante para identificação individual. 

Portanto isso faz refletir que em 75% dos trabalhos, a caraterística mais relevante para 

identificação do indivíduo é a linha de contorno da dorsal e consequentemente valida as afirmações 

levantadas pela maioria dos biólogos de que se trata da principal característica a ser utilizada no 

processo de identificação individual não invasivo, justificando o uso desta no escopo do trabalho. 

Também é válido ressaltar que a escolha do trabalho de Hughes e Burghardt (2016) como 

referência para o desenvolvimento deste justifica-se, pois foi o único a apresentar uma solução 

totalmente automatizada para as duas etapas de um software de identificação individual, bem como 

apresentou testes consistentes que demonstraram a qualidade da solução proposta para a tarefa de 

localização da dorsal na imagem e extração da linha de contorno para a execução da etapa de 

comparação de indivíduos. 

O capítulo a seguir apresentará um panorama detalhado das escolhas tomadas para o 

desenvolvimento da solução proposta para este trabalho, bem como trará as justificativas para cada 

técnica ou algoritmo escolhido para cada tarefa da etapa de extração das características do contorno 

da dorsal. 
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4  DESENVOLVIMENTO 

Este capítulo contextualiza todas as etapas que envolvem a criação de uma ferramenta 

automatizada para localização e extração da linha de contorno das dorsais de cetáceos em imagens. 

O desenvolvimento da ferramenta foi significantemente influenciado pelo trabalho desenvolvido 

por Hughes e Burghardt (2016), pois foram os únicos que elaboraram um mecanismo totalmente 

automatizado para resolução de um problema semelhante ao que está sendo abordado neste 

trabalho. 

Contudo, se compararmos o trabalho Hughes e Burghardt (2016) com este, pode-se notar 

uma visão diferenciada na criação das etapas que envolvem o processo de desenvolvimento da 

ferramenta. A primeira diferença trata da limitação do escopo para este trabalho, ou seja, a etapa de 

identificação do indivíduo não será implementada.  

A segunda apoia-se na metodologia adotada para resolver o problema proposto. Enquanto 

Hughes e Burghardt (2016) optam por um processo que exige a segmentação hierárquica da 

imagem, passando pelo refinamento de limites dos segmentos para posterior classificação dos 

candidatos a dorsal utilizando Random forests e finalizando com o tratamento de contorno da dorsal 

para extração da linha e inferência do algoritmo de identificação individual (Figura 33). Este 

trabalho fez uso do método de detecção de objetos para localizar e delimitar as dorsais dos 

indivíduos nas imagens, bem como implantou-se a técnica de segmentação semântica que separa o 

objeto de interesse do restante da cena, finalizando com o refinamento e extração da linha de 

contorno da dorsal (Figura 34). 
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Figura 33: Modelo criado por Hughes e Burghardt (2016) para automatizar o processo de identificação 

individual de tubarão branco. 

 
Fonte: Hughes e Burghardt (2016). 

 

Figura 34: Diagrama do processo de detecção e extração da linha de contorno da dorsal para a ferramenta 

desenvolvida neste trabalho. 

 
Fonte: Compilação do autor. 
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4.1 DETEÇÃO DE OBJETOS 

Esta etapa fez uso do framework de código aberto TensorFlow Object Detection API criado 

por Huang et al. (2016), que permite localizar e identificar múltiplos objetos em uma única imagem. 

Trata-se de um framework construído na plataforma de aprendizado de máquina disponibilizado 

pela Google, que facilita o treinamento de redes neurais para identificação de objetos visando a 

construção de ferramentas cujo escopo sejam aplicações voltadas a computação visual. 

A API disponibiliza três meta-arquiteturas de redes neurais e seis possíveis extratores de 

características. Algumas combinações destes recursos permitiram que os autores criassem um total 

de 15 modelos de redes neurais, evidenciando a diversidade e flexibilidade da ferramenta proposta 

(HUANG et al., 2016). Tanto a diversidade de configurações disponíveis para a API, bem como os 

resultados significativos apresentados pelos autores, levou a integração da mesma no processo de 

desenvolvimento deste trabalho. O Quadro 4 apresenta as combinações de configurações criadas 

pelos autores.  

Quadro 4. Combinação de meta-arquiteturas e extratores de características utilizados no trabalho de Huang et al. (2016). 

Meta-arquitetura Extratores de características utilizados 

Faster R-CNN (REN et al., 2015) VGG-16 (SIMONYAN; ZISSERMAN, 2014) 

Resnet-101 (HE et al., 2015) 

Inception v2 (LOFFE; SZEGEDY, 2015) 

Inception v3 (SZEGEDY et al., 2015) 

Inception Resnet (SZEGEDY et al., 2016) 

MobileNet (HOWARD et al., 2017) 

R-FCN (DAI et al., 2016) Resnet-101 (HE et al., 2015) 

Inception v2 (LOFFE; SZEGEDY, 2015) 

Inception Resnet (SZEGEDY et al., 2016) 

MobileNet (HOWARD et al., 2017) 

SSD (LIU et al., 2016) VGG-16 (SIMONYAN; ZISSERMAN, 2014) 

Resnet-101 (HE et al., 2015) 

Inception v2 (LOFFE; SZEGEDY, 2015) 

Inception Resnet (SZEGEDY et al., 2016) 

MobileNet (HOWARD et al., 2017) 
 

As combinações entre meta-arquitetura e extratores de características, permitiu os autores da 

API realizarem testes distintos com diversas configurações de tamanho de entrada, número de 

passos, etc (HUANG et al., 2016). A Figura 35 apresenta os resultados obtidos onde é possível 

observar em alguns casos o equilíbrio entre precisão e tempo de processamento, bem como uma 

representação significativa na curva de aprendizado dos modelos. 
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Figura 35: Precisão x tempo, cada forma geométrica representa a meta-arquitetura e 

as cores os extratores de características. 

 
Fonte: Huang et al. (2016). 

Bem como descrito por Huang et al. (2016) em seu trabalho, e também pode-se observar na 

Figura 35, os modelos criados com as meta-arquiteturas R-FCN e SSD são rápidos e apresentam 

uma boa precisão. Por outro lado, o Faster R-CNN obteve as melhores precisões, porém trata-se de 

modelos lentos. 

Tanto os resultados apresentados pelos autores da API quanto a possibilidade de construção 

de modelos rápidos e eficientes, reforçaram mais ainda a necessidade de trabalhar com uma 

plataforma unificada de redes neurais para detecção de objetos. 

Entretanto, neste trabalho a avaliação de resultado dos modelos focou apenas na precisão das 

meta-arquiteturas, pois conforme será explicado nas sessões 4.1.4 e 4.1.5 o tempo de processamento 

e uso de memória está limitado aos recursos computacionais disponíveis para o desenvolvimento 

deste trabalho. 

4.1.1  Base de dados 

A tarefa inicial para treinar o detector de objetos consiste em montar uma base de dados de 

imagens que represente o universo de objetos que se quer identificar. Para atender a esta demanda, 

buscou-se por repositórios de dados ambientais que permitisse acessar imagens de cetáceos 

avistados em seu habitat natural. A busca nos levou aos conjuntos de dados de avistagens do 



79 

 

iNaturalist e dos dados de monitoramento de praias do Sistema de Informação de Monitoramento da 

Biota Aquática (SIMBA) para o PMP-BS. 

O iNaturalist é um projeto de ciência cidadã que motiva a colaboração de entusiastas da 

natureza, ao registrar avistagens das mais diferentes espécies existentes em nosso planeta 

(INATURALIST, 2018). O repositório de dados do iNaturalist permite o registro de avistagens 

contendo a localização das ocorrências, descrição taxonômica de cada espécie e fotografias tiradas 

pelos usuários da plataforma. A vantagem de adotar as imagens provenientes do iNaturalist foi a 

diversidade de espécies encontradas no repositório de dados, bem como a garantia de validação dos 

registros por pesquisadores e especialistas da área. 

O SIMBA é voltado a gestão das informações coletadas para o PMP-BS, e possibilita o 

registro de dados de monitoramento, ocorrências de fauna alvo do projeto, também contempla a 

manutenção dos dados de reabilitação dos animais encontrados vivos durante as atividades 

rotineiras de praia. Todo animal encontrado vivo ou morto durante o monitoramento recebe um 

cadastro no sistema, onde são inseridas fotografias tiradas pelas equipes de campo durante o 

processo de registro do indivíduo.  

Diferente do iNaturalist cuja maioria das imagens apresentam indivíduos inseridos em 

ambiente aquático, as imagens do PMP-BS retratam em sua maioria, cenas de animais encontrados 

mortos nas praias, representando cenários de característica ambiental arenoso. Optou-se por utilizar 

as imagens do SIMBA, por se tratar de avistagens de animais recorrentes ao litoral brasileiro, além 

de possibilitar o enriquecimento de detalhes através da diversidade de cenários onde as fotografias 

foram obtidas. 

Em ambos os repositórios se efetuou a pesquisa de dados visando encontrar registros de 

avistagens para animais da ordem dos cetáceos, que apresentassem fotografias vinculadas aos 

registros. A consulta foi realizada no dia 17 de dezembro de 2018, onde obteve-se o resultado de 

8111 imagens provenientes do iNaturalist e 13822 imagens no SIMBA. 

4.1.2  Seleção das imagens 

Como o principal objetivo da etapa de detecção de objetos para este trabalho é localizar as 

dorsais dos indivíduos, foi necessário filtrar as imagens obtidas para atender a este escopo. No 
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intuito de montar uma base de dados consistente para o treinamento de uma rede neural de detecção 

de objetos, foram criadas regras para exclusão das imagens que não atendiam ao propósito. 

O primeiro critério consiste em excluir todas as imagens que não apresentem ao menos um 

indivíduo com a área de interesse visível, neste caso a dorsal. Portanto, foram excluídas imagens 

onde a dorsal encontrava-se oclusa (Figura 36a), indivíduos da ordem dos cetáceos cuja espécies 

não possuem nadadeira dorsal (Figura 36c), ou que não apresentem uma nadadeira relevante a 

ponto de retratar um formato distinguível pelo processo de treinamento da rede neural (Figura 36b). 

O segundo critério de exclusão foi criado para atender uma demanda das imagens obtidas 

através do SIMBA. Como a maioria das imagens obtidas são de animais mortos, foi necessário 

excluir as imagens cujo indivíduo apresentava-se em um estado de decomposição avançado (Figura 

37b), mesmo que a nadadeira dorsal estivesse visível. 

Já o terceiro e último critério de exclusão consiste na percepção visual empírica da pessoa 

que está selecionando as imagens, ao relacionar distância aparente entre a câmera e indivíduo na 

cena (Figura 37a). Ou seja, se a pessoa que estiver avaliando a imagem identificar que a 

representação do animal é pequena em relação ao tamanho total da imagem ou ao contexto da cena 

presenciada, esta imagem deve ser removida da base de dados. 

Figura 36: Exemplo de imagens que representam os critérios de exclusão definidos para 

o processo de seleção de imagens. 

 
Fonte: Adaptado de iNaturalist (2018). 
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Figura 37: Exemplo de imagens que representam o segundo e terceiro critérios de exclusão. 

 
Fonte: Adaptado de iNaturalist (2018); PMP-BS (2017). 

Nos casos de imagens que apresentam mais de um indivíduo por imagem, se ao menos um 

indivíduo passa por todos os critérios de exclusão o arquivo permanece na base de dados. 

Após a avaliação manual das imagens, um total de 1913 imagens foram selecionadas, sendo 

1489 do iNaturalist e 424 do SIMBA. A grande redução no número de imagens resultantes do 

SIMBA, decorreu-se pelo fato de que muitas imagens vinculadas aos registros representavam cenas 

das atividades de resgate dos animais, ou seja, em alguns casos não mostravam o animal ou 

apresentavam outras partes do corpo do indivíduo como, cabeça, cauda, etc. 

4.1.3  Delimitação dos objetos de interesse 

O treinamento dos modelos de redes neurais da API exige que seja informado a região da 

imagem que contém o objeto de interesse, ou seja, delimitar a região utilizando caixas 

delimitadoras, também conhecido pelo termo em inglês bounding box. 

Para esta tarefa utilizou-se o software LabelImg (2015), que dispõem de uma ferramenta 

para delimitar as regiões dos objetos nas imagens, além de possibilitar que estes sejam rotulados. 

Também é possível salvar arquivos contendo as marcações e rótulos no padrão Extensible Markup 

Language (XML) para o modelo de anotações do PASCAL VOC (EVERINGHAM et al., 2010). 

Inicialmente, a marcação das áreas de interesse focou no objeto alvo, ou seja, a dorsal. 

Posteriormente decidiu-se ampliar de forma exploratória o escopo do treinamento visando avaliar o 

desempenho da API, ao incluir alguns exemplos que representassem os animais em seu habitat. 
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Portanto, além de delimitar e rotular as regiões contendo as dorsais dos indivíduos nas 

imagens, foram criadas algumas caixas delimitadoras para identificar os indivíduos nas imagens, 

bem como foi definido três rótulos de identificação. Sendo estes: 

 Animal: para identificar indivíduos com a maior parcela do corpo visível, por exemplo, 

animais fora da água, fotografias subaquáticas ou de animais encalhados na areia (Figura 

38a); 

 Animal metade: animais cuja parte frontal e dorsal estão visíveis, e o restante do corpo 

encontra-se submerso ou ocluso na imagem (Figura 38b); 

 Animal parcial: animais parcialmente visíveis fora da água, na maioria dos casos trata-se 

de imagens que apresentam a dorsal e parte das costas dos indivíduos (Figura 38c). 

Figura 38: Exemplo de imagens rotuladas para o treinamento de detecção de objetos. Rótulos: 

(a) animal, (b) animal metade e (c) animal parcial. 

 
Fonte: Adaptado de iNaturalist (2018). 
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4.1.4  Modelo pré-treinado de rede neural 

A transferência de aprendizado em redes neurais é um recurso que pode melhorar o 

desempenho da generalização de um modelo para uma nova tarefa (YOSINSKI et al., 2014), e 

consequentemente auxilia em casos de recursos computacionais limitados, tal como contribui em 

situações restritivas de tempo de processamento e conhecimento técnico (GARCIA-GASULLA et 

al., 2017). 

Apoiando-se nessas premissas, fez-se uso de modelos pré-treinados durante a tarefa 

treinamento com a base de dados construída para este trabalho, ao invés de abordar o método de 

inicialização de pesos aleatórios para o treinamento das redes neurais. 

Os idealizadores da API de detecção de objetos descrevem em seu artigo (HUANG et al., 

2016), que o desenvolvimento desta focou em criar um framework que permita explorar os fatores 

de tempo, desempenho e acurácia durante a criação dos modelos pré-treinados, para que atuem em 

novas tarefas. 

A Tabela 4 apresenta os modelos de redes neurais pré-treinados disponibilizados pela API e 

as avaliações obtidas durante o treinamento destes com a base de dados COCO (LIN et al., 2014). 

Para este trabalho, definiu-se que o critério de seleção dos modelos a serem utilizados focaria nos 

que apresentassem o melhor resultado de avaliação mAP para cada tipo de meta-arquitetura de rede 

neural, portanto foram escolhidos os modelos 7, 15 e 20. 
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Tabela 4. Comparativo de acurácia e velocidade de processamento para as meta-arquiteturas de redes neurais da API de 

detecção de objetos, utilizando a base de dados COCO e caixas delimitadoras. 

Nº Nome do modelo Velocidade (ms) COCO mAP[^1] 

1 ssd_mobilenet_v1_coco 30 21 

2 ssd_mobilenet_v1_0.75_depth_coco 26 18 

3 ssd_mobilenet_v1_quantized_coco 29 18 

4 ssd_mobilenet_v1_0.75_depth_quantized_coco 29 16 

5 ssd_mobilenet_v1_ppn_coco 26 20 

6 ssd_mobilenet_v1_fpn_coco 56 32 

7 ssd_resnet_50_fpn_coco 76 35 

8 ssd_mobilenet_v2_coco 31 22 

9 ssd_mobilenet_v2_quantized_coco 29 22 

10 ssdlite_mobilenet_v2_coco 27 22 

11 ssd_inception_v2_coco 42 24 

12 faster_rcnn_inception_v2_coco 58 28 

13 faster_rcnn_resnet50_coco 89 30 

14 faster_rcnn_resnet50_lowproposals_coco 64 - 

15 rfcn_resnet101_coco 92 30 

16 faster_rcnn_resnet101_coco 106 32 

17 faster_rcnn_resnet101_lowproposals_coco 82 - 

18 faster_rcnn_inception_resnet_v2_atrous_coco 620 37 

19 faster_rcnn_inception_resnet_v2_atrous_lowpro

posals_coco 

241 - 

20 faster_rcnn_nas 1833 43 

21 faster_rcnn_nas_lowproposals_coco 540 - 

Fonte: Adaptado de Tensorflow Object Detection API (2017). 

Cada modelo dispõe dos arquivos binários com as respectivas redes neurais já treinadas, 

bem como um arquivo com as configurações utilizadas durante o treinamento. Os APÊNDICES A, 

B e C demonstram os tipos de arquivos de configuração disponibilizados junto aos modelos e 

utilizados para o treinamento do modelo de detecção proposto para este trabalho. 

Os parâmetros de configuração da rede neural podem ser alterados conforme a necessidade 

do problema. Porém, para o problema deste trabalho foi necessário alterar apenas algumas 

informações. O primeiro parâmetro a ser substituído é o número de classes de objetos a serem 

identificados, originalmente o número de classes existente na base de dados COCO é de 90, para 
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este trabalho será necessário identificar apenas 4 classes. O segundo parâmetro é o número de 

exemplos para validação do treinamento, que em nosso caso trata-se de 20% das imagens da base 

de dados, ou seja, 383 arquivos. Os demais parâmetros alterados restringem-se a localização em 

disco dos arquivos binários contendo a base de dados do trabalho, o modelo pré-treinado e os 

rótulos de identificação dos objetos. 

O único modelo que foi necessário uma alteração nos parâmetros originais foi o modelo de 

número 20 descrito na Tabela 4. Foi necessário o ajuste do parâmetro de configuração de 

redimensionamento da imagem, alterando-o de 1200x1200 para 1024x768, esta alteração buscou 

reduzir o tempo de processamento ao minimizar o tamanho da matriz de dados processados. Os 

demais modelos mantiveram os parâmetros de configurações originais definidos pelos autores da 

API. 

4.1.5  Treinamento 

O treinamento das redes neurais foi executado em uma máquina com processador de 32 

núcleos Intel Xeon CPU E5-2400 de 1.9GHz e 64GB de memória. O sistema operacional instalado 

é o Centos 7 com a versão 1.12 do Tensorflow. 

Por se tratar de uma máquina onde processador não foi construído apenas para 

processamento de dados matriciais, como é o caso da Graphics Processing Unit (GPU). O tempo de 

treinamento aumenta consideravelmente conforme pode ser observado na comparação de tempo de 

processamento da Tabela 5.  

E como o tempo para execução do treinamento e avaliação dos modelos era um fator crucial 

para obter os resultados desta etapa do trabalho, limitou-se a quantidade de combinações de 

treinamento para apenas os três modelos descritos na seção anterior. 

Tabela 5. Comparativo de tempo de processamento por passo em milissegundos. Primeiro os tempos obtidos pelos 

autores da API utilizando uma GPU, na sequência o tempo alcançado neste trabalho utilizando um CPU de 32 núcleos. 

Nome do modelo Tempo (ms) / passo GPU 

Nvidia GeForce GTX 

TITAN X   

Tempo (ms) / passo CPU 

Intel Xeon E5-2400 de 

1.9GHz 

ssd_resnet_50_fpn_coco 76 19000 

rfcn_resnet101_coco 92 5000 

faster_rcnn_nas 1833 27000 
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Por padrão, os arquivos de configuração das redes neurais estão programados para rodar em 

média 200 mil passos de treinamento para os modelos Faster R-CNN e R-FCN e 25 mil passos para 

o modelo SSD usando o banco de dados COCO. No entanto, devido ao longo tempo necessário para 

processar todas estas iterações, decidiu-se que o treinamento seria finalizado em mais ou menos 35 

mil passos para os modelos Faster R-CNN e R-FCN e 4500 passos para o modelo SSD. 

Levando em consideração que o tamanho de lotes de treinamento está configurado em um 

para os modelos Faster R-CNN e R-FCN, ou seja, cada passo do treinamento equivale ao 

processamento de apenas uma imagem por vez. E observando que a parcela de imagens destinadas 

ao treinamento é de 1530 arquivos, obtivemos mais ou menos 22 épocas de treinamento para cada 

modelo de rede neural, ou seja, cada imagem foi processada no mínimo 22 vezes.  

Já para o caso do modelo SSD o tamanho de lote é equivalente a 32 imagens por passo 

necessitando algo em torno de 47,81 passos para processar uma época de treinamento, considerando 

o número total de passos treinados equivale a aproximadamente 94 épocas treinadas. As 

informações referentes aos tempos de processamento e números referentes a quantidade de passos e 

épocas de treinamento estão descritas na Tabela 6. 

Tabela 6. Números relacionados ao processo de treinamento dos modelos pré-treinados escolhidos para este trabalho. 

Nome do modelo Tempo (ms) 

/ passo 

Tempo total de 

processamento (hrs) 

Nº total 

de passos 

Nº total de 

épocas 

ssd_resnet_50_fpn_coco 168000 210 4500 94,12 

rfcn_resnet101_coco 5000 48 34000 22,22 

faster_rcnn_nas 27000 258 34349 22,45 

4.2 SEGMENTAÇÃO 

A etapa de segmentação é executada em paralelo com a etapa de detecção de objetos e 

consiste em separar a região de interesse do restante da imagem. Ou seja, separar o objeto em 

primeiro plano (foreground) do fundo (background). Em seguida extrai-se o contorno remanescente 

do objeto segmentado. No texto a seguir será retratado todas as etapas do desenvolvimento que 

envolvem esta tarefa, também descreveremos as técnicas envolvidas justificando a escolha das 

mesmas. 
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4.2.1  Segmentação do objeto de interesse 

Conforme pode-se observar no Capítulo 3 alguns dos trabalhos relacionados fazem uso de 

métodos clássicos de segmentação (HALE, 2008; ANDREOTTI et al., 2017; HILLMAN et al., 

2002), outros autores mesclam estas técnicas em uma única aplicação (CARVAJAL-GÁMEZ et al., 

2017). Também houvena trabalhos que propuseram uma abordagem inovadora ao adotar o processo 

de segmentação utilizando CNN (WEIDEMAN et al., 2017; HUGHES; BURGHARDT, 2016). 

Contudo, estes métodos de segmentação não são capazes de descrever com precisão os limites que 

separam o foreground do background, deixando na maior parte dos casos um conteúdo residual nas 

regiões segmentadas. 

Portanto, neste trabalho adotamos o método de segmentação semântica, que permite 

classificar cada pixel da imagem como foreground e background (GUO et al., 2018). Contudo, é 

válido salientar que este método apresenta duas limitações. Primeiramente, ao contrário dos 

métodos clássicos que simplificam a lógica utilizando fórmulas matemáticas, a segmentação 

semântica exige o treinamento de uma rede neural contendo as classes de objetos que deseja 

segmentar. A segunda limitação deste tipo de técnica de segmentação, é a incapacidade de 

separação de objetos sobrepostos em instâncias distintas. 

A limitação referente a separação de objetos sobrepostos pode ser um problema nos casos de 

imagens que apresentem indivíduos aglomerados. No entanto, na maioria dos casos os 

pesquisadores que trabalham no controle populacional de cetáceos tendem a obter imagens 

individuais para cada animal da população, e também costumam separar antes as instâncias de cada 

indivíduo em imagens com múltiplos animais. Atitudes estas que viabilizam a adoção do método de 

segmentação semântica para este trabalho. 

Outro fator relevante para a adoção de tal método, fica a cargo da ferramenta escolhida para 

esta tarefa também rodar para o framework TensorFlow, trata-se da ferramenta DeepLab. Além de 

ser uma ferramenta desenvolvida para a mesma plataforma utilizada na tarefa de detecção de 

objetos, o DeepLab pode ser considerado atualmente como o estado da arte dos modelos de 

aprendizagem profunda para segmentação semântica (CHEN et al., 2018), como pode ser 

constatado através dos resultados obtidos para as  avalições da ferramenta no conjunto de dados de 

teste PASCAL VOC (2012) na Tabela 7 e Cityscapes (CORDTS et al., 2015) na Tabela 8. 
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Tabela 7. Comparação de resultados obtidos entre o DeepLab v3+ e os demais modelos de alta performance, na base de 

dados de teste do PASCAL VOC 2012. 

Método mIOU 

Deep Layer Cascade (LC) 82.7 

TuSimple 83.1 

Large Kernel Matters 83.6 

Multipath-RefineNet 84.2 

ResNet-38 MS COCO 84.9 

PSPNet 85.4 

IDW-CNN 86.3 

CASIA IVA SDN 86.6 

DIS 86.8 

DeepLabv3  85.7 

DeepLabv3-JFT 86.9 

DeepLabv3+ (Xception) 87.8 

DeepLabv3+ (Xception-JFT) 89.0 

Fonte: Adaptado de Chen et al. (2018). 

Tabela 8. Comparação de resultados obtidos entre o DeepLab v3+ e os demais modelos de alta performance, na base de 

dados de teste Cityscapes com anotações de contorno grosseiras. 

Método Anotação grosseira mIOU 

ResNet-38 x 80.6 

PSPNet x 81.2 

Mapillary x 82.0 

DeepLabv3 x 81.3 

DeepLabv3+ x 82.1 

Fonte: Adaptado de Chen et al. (2018). 

Assim como no caso da detecção de objetos, o DeepLab dispõe de modelo pré-treinado para 

o treinamento de modelos específicos através da transferência de aprendizado. Portanto também 

fez-se uso do recurso para esta tarefa. No entanto, Chen et al. (2018) também adotaram o método de 

treinamento sem um modelo pré-treinado em seu trabalho, produzindo resultados significativos ao 

utilizar a base de dados PASCAL VOC. Deste modo, exploramos a mesma metodologia com a base 

de dados construída para este trabalho, com intuito de avaliar a eficiência entre os dois métodos. 
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Para realizar o treinamento da rede neural do DeepLab é necessário fornecer as imagens no 

formato RGB e as respectivas máscaras com os objetos segmentados e classificados por valores em 

escala de cinza em arquivo de imagem do tipo PNG sem a camada alfa. Sendo o valor 0 para 

identificar o background e os valores maiores que este para identificar cada classe de objetos. 

Deste modo, foram anotados os segmentos dos indivíduos em 1359 arquivos do banco de 

dados das imagens provenientes do iNaturalist. O contorno foi feito utilizando a ferramenta VGG 

Image Annotator (VIA) (DUTTA; GUPTA; ZISSERMAN, 2016), que pode ser utilizada em 

navegadores para internet e permite delimitar os pontos de ligação do contorno dos objetos 

presentes na cena (Figura 39), as informações geradas são salvas no formato JavaScript Object 

Notation JSON. 

As anotações dos segmentos foram classificadas como animal, animal metade e animal 

parcial, descartou-se a anotação para dorsal pois considerou-se que a mesma se trata de um 

segmento de contorno aberto e por sua vez poderia influenciar negativamente no treinamento do 

modelo. Utilizando a aleatoriedade para seleção de arquivos, foram separadas 951 imagens (70%) 

para o treinamento e 408 (30%) para testes e avaliação do modelo. 

Figura 39: Interface do software VIA, para anotação de segmentos. 

 
Fonte: Compilação do autor. 
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Inicialmente o treinamento com o modelo pré-treinado foi executado na mesma máquina 

descrita na seção 4.1.5 , no entanto o tempo demandado para a tarefa e o alto consumo de recurso de 

memória fez repensar sobre a influência do tamanho dimensional e em disco das imagens durante o 

processo. Portanto, optou-se por redimensionar as imagens baseando-se na área ocupada pelos 

indivíduos na cena. 

Para redimensionar as imagens avaliou-se os pontos que delimitam a anotação de contorno 

da máscara para cada indivíduo na imagem, visando encontrar as extremidades e executar o recorte 

da mesma. Nos casos em que imagem apresenta vários indivíduos as áreas eram somadas para 

encontrar a região que abrange todas as anotações. Posteriormente era acrescentado uma margem 

extra de 30 pixels para cada lado da área delimitada e então efetuava-se o recorte da imagem. 

Este ajuste na dimensão da imagem, permitiu realizar o treinamento do modelo em uma 

máquina com GPU sem quebra de processo por falta de recurso de memória, reduzindo o tempo de 

processamento de 5 segundos por passo para 3.5 segundos por passo e o consumo de memória de 

18GB para 7GB. A máquina utilizada para o treinamento possui um processador Intel I7 com quatro 

núcleos e 16GB de memória e uma placa de vídeo GTX745 com 384 núcleos CUDA11 e 4GB de 

memória. 

O treinamento com modelo pré-treinado utilizou as configurações recomendadas na 

documentação da ferramenta, conforme descrito no APÊNDICE D. O processo rodou durante 

46875 passos e como o tamanho do lote estava definido em 1 foram executados algo em torno de 49 

ciclos de treinamento, sendo finalizado ao ser observado que o valor da função de perda não 

apresentava uma alteração significativa de aprendizagem do modelo, como se pode observar através 

do gráfico da Figura 40. 

                                                 

 

 

 
11 Abreviação para Compute Unified Device Architecture. 
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Figura 40: Gráfico da função de perda durante o treinamento com modelo pré-treinado. No eixo Y valor da 

função de perda, no eixo X número de passos do treinamento. 

 
Fonte: Compilação do autor. 

No caso do treinamento sem o modelo pré-treinado, como os idealizadores do DeepLab não 

descrevem em seu trabalho o tempo de treinamento nem o número de passos rodados, executou-se o 

treinamento da segmentação com as classes definidas por aproximadamente 366 mil passos, que 

para o nosso conjunto de dados contendo 951 imagens equivale a algo em torno de 385 ciclos de 

treinamento. O processo foi abordado ao observar que o modelo não apresentava uma melhora 

significativa na função de perda, conforme pode ser observado na Figura 41. 

Figura 41: Gráfico da função de perda durante o treinamento sem o modelo pré-treinado. No eixo Y valor da função de 

perda, no eixo X número de passos do treinamento. 

 
Fonte: Compilação do autor. 

Conforme será apresentado no capítulo 5 o treinamento sem o modelo pré-treinado não 

obteve resultados significativos que justifiquem o uso deste na etapa de extração da linha de 
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contorno da dorsal, portanto o mesmo foi desconsiderado para a definição do processo deste 

trabalho. 

4.3 EXTRAÇÃO DA LINHA DE CONTORNO DA DORSAL 

Apesar da segmentação semântica apresentar bons resultados ao gerar uma máscara do 

objeto de interesse, está máscara não fornece um bom detalhamento da dorsal. Por este motivo, fez-

se uso do método de refinamento abordado por Hughes e Burghardt (2016), trata-se dos algoritmos 

para resolver o problema de fosqueamento do termo inglês matting ou digital image matting.  

Em um trabalho preliminar dos autores (HUGHES; BURGHARDT, 2015), foram avaliados 

três algoritmos matting, o affinity matting e colour matting descrito por Zheng e Kambhamettu 

(2009) e GrabCut por Rother, Kolmogorov e Blake, (2004). Os testes foram efetuados em 120 

imagens de dorsais cujo contorno foi desenhado manualmente para comparar com os resultados 

obtidos pelos algoritmos (Tabela 9). Ao finalizar os testes os autores concluíram que o melhor 

algoritmo para o problema de reconstrução de contorno da dorsal, devido ao auto índice de precisão 

é o affinity matting. 

Tabela 9. Comparação de resultados obtidos para os algoritmos matting no trabalho de Hughes e Burghardt (2015). 

  Método Precisão (s) 

(pixels) 

Robustez 

(s=0.016)(pixels) 

Tempo de processamento 

(s=0.016)(segundos) 

Affinity matting 0.877 (0.009) 1.001 64.43 

Colour matting 1.970 (0.005) >2.454 >302.5 

GrabCut 1.366 (0.006) 1.9431 9.87 

Fonte: Adaptado de Hughes e Burghardt (2015). 

Os valores de precisão apresentados na segunda coluna da Tabela 9, definem a avaliação do 

menor erro produzido por um método ao comparar a linha desenhada a mão com o resultado obtido 

com algoritmo. Quanto menor o valor mais preciso é o algoritmo. Já a robustez apresentada na 

terceira coluna, é calculada como erro médio da localização em linhas de intersecção entre 

foreground e background com a maior espessura. 

Apesar do trabalho de Hughes e Burghardt (2015) demostrar que o algoritmo affinity 

matting obteve os melhores resultados, considerou-se a possibilidade de explorar outros algoritmos 

descritos na literatura (SINGH; JALAL, 2013), visando avaliar o desempenho dos mesmos para o 
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problema de refinamento da linha de contorno da dorsal dos animais da ordem dos cetáceos. Logo 

escolheu-se os seguintes algoritmos: 

1. Learning Based (ZHENG; KAMBHAMETTU, 2009); 

2. Bayesian (CHUANG et al., 2001); 

3. Knn (CHEN; LI; TANG, 2013); 

4. Closed form (LEVIN; LISCHINSKI; WEISS, 2007); 

5. Lkm (HE; SUN; TANG, 2010); e 

6. Ifm (AKSOY; AYDIN; POLLEFEYS, 2017). 

A escolha por estes algoritmos deu-se por tratar de implementações de código aberto em 

Python, linguagem de programação também utilizada para detecção de objetos e segmentação12. 

Também é válido ressaltar que o algoritmo 1 apesar de apresentar um nome diferente do que fora 

descrito por Hughes e Burghardt (2015) como affinity matting, trata-se do mesmo algoritmo que 

também foi implementado em um segundo trabalho de Hughes e Burghardt (2016), por este motivo 

o mesmo foi incluído a lista para comparar o seu desempenho perante aos demais algoritmos 

escolhidos. 

Antes de aplicar o refinamento de contorno com os algoritmos matting selecionados, é 

necessário criar uma máscara da área de interesse contextualizando as regiões de foreground, 

background e área de intersecção. Processo este conhecido como trimap. 

Para esta atividade, utiliza-se as caixas delimitadoras da dorsal encontradas durante a 

execução da etapa de detecção de objetos para recortar a região que representa o objeto na imagem 

resultante da tarefa de segmentação, conforme exemplificado na Figura 42. Porém antes de efetuar 

o recorte aplica-se uma margem extra de 10% em relação ao tamanho total da caixa delimitadora, 

para evitar o risco de perder alguma área da dorsal oclusa pela predição. 

                                                 

 

 

 
12 Os algoritmos foram desenvolvidos e disponibilizados por Marco Forte em seu repositório de códigos 

(https://github.com/MarcoForte/closed-form-matting) e Aksoy, Aydın e Pollefeys (2017) no repositório de código 

(https://github.com/99991/matting). 
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Figura 42: Recorte da dorsal para imagem original e o respectivo segmento, usando a 

caixa delimitadora obtida na etapa de detecção de objetos. 

 
Fonte: Compilação do autor. 

Após o recorte da imagem segmentada, extrai-se a linha de contorno do segmento (Figura 43 

(2)), que deve ser dilata e sobreposta ao segmento novamente para delimitar a região de intersecção. 

O resultado é a máscara trimap com as cores branco (foreground), preto (background) e a cor cinza 

para a região que será analisada pelos algoritmos matting (Figura 43 (3)). 

Considerando que em alguns segmentos das dorsais a linha extraída diverge da linha de 

interesse da dorsal, foi escolhido duas espessuras para a região de intersecção. As duas 

configurações de dilatação utilizam um kernel de 3x3 pixels com 2 e 3 interações, e conforme será 

apresentado no capítulo 5 passou por um processo de avaliação visual para definir a melhor 

configuração para o problema proposto. 

Figura 43: Passos para criação do trimap. (1) recorte do segmento na região da dorsal; (2) extração da linha de 

contorno do segmento; (3) criação da área de intersecção do trimap e sobreposição desta no semento da dorsal. 

 
Fonte: Compilação do autor. 
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De posse da máscara, aplica-se o mesmo recorte da região da dorsal feito para a imagem de 

segmentação na imagem original no formato RGB. Estas então são processadas pelos algoritmos 

matting. 

O resultado final do processo consiste em uma matriz de valores entre 0 e 1, semelhante uma 

camada alpha que descreve a intensidade dos pixels pertencentes ao conjunto de dados do 

foreground e background. A Figura 44 demonstra alguns exemplos de camada alpha resultante do 

processo de matting.  

Com intuito de tornar visível a representação da área de intersecção entre a dorsal e o 

restante da cena na camada alpha, os valores entre 0 e 1 foram substituídos por valores da escala de 

cores de tons de cinza (0-255). Sendo o foreground representado pela cor branca 255, background 

cor preta 0 e a intersecção das regiões com os demais valores. 

Figura 44: Exemplo dos resultados obtidos com os algoritmos matting. (a) Learning 

Based; (b) Bayesian; (c) Knn; (d) Closed form. 

 
Fonte: Compilação do autor. 
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Todavia, para extrair a linha de contorno da área de intersecção é necessário transformar a 

máscara resultante do processo de matting em uma representação binária. Ou seja, deve-se delimitar 

um valor de corte que permita representar exatamente a área que representa a dorsal de um 

indivíduo e área que contextualiza o background. Hughes e Burghardt (2015) adotaram um valor de 

corte da camada alpha em 0,5, onde todo valor < 0,5 recebe o valor 0 e os valores >= 0,5 o valor 1. 

Neste trabalho, adotamos a metodologia proposta pelos autores, além de propormos um método a 

nível exploratório, que consiste em calcular a média ponderada dos valores da camada alpha para 

definir o limiar de corte para a binarização. 

Após a binarização, a linha de contorno é extraída com o algoritmo de detecção de contornos 

Canny (1986). A Figura 45 apresenta alguns exemplos de resultados obtidos ao final da tarefa, 

sobrepondo a linha resultante da etapa de extração da linha de contorno da dorsal na imagem 

original. 

Figura 45: Exemplos dos resultados obtidos na etapa de extração da linha de 

contorno da dorsal. (a) Learning Based; (b) Bayesian; (c) Knn; (d) Closed form. 

 
Fonte: Compilação do autor. 
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5  RESULTADOS 

5.1.1  Avaliação da etapa de detecção de objetos 

A avaliação da etapa de detecção de objeto fez uso das 383 imagens da base de dados que 

foram separadas para testes e validação. As imagens contêm as anotações das caixas delimitadoras 

dos objetos de interesse, sendo 497 objetos do tipo dorsal, 131 animal, 67 animal parcial e 36 

animal metade. Totalizando 695 objetos nas 383 imagens.  Estes, por sua vez foram considerados 

como o padrão verdade para o processo de avaliação.  

Para produzir os resultados foi utilizado a funcionalidade de avaliação disponibilizado pela 

API de detecção de objetos. O método implementado pela API segue as regras definidas pela 

métrica de avaliação para detecção de objetos COCO (2015). Os resultados obtidos estão presentes 

na Tabela 10. 

Tabela 10. Resultados obtidos durante a avaliação da etapa de detecção de objetos. 

Modelo APIoU=.50:.95 APIoU=.50 APIoU=.75 APsmall APmedium APlarge AR 
max=100 

AR 
small 

AR 
medium 

AR 
large 

SSD 0.547 0.693 0.649 0.463 0.629 0.555 0.663 0.550 0.687 0.670 

R-FCN 0.497 0.689 0.630 0.360 0.556 0.506 0.590 0.475 0.608 0.599 

Faster 

R-CNN 

0.523 0.672 0.636 0.383 0.602 0.532 0.670 0.500 0.683 0.677 

Em um primeiro momento, ao examinar os resultados obtidos para cada modelo de rede 

neural escolhida, pode-se observar que o modelo de rede neural SSD supera os demais em quase 

todos os quesitos da avaliação, com exceção de ARmax=100 e ARlarge. 

Estes resultados representam um panorama global para as quatro classes de objetos, além de 

fornecer indícios suficientes de que o modelo de rede neural SSD é a melhor escolha para a etapa de 

detecção de objetos. No entanto, é preciso detalhar a avaliação entre as classes de objetos para 

investigar se o bom desempenho do modelo se repete para a classe de objeto da dorsal. 

Para obter resultados detalhados do desempenho dos modelos para cada objeto detectado, 

aplicou-se a avaliação utilizando a métrica disponibilizada em PASCAL VOC (2012). Que permite 

avaliar o valor AP para cada classe de objetos, bem como calcula a média ponderada para todos os 

resultados individuais de AP do processo de detecção. O limiar de corte para considerar se um 
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objeto detectado é um verdadeiro positivo em relação ao padrão verdade definido pela métrica é 

IoU=.50. Os resultados obtidos são apresentados na Tabela 11 e Figura 46. 

Tabela 11. Resultados obtidos para a avaliação da detecção de objetos com a métrica PASCAL VOC. 

Modelo mAP % AP % 

dorsal 

AP % 

animal 

AP % 

animal metade 

AP % 

animal parcial  

SSD 69,62 95,97 90,85 46,06 45,61 

R-FCN 68,86 95,62 93,08 42,73 44,00 

Faster R-CNN 67,47 94,78 88,66 39,81 46,62 

 

Figura 46: Gráfico com o número de acertos e erros encontrados durante a detecção de objetos, utilizado o IoU=0.5. 

 
Fonte: Compilação do autor. 

Observa-se que, novamente o modelo SSD destacou-se em relação aos demais modelos com 

o melhor resultado global mAP e também para a detecção de objetos do tipo dorsal e animal 

metade, porém foi superado pelo modelo R-FCN na classe de objetos animal e pelo modelo Faster 

R-CNN na classe animal parcial. 
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O gráfico da Figura 46 mostra a distribuição de acertos e erros para cada classe de objeto 

nos três modelos, no caso da dorsal o modelo SSD obteve o maior número de detecções positivas 

sendo apenas 44 destas consideradas falsas. Ao avaliar visualmente as detecções consideradas como 

falso positivo para este modelo, descobriu-se que apenas 18 eram efetivamente um erro conforme 

apresentado nos exemplos da Figura 47. Os 26 falsos positivos restantes eram dorsais que não 

foram inicialmente anotadas no padrão verdade por apresentarem as regiões de interesse 

parcialmente oclusas pela água ou por apresentarem uma região cuja quantidade de pixels é 

pequena (Figura 48), demostrando a eficiência do modelo para a tarefa proposta. 

Apesar dos bons resultados obtidos pelo modelo SSD, pode-se denotar que os demais 

modelos avaliados apresentaram resultados aproximadamente equilibrados, confirmando o que fora 

dito por Yosinski et al. (2014) sobre a melhora de um determinado modelo ao fazer uso da 

transferência de aprendizado. Entretanto, a divisão dos animais parcialmente oclusos entre as 

classes animal metade e animal parcial geraram um desempenho abaixo do esperado, indicando 

uma possível limitação dos modelos em diferenciar os dois tipos de objetos. 
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Figura 47: Exemplos de erros de detecção gerados pelo modelo SSD destacados em vermelho, em verde 

das detecções corretas para os objetos do escopo. (a) detectou o pneu como dorsal; (b) detectou o animal 

como dorsal; (c) detectou a nadadeira caudal como dorsal. 

 
Fonte: Compilação do autor. 
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Figura 48: Exemplos de detecção falso positivo gerados pelo modelo SSD destacados em amarelo, em verde 

as detecções corretas de dorsais. (a) detecção de dorsal parcialmente oclusa pela água; (b) detecção de dorsal 

não anotada no padrão verdade; (c) detecção de dorsal não anotado no padrão verdade devido ao seu 

tamanho e distância da câmera. 

 
Fonte: Compilação do autor. 

5.1.2  Avaliação da etapa de segmentação 

Para avaliar a segmentação das três classes de objetos nas 408 imagens separadas para testes 

foi utilizado a métrica disponibilizada pelo próprio DeepLab, que resulta na média de todos os 

valores obtidos no cálculo de intersecção sobre a união da área segmentada com a área delimitada 

como padrão verdade (mIoU).  

Para o treinamento da segmentação semântica utilizando o modelo pré-treinado, obteve-se o 

resultado mIoU de 70,3%, ficando apenas 11,8% abaixo do melhor resultado obtido pelos 

idealizadores do DeepLab ao utilizar uma base de dados de teste contendo 30 classes distintas e 

anotações grosseiras (CHEN et al., 2018). Já para o método de treinamento sem um modelo pré-

treinado, o resultado obtido pela avaliação foi um mIoU de 36,68%, ou seja, 33,62% abaixo do 

valor obtido com o modelo pré-treinado e distante dos 87,8% obtidos pelos autores citados. 
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Estes resultados expõem a fragilidade do treinamento sem um modelo pré-treinado para a 

tarefa de segmentação, bem como reforça a necessidade de abordar a transferência de aprendizado 

para obter um resultado consistente e sem a necessidade de longos períodos de treinamento. 

5.1.3  Análise visual da etapa de segmentação para criação do trimap 

Levando em consideração que a avaliação da segmentação se restringe a um único valor 

global que representa a eficiência do modelo, decidiu-se analisar visualmente os segmentos gerados 

durante os testes sobrepondo-os as imagens originais, com intuito de observar a cobertura do 

segmento nas dorsais dos indivíduos e avaliar o potencial uso da etapa de segmentação para criação 

do recurso de trimap. 

Das 408 imagens verificadas, 151 apresentaram algum tipo de inconsistência na região da 

dorsal que consequentemente influenciariam negativamente na criação do trimap.  Observou-se em 

algumas dorsais a região segmentada extrapolava os limites entre a dorsal e o fundo (Figura 49a), 

em outros momentos o segmento era inferior aos limites, ou seja, ocupava uma área menor que a 

dorsal (Figura 49b). 

Considerando o total de imagens inconsistentes, 81 apresentaram o excesso no segmento e 

54 imagens a falta deste, resultando em um total de 33% de imagens que merecem atenção ao 

escolher espessura da região de intersecção do trimap para a etapa de extração da linha de contorno 

da dorsal. As 16 imagens restantes que não entraram nestas duas classificações são de dorsais que 

não foram segmentadas (Figura 50), e consequentemente foram descartadas. 

Figura 49: Exemplos de inconsistências geradas pela segmentação. (a) segmento extrapola 

a área da dorsal; (b) segmento inferior aos limites da dorsal. 

 
Fonte: Compilação do autor. 
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Figura 50: Indivíduo cuja dorsal não foi anexada a região segmentada. 

 
Fonte: Compilação do autor. 

Tendo em vista que na seção 4.3 definiu-se duas espessuras para a área de intersecção do 

trimap, avaliou-se quais destas seria capaz de recrutar o máximo de imagens inconsistentes para o 

processo de matting. Sobrepomos as dorsais originais com as duas configurações de espessuras 

geradas a partir da linha de contorno dos respectivos segmentos (Figura 51). Os resultados obtidos 

nessa avaliação podem ser observados na Tabela 12. 

Figura 51: Exemplo de sobreposição com a área de intersecção. (a) cobertura do segmento 

que extrapola a área da dorsal; (b) cobertura do segmento inferior aos limites da dorsal. 

 
Fonte: Compilação do autor. 
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Tabela 12. Número de imagens inconsistentes recrutadas para o processo de matting, após a avaliação visual das 

configurações de espessura da área de intersecção do trimap. 

Configuração Nº recrutamento inconsistência 1  Nº recrutamento inconsistência 2 

kernel 3x3 2 interações 26 15 

kernel 3x3 3 interações 66 34 

Esta avaliação revelou que para a primeira configuração apenas 32% imagens com excesso 

de segmento poderiam ser recrutadas novamente, opostamente com a segunda configuração é 

possível recrutar 81% das imagens. Já no caso das imagens com segmento inferior a largura da 

dorsal, a primeira configuração recrutou apenas 28% das imagens e a segunda configuração 63%. 

Compreendendo que a segunda configuração permite recrutar um número maior de imagens 

inconsistentes para o processo de matting, optou-se por utilizar esta como padrão para a etapa de 

avaliação de extração da linha de contorno descrita na próxima seção. 

5.1.4  Avaliação da etapa de extração da linha de contorno da dorsal 

A avaliação de desempenho das combinações criadas para o refinamento e extração da linha 

de contorno da dorsal, consiste basicamente em comparar os resultados obtidos com um conjunto de 

dados de contornos das dorsais desenhados a mão. O desenho manual define o padrão verdade a ser 

comparado e deve representar o contorno fino da dorsal com apenas um pixel de espessura. 

Durante a criação da base de dados para o treinamento da segmentação foram desenhados os 

contornos grosseiros tanto da dorsal quanto do animal. No entanto, estes não puderam ser utilizados 

aqui devido a descrição imprecisa de alguns detalhes, como por exemplo, os entalhes das dorsais. 

Neste caso, decidiu-se que um novo conjunto de dados contendo os contornos finos necessários 

para a avaliação seria criado do zero. 

Como os trabalhos relacionados não descrevem qualquer tipo de método para seleção do 

conjunto de dados para avaliação, optou-se pela criação de um método que não envolve a seleção 

aleatória ou manual. Portanto, as imagens escolhidas para esta avaliação são provenientes da base 

de dados de teste da etapa de detecção de objetos. Como critério de seleção da dorsal, definiu-se 

que apenas as que alcançassem o valor superior ou igual de 75% IoU ao comparar caixa 

delimitadora da detecção de objetos e o padrão verdade, seriam escolhidas para produzir a linha de 
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contorno fino do padrão verdade. Das 383 imagens da base de testes, restaram 91 imagens com 98 

dorsais que atendiam aos critérios.  

Após a criação do contorno fino feito à mão, os mesmos arquivos contendo as dorsais 

selecionadas passaram pelo processo de segmentação e criação do trimap. Porém 10 destas geraram 

segmentos inconsistentes e por este motivo foram descartadas do conjunto de dados de avaliação. 

As dorsais restantes foram submetidas ao processo de matting e binarização com os limiares de 

corte 0,5 e média ponderada. A Figura 52, demonstra alguns exemplos de resultados gerados ao 

final do processo. 

Figura 52: Resultados da etapa de extração da linha de contorno da dorsal, a esquerda a 

linha gerada e a direita a linha sobreposta a imagem da dorsal. 

 
Fonte: Compilação do autor. 

A métrica escolhida para avaliar os algoritmos faz uso dos conceitos definidos pela medida 

F-Score e foi descrita por Martin, Fowlkes e Malik (2004), que posteriormente foi incorporada por 

Arbelaez et al. (2010) como método de avaliação de detecção de contorno e segmentação, no centro 

de pesquisas em computação visual de Berkeley Universidade da Califórnia. 
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Os resultados globais obtidos durante a avaliação dos algoritmos com os respectivos 

limiares de corte da binarização são apresentados na Tabela 13. Observa-se que quase todos os 

algoritmos possuem uma variação de F-Score de até 2%, à exceção é o Bayesian que apresentou 

uma diferença maior que 8% com relação aos demais. Entretanto, em um primeiro momento, os 

valores de precisão e revocação indicam que em quase todas as combinações existe uma relação 

estreita entre a capacidade de encontrar e selecionar os pixels relevantes para a construção da linha 

de contorno da dorsal. 

Tabela 13. Resultados globais para cada combinação de algoritmo e limiar de corte da binarização. 

Algoritmo matting Limiar de corte binarização Precisão Revocação F-score 

Ifm média 0,838 0,878 0,858 

Ifm 0,5 0,834 0,875 0,854 

Knn 0,5 0,822 0,883 0,851 

Knn média 0,822 0,882 0,851 

Lkm 0,5 0,827 0,869 0,848 

Closed form média 0,838 0,852 0,845 

Lkm média 0,822 0,869 0,845 

Learning based média 0,835 0,854 0,844 

Closed form 0,5 0,833 0,847 0,840 

Learning based 0,5 0,827 0,847 0,837 

Bayesian média 0,675 0,848 0,752 

Bayesian 0,5 0,675 0,846 0,751 

Todavia, conforme descrito anteriormente trata-se de uma avaliação global, por este motivo 

os resultados individuais de precisão e revocação para o conjunto de imagens avaliadas são 

detalhados nos dos gráficos de distribuição da Figura 53 e Figura 54. Ao confrontar os gráficos, 

percebe-se que o algoritmo Bayesian apresenta um comportamento atípico no crescimento da curva 

comparado aos demais, por este motivo algumas das discussões expostas a seguir podem 

desconsidera-lo durante a análise dos resultados. 
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Figura 53: Gráfico de curvas para precisão e revocação dos algoritmos matting com limiar de corte da binarização 0,5. 

 
Fonte: Compilação do autor. 
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Figura 54: Gráficos de curvas para precisão e revocação dos algoritmos matting com limiar de corte da binarização 

com a média ponderada. 

 
Fonte: Compilação do autor.  
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Ao analisar as informações dos gráficos, nota-se que o crescimento da linha segue um 

comportamento compartilhado em todos os resultados. Ou seja, observa-se que valores de precisão 

andam em paralelo ao crescimento dos valores de revocação. Indicando a presença de um nível de 

paralelismo na ocorrência de pixels considerados falsos positivos e falsos negativos gerados pelos 

algoritmos. 

Também é perceptível a presença de algumas exceções onde o valor de revocação tende a 

ser maior que a precisão. Nestes casos, ao analisar visualmente as imagens constatou-se que os 

algoritmos geraram linhas de contornos excedentes por retratar cenas de indivíduos parcialmente 

oclusos e com a dorsal próxima a água, característica esta que acarretou na criação de uma área de 

intersecção do trimap entre o corpo do indivíduo e a água, gerando uma região de limites não 

previstas durante a definição do padrão verdade. Este tipo de situação foi presenciado em 6 imagens 

do conjunto de dados da avaliação, na Figura 55 são apresentados alguns exemplos da ocorrência. 

Figura 55: Dorsais com linhas de contornos excedentes, a esquerda o trimap 

utilizado no processo de matting e a direita a linha resultante sobreposta a 

imagem original da dorsal. 

 
Fonte: Compilação do autor. 
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Outras 17 imagens apresentaram um comportamento semelhante, porém representam um 

distanciamento entre a precisão e revocação menor que os citados anteriormente. A verificação 

destas imagens demostrou que estas divergências estavam ligadas a conjuntos de pixels entre dorsal 

e o background que possuem a mesma intensidade de cores, esta inconsistência criou alguns 

segmentos indesejados durante a tarefa de binarização (Figura 56). E também foi mais recorrente 

nos algoritmos knn e lkm conforme pode ser observado nos respectivos gráficos. 

Figura 56: Ilhas de segmentos indesejados gerados durante a da tarefa de 

binarização. 

 
Fonte: Compilação do autor. 
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A leitura dos gráficos de precisão e revocação também nos levou aos seguintes 

questionamentos: 

1. Do conjunto de dados separados para esta avaliação, quantos resultaram em um valor de 

precisão abaixo do esperado? 

2. Quais fatores influenciaram na ocorrência dos valores de baixa precisão? 

Para responder ao primeiro questionamento foi necessário definir um valor de corte que 

permitisse delimitar quais resultados seriam considerados aceitáveis para esta avaliação. Com 

intuito de não ser muito rigoroso na escolha deste valor, definiu-se que seriam considerados 

imprecisos apenas os resultados onde precisão fosse inferior a 0,5. O resultado para este 

levantamento é apresentado na Tabela 14 e confirma que, com exceção do algoritmo Bayesian, os 

demais casos resultaram em um índice de imprecisão de no máximo 20%. Com destaque ao 

algoritmo Ifm que combinado ao limiar de corte da binarização usando a média ponderada obteve 

apenas 14% de resultados imprecisos. 

Tabela 14. Levantamento quantitativo das imagens com resultado de precisão (PR) inferior e superior à 0,5. 

Algoritmo matting Limiar de corte 

binarização 

PR < 0,5 PR >= 0,5 % PR < 0,5 % PR >= 0,5  

Bayesian média  30 58 34% 66% 

Bayesian 0,5 30 58 34% 66% 

Closed form média 13 75 15% 85% 

Closed form 0,5 18 70 20% 80% 

Ifm média 12 76 14% 86% 

Ifm 0,5 15 73 17% 83% 

Knn média 17 71 19% 81% 

Knn 0,5 17 71 19% 81% 

Learning based média 14 74 16% 84% 

Learning based 0,5 17 71 19% 81% 

Lkm média 15 73 17% 83% 

Lkm 0,5 15 73 17% 83% 

Os valores descritos Tabela 14 referem-se a um conjunto de 32 imagens que resultaram no 

índice de precisão inferior a 0,5, isso corresponde a 36% da base de dados construída para esta 

avaliação. Ao efetuar uma verificação visual nas imagens para descobrir os fatores que 
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influenciaram no baixo desempenho, apurou-se que 66% destas apresentaram algum tipo de 

deslocamento na linha de contorno resultante dos algoritmos matting, devido a correlação de alguns 

conjuntos de pixels que compartilhavam de tonalidades de cores aproximadas entre o background e 

a dorsal (Figura 57a e Figura 57b). Também se constatou que em 22% dos casos a imprecisão 

estava ligada a problemas de foco ou reflexo da luz (Figura 57c e Figura 57d), os 12% restantes 

correspondem a pequenas inconsistências relacionadas a área de cobertura do trimap (Figura 57e). 

Figura 57: Imagens com resultado de precisão inferior a 0,5, as linhas brancas correspondem ao padrão 

verdade e as amarelas os resultados da extração da linha de contorno. (a) e (b) pixels com pouco contraste 

foreground e background; (c) imagem tremida; (d) interferência do reflexo da luz; (e) erro na área de 

cobertura do trimap. 

 
Fonte: Compilação do autor. 

As análises dos resultados desta seção apontaram que quase todos os algoritmos matting 

utilizados durante a avaliação apresentaram um bom desempenho. Bem como demostrou através do 

levantamento quantitativo dos resultados imprecisos que a configuração de limiar de corte da 

binarização com a média ponderada tende a reduzir a imprecisão gerada em alguns algoritmos. A 

avaliação também revelou que a principal causa de inconsistências geradas pelo processo de 

matting estão ligadas ao entrelaçamento dos pixels do foreground e background, devido ao baixo 

contraste entre as regiões.  
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6  CONCLUSÃO 

Pode-se observar no decorrer do desenvolvimento do presente trabalho, que os conceitos da 

metodologia proposta por Hughes e Burghardt (2016) também se aplicam ao problema de pesquisa 

desta dissertação. Contudo, para atender o principal objetivo deste trabalho, algumas das etapas de 

construção do processo automatizado de extração das características de identificação da nadadeira 

dorsal, estes conceitos foram abordados por outra perspectiva. 

Ou seja, o uso de técnicas sofisticadas de visão computacional que se beneficiam da 

versatilidade dos modelos de redes neurais artificias, bem como a adoção de ferramentas que 

facilitaram no desenvolvimento de uma solução para o problema proposto. Proporcionou a 

construção de um processo automatizado para a etapa de extração das características de 

identificação das nadadeiras dorsais cetáceos, através do uso de técnicas de aprendizado de máquina 

consideradas no atual momento como estado da arte para este campo de pesquisa. 

Entre as diferentes técnicas de visão computacional adotadas durante a construção do 

processo automatizado, duas se destacam por serem implementações que não foram abordadas nos 

trabalhos relacionados, bem como permitiu atender os critérios do primeiro objetivo específico. 

Trata-se das técnicas de detecção de objetos e segmentação semântica, que foram incorporadas ao 

trabalho através da criação de modelos treinados a partir de redes neurais convolucionais, com um 

corpus específico de imagens digitais de cetáceos. Esta abordagem possibilitou implementar um 

novo método para detectar e extrair as dorsais de imagens digitais, além de fornecer o material 

necessário para a avaliação do método proposto. 

Conforme fora apresentado durante a análise dos resultados, todos os modelos de redes 

neurais utilizados na detecção de objetos obtiveram bons resultados, principalmente na detecção da 

dorsal onde a diferença na média de precisão entre os modelos foi pequena. Porém na avaliação 

global o modelo SSD se destacou aos demais, por este motivo foi o escolhido para integrar a versão 

final da ferramenta proposta. Também é importante salientar que ao explorar a detecção de outras 

classes de objetos, pode-se observar o potencial uso deste recurso, no desenvolvimento de uma 

ferramenta de busca de cetáceos em imagens digitais envolvendo grandes bases de dados 

ambientais. 
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No que diz respeito à etapa de segmentação o modelo atendeu as expectativas deste trabalho, 

porém devido a limitação que impossibilita separar objetos sobrepostos, faz-se necessário explorar a 

implementação de outros modelos, como por exemplo, a segmentação de instancias. 

Para atender ao segundo objetivo específico, incorporou-se a técnica de refinamento de linha 

de contorno adotada por Hughes e Burghardt (2016). Portanto, seis algoritmos matting descritos na 

literatura foram incluídos na etapa de extração da linha de contorno da dorsal. Em uma comparação 

rígida dos resultados obtidos para esta etapa, pode-se dizer que o algoritmo Ifm superou os demais, 

bem como apresentou um desempenho melhor que o algoritmo Learning Based adotado no trabalho 

de Hughes e Burghardt (2016).  Contudo, não se pode afirmar que este seria o melhor algoritmo 

para o problema proposto, dado a ocorrência de resultados equilibrados obtidos durante a avaliação, 

onde dos seis algoritmos avaliados apenas o Bayesian não se aplica ao contexto do problema. 

Esta pequena diferença apresentada pelos resultados, pode estar relacionada ao fato de que a 

avaliação foi realizada com um conjunto pequeno de dados de teste. Portanto recomenda-se que em 

trabalhos futuros a avaliação seja efetuada em um conjunto maior de dados. Por outro lado, a 

análise individual dos resultados para o mesmo conjunto de dados avaliados, demonstrou que 

independente das condições ambientais retratadas nas cenas, os algoritmos são ineficientes quando 

aplicados a imagens de baixa qualidade ou com pouco contraste entre o foreground e background. 

O terceiro e último objetivo específico consiste no desenvolvimento de uma ferramenta que 

disponibilize os dados da extração das linhas de contornos das dorsais para que possam ser 

utilizadas por qualquer software que seja capaz de utilizar esta informação na etapa de identificação 

individual. Este objetivo foi atendido ao longo da construção de cada etapa do processo de 

automatização do extrator de características de identificação individual dos cetáceos, e pode ser 

incorporado a qualquer método de identificação individual descrito nos trabalhos relacionados. 

Em relação as perguntas de pesquisa, esta dissertação demonstrou que foi possível 

implementar uma solução similar ao método proposto por Hughes e Burghardt (2016), em uma 

ferramenta de extração das características de identificação individual de cetáceos. Bem como 

permitiu evidenciar a eficiência das técnicas de visão computacional empregadas a imagens com 

condições ambientais adversas, através da avaliação quantitativa dos resultados obtidos em cada 

etapa do processo. 



115 

 

6.1 CONTRIBUIÇÕES 

A principal contribuição que este trabalho trouxe para a área de computação foi o 

desenvolvimento de um processo automatizado para extração das características de identificação 

das nadadeiras dorsais para cetáceos, utilizando técnicas de visão computacional que misturam 

algoritmos clássicos e de aprendizado de máquina para produção de recursos computacionais 

considerados como estado da arte pelos pesquisadores da área. 

Este trabalho também contribuiu indiretamente com a possibilidade de criação de novas 

ferramentas para gestão ambiental em trabalhos futuros. Ou seja, ao explorar a detecção de 

múltiplos objetos, observou-se o potencial desta técnica na produção de ferramentas que auxiliem 

no monitoramento ambiental de cetáceos. Um exemplo disto seria a busca e identificação de 

cetáceos em grandes bases de dados de imagens ambientais, e monitoramento de cetáceos em tempo 

real utilizando imagens provenientes de câmeras de vídeo instaladas em regiões costeiras, portos, 

etc. 

Outra contribuição deixada foi a criação de um corpus de imagens de cetáceos, baseado em 

repositórios de dados ambientais de extrema importância no que diz respeito ao monitoramento 

ambiental e controle populacional. Contendo as anotações de caixa delimitadora para as quatro 

classes descritas no desenvolvimento, além de um número considerável de segmentos dos 

indivíduos criados manualmente e que podem ser reaproveitados em trabalhos futuros. 

6.2 SUGESTÕES PARA TRABALHOS FUTUROS 

Ao finalizar este trabalho obteve-se o conhecimento de que algumas etapas do processo 

automatizado de extração das características de identificação das nadadeiras dorsais para animais da 

ordem dos cetáceos, poderiam ser melhorados ao efetuar alguns ajustes.  

Sendo estes: 

 Melhorar o desempenho dos modelos de detecção de objetos e segmentação, adicionado 

um número maior de exemplos durante o processo de treinamento; 

 Implementar um modelo de segmentação de instâncias para atender a limitação deixada 

pelo modelo de segmentação semântica; 
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 Incluir novas classes de objetos presenciados nas cenas ambientadas pelas imagens, 

visando reduzir os erros de detecção de objetos e as inconsistências geradas pela etapa 

de segmentação; e 

 Ampliar o conjunto de dados de teste e validação dos algoritmos empregados na etapa de 

extração da linha de contorno da dorsal. 

Para atender as recomendações listadas, sugere-se a ampliação do corpus de imagens de 

cetáceos efetuando uma nova consulta nas bases de dados citadas neste trabalho, ou buscando novas 

fontes de dados ambientais.  
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GLOSSÁRIO 

Alpha Alfa é um valor que define a opacidade de um pixel numa imagem. 

API API é um conjunto de rotinas e padrões de programação para acesso a um 

aplicativo de software ou plataforma. A sigla API refere-se ao termo em 

inglês "Application Programming Interface" que significa em tradução para 

o português "Interface de Programação de Aplicativos". 

Background Termo em inglês utilizado para descrever a região imagem ou contexto da 

cena não ocupado pelo foreground. 

Binarização  Classificação dos pixels de uma imagem em apenas duas cores, como por 

exemplo, preto e branco. 

Camada alpha Conjunto de valores que definem as intensidades de opacidades para os 

pixels de uma imagem. 

CMYK Abreviatura do sistema de cores subtrativas formado por Ciano (Cyan), 

Magenta (Magenta), Amarelo (Yellow) e Preto (Black (Key ou para não 

confusão com o B de "Blue" no padrão Hi-Fi com RGB)). 

Corpus Um conjunto de documentos ou dados sobre determinado assunto. 

Época Unidade de medida que descreve a quantidade de vezes que todos os dados 

de treinamento de uma rede neural artificial foram totalmente processados. 

Foreground Termo em inglês utilizado para descrever os objetos em primeiro plano de 

uma imagem ou cena. 

Framework  Trata-se de uma abstração que une códigos comuns entre vários projetos de 

software provendo uma funcionalidade genérica. Um framework pode 

atingir uma funcionalidade específica, por configuração, durante a 

programação de uma aplicação. 

GB Unidade de medida de informação que equivale a um bilhão de bytes. 

Lote Unidade de medida que define a quantidade de dados processados em um 

passo de treinamento de uma rede neural artificial. 

Matching Termo em inglês utilizado para descrever a análise de correspondência entre 

a imagem analisada e as imagens armazenadas em uma base de dados. 

Metadados Conjunto de dados descritivos das características físicas ou morfológicas de 

um grupo de indivíduos. 

Passo de treinamento Termo que define a execução de um determinado algoritmo uma ou mais 

vezes durante a atividade de treinamento de uma rede neural artificial. 
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Perseptrom O perceptron é um classificador binário análogo a um neurónio, que mapeia 

sua entrada x (um vetor de valor real) para um valor de saída f(x) (um valor 

binário simples) através de uma matriz. 

Peso Representação análoga das sinapses neurais em uma rede neural artificial. 

Pixel O menor componente de uma imagem digital. 

PNG Um formato de dados utilizado para imagens que permite comprimi-las sem 

perda de qualidade e retirar o fundo de imagens com o uso do canal alfa. 

Ranking Termo em inglês que define um processo de posicionamento de itens 

individuais conforme a sua relevância em uma lista de classificação. 

RGB  Abreviatura de um sistema de cores aditivas em que o Vermelho (Red), o 

Verde (Green) e o Azul (Blue) são combinados de várias formas de modo a 

reproduzir um largo espectro cromático. 

Threshold Definição utilizada para descrever o limiar de corte de uma função ou tarefa. 

top-1 Utilizado para descrever que um determinado elemento foi encontrado 

corretamente em uma lista de classificação. 

top-5 Utilizado para descrever que um determinado elemento foi encontrado entre 

as cinco posições iniciais de uma lista de classificação. 

Viés Utilizado como sinal de excitação do neurônio em uma rede neural artificial. 

XOR  Ou exclusivo ou disjunção exclusiva, conhecido geralmente por XOR ou 

por EXOR (também XOU ou EOU), é uma operação lógica entre dois 

operandos que resulta em um valor lógico verdadeiro se e somente se o 

número de operandos com valor verdadeiro for ímpar. 
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APÊNDICE A   – ARQUIVO DE CONFIGURAÇÃO DO MODELO 

PRÉ-TREINADO ssd_resnet_50_fpn_coco 

model { 
  ssd { 
    num_classes: 4 
    image_resizer { 
      fixed_shape_resizer { 
        height: 640 
        width: 640 
      } 
    } 
    feature_extractor { 
      type: "ssd_resnet50_v1_fpn" 
      depth_multiplier: 1.0 
      min_depth: 16 
      conv_hyperparams { 
        regularizer { 
          l2_regularizer { 
            weight: 0.000399999989895 
          } 
        } 
        initializer { 
          truncated_normal_initializer { 
            mean: 0.0 
            stddev: 0.0299999993294 
          } 
        } 
        activation: RELU_6 
        batch_norm { 
          decay: 0.996999979019 
          scale: true 
          epsilon: 0.0010000000475 
        } 
      } 
      override_base_feature_extractor_hyperparams: true 
    } 
    box_coder { 
      faster_rcnn_box_coder { 
        y_scale: 10.0 
        x_scale: 10.0 
        height_scale: 5.0 
        width_scale: 5.0 
      } 
    } 
    matcher { 
      argmax_matcher { 
        matched_threshold: 0.5 
        unmatched_threshold: 0.5 
        ignore_thresholds: false 
        negatives_lower_than_unmatched: true 
        force_match_for_each_row: true 
        use_matmul_gather: true 
      } 
    } 
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    similarity_calculator { 
      iou_similarity { 
      } 
    } 
    box_predictor { 
      weight_shared_convolutional_box_predictor { 
        conv_hyperparams { 
          regularizer { 
            l2_regularizer { 
              weight: 0.000399999989895 
            } 
          } 
          initializer { 
            random_normal_initializer { 
              mean: 0.0 
              stddev: 0.00999999977648 
            } 
          } 
          activation: RELU_6 
          batch_norm { 
            decay: 0.996999979019 
            scale: true 
            epsilon: 0.0010000000475 
          } 
        } 
        depth: 256 
        num_layers_before_predictor: 4 
        kernel_size: 3 
        class_prediction_bias_init: -4.59999990463 
      } 
    } 
    anchor_generator { 
      multiscale_anchor_generator { 
        min_level: 3 
        max_level: 7 
        anchor_scale: 4.0 
        aspect_ratios: 1.0 
        aspect_ratios: 2.0 
        aspect_ratios: 0.5 
        scales_per_octave: 2 
      } 
    } 
    post_processing { 
      batch_non_max_suppression { 
        score_threshold: 0.300000011921 
        iou_threshold: 0.600000023842 
        max_detections_per_class: 100 
        max_total_detections: 100 
      } 
      score_converter: SIGMOID 
    } 
    normalize_loss_by_num_matches: true 
    loss { 
      localization_loss { 
        weighted_smooth_l1 { 
        } 
      } 
      classification_loss { 



128 

 

        weighted_sigmoid_focal { 
          gamma: 2.0 
          alpha: 0.25 
        } 
      } 
      classification_weight: 1.0 
      localization_weight: 1.0 
    } 
    encode_background_as_zeros: true 
    normalize_loc_loss_by_codesize: true 
    inplace_batchnorm_update: true 
    freeze_batchnorm: false 
  } 
} 
train_config { 
  batch_size: 32 
  data_augmentation_options { 
    random_horizontal_flip { 
    } 
  } 
  data_augmentation_options { 
    random_crop_image { 
      min_object_covered: 0.0 
      min_aspect_ratio: 0.75 
      max_aspect_ratio: 3.0 
      min_area: 0.75 
      max_area: 1.0 
      overlap_thresh: 0.0 
    } 
  } 
  sync_replicas: true 
  optimizer { 
    momentum_optimizer { 
      learning_rate { 
        cosine_decay_learning_rate { 
          learning_rate_base: 0.0399999991059 
          total_steps: 4250 
          warmup_learning_rate: 0.0133330002427 
          warmup_steps: 2000 
        } 
 
      } 
      momentum_optimizer_value: 0.899999976158 
    } 
    use_moving_average: false 
  } 
  fine_tune_checkpoint: 
"path_to_models/ssd_resnet50_v1_fpn_shared_box_predictor_640x640_coco14_sync_2018_07_03/model.
ckpt" 
  from_detection_checkpoint: true 
  num_steps: 25000 
  startup_delay_steps: 0.0 
  replicas_to_aggregate: 8 
  max_number_of_boxes: 100 
  unpad_groundtruth_tensors: false 
} 
train_input_reader { 
  label_map_path: "path_to_labelmap/labelmap.pbtxt" 
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  tf_record_input_reader { 
    input_path: "path_to_train_data/train.record-?????-of-00010" 
  } 
} 
eval_config { 
  num_examples: 383 
  max_evals: 1 
  use_moving_averages: false 
  metrics_set:"coco_detection_metrics" 
  include_metrics_per_category: true 
  visualize_groundtruth_boxes: true 
  export_path: "path_to_evaluating/result.json" 
  keep_image_id_for_visualization_export: true, 
  visualization_export_dir: "path_to_visualization/visualization/" 
  save_graph: true 
  num_visualizations: 383 
} 
eval_input_reader { 
  label_map_path: "path_to_labelmap/labelmap.pbtxt" 
  shuffle: false 
  num_readers: 1 
  tf_record_input_reader { 
    input_path: "path_to_eval_data/val.record-?????-of-00005" 
  } 
} 
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APÊNDICE B   – ARQUIVO DE CONFIGURAÇÃO DO MODELO 

PRÉ-TREINADO rfcn_resnet101_coco 

model { 
  faster_rcnn { 
    num_classes: 4 
    image_resizer { 
      keep_aspect_ratio_resizer { 
        min_dimension: 600 
        max_dimension: 1024 
      } 
    } 
    feature_extractor { 
      type: "faster_rcnn_resnet101" 
      first_stage_features_stride: 16 
    } 
    first_stage_anchor_generator { 
      grid_anchor_generator { 
        height_stride: 16 
        width_stride: 16 
        scales: 0.25 
        scales: 0.5 
        scales: 1.0 
        scales: 2.0 
        aspect_ratios: 0.5 
        aspect_ratios: 1.0 
        aspect_ratios: 2.0 
      } 
    } 
    first_stage_box_predictor_conv_hyperparams { 
      op: CONV 
      regularizer { 
        l2_regularizer { 
          weight: 0.0 
        } 
      } 
      initializer { 
        truncated_normal_initializer { 
          stddev: 0.00999999977648 
        } 
      } 
    } 
    first_stage_nms_score_threshold: 0.0 
    first_stage_nms_iou_threshold: 0.699999988079 
    first_stage_max_proposals: 100 
    first_stage_localization_loss_weight: 2.0 
    first_stage_objectness_loss_weight: 1.0 
    second_stage_box_predictor { 
      rfcn_box_predictor { 
        conv_hyperparams { 
          op: CONV 
          regularizer { 
            l2_regularizer { 
              weight: 0.0 
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            } 
          } 
          initializer { 
            truncated_normal_initializer { 
              stddev: 0.00999999977648 
            } 
          } 
        } 
        num_spatial_bins_height: 3 
        num_spatial_bins_width: 3 
        crop_height: 18 
        crop_width: 18 
      } 
    } 
    second_stage_post_processing { 
      batch_non_max_suppression { 
        score_threshold: 0.300000011921 
        iou_threshold: 0.600000023842 
        max_detections_per_class: 100 
        max_total_detections: 100 
      } 
      score_converter: SOFTMAX 
    } 
    second_stage_localization_loss_weight: 2.0 
    second_stage_classification_loss_weight: 1.0 
  } 
} 
train_config { 
  batch_size: 1 
  data_augmentation_options { 
    random_horizontal_flip { 
    } 
  } 
  optimizer { 
    momentum_optimizer { 
      learning_rate { 
        manual_step_learning_rate { 
          initial_learning_rate: 0.000300000014249 
          schedule { 
            step: 1 
            learning_rate: 0.000300000014249 
          } 
          schedule { 
            step: 900000 
            learning_rate: 2.99999992421e-05 
          } 
          schedule { 
            step: 1200000 
            learning_rate: 3.00000010611e-06 
          } 
        } 
      } 
      momentum_optimizer_value: 0.899999976158 
    } 
    use_moving_average: false 
  } 
  gradient_clipping_by_norm: 10.0 
  fine_tune_checkpoint: "path_to_models/rfcn_resnet101_coco_2018_01_28/model.ckpt" 
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  from_detection_checkpoint: true 
  num_steps: 34000 
} 
train_input_reader { 
  label_map_path: "path_to_labelmap/labelmap.pbtxt" 
  tf_record_input_reader { 
    input_path: "path_to_train_data/train.record-?????-of-00010" 
  } 
} 
eval_config { 
  num_examples: 383 
  max_evals: 1 
  use_moving_averages: false 
  metrics_set:"coco_detection_metrics" 
  include_metrics_per_category: true 
  visualize_groundtruth_boxes: true, 
  export_path: "path_to_evaluating/result.json" 
  keep_image_id_for_visualization_export: true, 
  visualization_export_dir: "path_to_visualization/" 
  save_graph: true 
  num_visualizations: 383 
} 
eval_input_reader { 
  label_map_path: "path_to_labelmap/labelmap.pbtxt" 
  shuffle: false 
  num_readers: 1 
  tf_record_input_reader { 
    input_path: "path_to_eval_data/val.record-?????-of-00005" 
  } 
} 
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APÊNDICE C   – ARQUIVO DE CONFIGURAÇÃO DO MODELO 

PRÉ-TREINADO faster_rcnn_nas 

model { 
  faster_rcnn { 
    num_classes: 4 
    image_resizer { 
      fixed_shape_resizer { 
        height: 768 
        width: 1024 
      } 
    } 
    feature_extractor { 
      type: "faster_rcnn_nas" 
    } 
    first_stage_anchor_generator { 
      grid_anchor_generator { 
        height_stride: 16 
        width_stride: 16 
        scales: 0.25 
        scales: 0.5 
        scales: 1.0 
        scales: 2.0 
        aspect_ratios: 0.5 
        aspect_ratios: 1.0 
        aspect_ratios: 2.0 
      } 
    } 
    first_stage_box_predictor_conv_hyperparams { 
      op: CONV 
      regularizer { 
        l2_regularizer { 
          weight: 0.0 
        } 
      } 
      initializer { 
        truncated_normal_initializer { 
          stddev: 0.00999999977648 
        } 
      } 
    } 
    first_stage_nms_score_threshold: 0.0 
    first_stage_nms_iou_threshold: 0.699999988079 
    first_stage_max_proposals: 300 
    first_stage_localization_loss_weight: 2.0 
    first_stage_objectness_loss_weight: 1.0 
    initial_crop_size: 17 
    maxpool_kernel_size: 1 
    maxpool_stride: 1 
    second_stage_box_predictor { 
      mask_rcnn_box_predictor { 
        fc_hyperparams { 
          op: FC 
          regularizer { 
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            l2_regularizer { 
              weight: 0.0 
            } 
          } 
          initializer { 
            variance_scaling_initializer { 
              factor: 1.0 
              uniform: true 
              mode: FAN_AVG 
            } 
          } 
        } 
        use_dropout: false 
        dropout_keep_probability: 1.0 
      } 
    } 
    second_stage_post_processing { 
      batch_non_max_suppression { 
        score_threshold: 0.300000011921 
        iou_threshold: 0.600000023842 
        max_detections_per_class: 100 
        max_total_detections: 100 
      } 
      score_converter: SOFTMAX 
    } 
    second_stage_localization_loss_weight: 2.0 
    second_stage_classification_loss_weight: 1.0 
  } 
} 
train_config { 
  batch_size: 1 
  data_augmentation_options { 
    random_horizontal_flip { 
    } 
  } 
  optimizer { 
    momentum_optimizer { 
      learning_rate { 
        manual_step_learning_rate { 
          initial_learning_rate: 0.000300000014249 
          schedule { 
            step: 1 
            learning_rate: 0.000300000014249 
          } 
          schedule { 
            step: 900000 
            learning_rate: 2.99999992421e-05 
          } 
          schedule { 
            step: 1200000 
            learning_rate: 3.00000010611e-06 
          } 
        } 
      } 
      momentum_optimizer_value: 0.899999976158 
    } 
    use_moving_average: false 
  } 
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  gradient_clipping_by_norm: 10.0 
  fine_tune_checkpoint: "path_to_models/faster_rcnn_nas_coco_2018_01_28/model.ckpt" 
  from_detection_checkpoint: true 
  num_steps: 200000 
} 
train_input_reader { 
  label_map_path: "path_to_labelmap/labelmap.pbtxt" 
  tf_record_input_reader { 
    input_path: "path_to_train_data/train.record-?????-of-00010" 
  } 
} 
eval_config { 
  num_examples: 383 
  max_evals: 1 
  use_moving_averages: false 
  metrics_set:"coco_detection_metrics" 
  include_metrics_per_category: true 
  visualize_groundtruth_boxes: true, 
  export_path: "path_to_evaluating/result.json" 
  keep_image_id_for_visualization_export: true, 
  visualization_export_dir: "path_to_visualization/" 
  save_graph: true 
  num_visualizations: 383 
} 
eval_input_reader { 
  label_map_path: "path_to_labelmap/labelmap.pbtxt" 
  shuffle: false 
  num_readers: 1 
  tf_record_input_reader { 
    input_path: "path_to_eval_data/val.record-?????-of-00005" 
  } 
} 
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APÊNDICE D   – CONFIGURAÇÕES PARA O TREINAMENTO 

DO DEEPLAB 

python deeplab/train.py      
--logtostderr      
--training_number_of_steps=50000      
--train_split="train"      
--model_variant="xception_65"      
--atrous_rates=6      
--atrous_rates=12      
--atrous_rates=18      
--output_stride=16      
--decoder_output_stride=4      
--train_crop_size=513      
--train_crop_size=513      
--train_batch_size=1      
--dataset="dolphin"      
--tf_initial_checkpoint="path_to_initial_trained_model/deeplabv3_pascal_train_aug/model.ckpt"      
--train_logdir="path_to_training_log"      
--dataset_dir="path_to_training_dataset"  
--fine_tune_batch_norm=False 

 


