A radiciacao de complexos na forma trigonométrica

A radiciacao de complexos na forma trigonométrica também ficam facilitadas
com a utilizacdo das formulas de Moivre.

Vejamos como se procede a radiciacao desses numeros:

Considere um nimero complexo qualquer z = a + bi. A forma trigonométrica
de z é:

z = |z|{cos@ +i - send)
As raizes de indice n de z sdo dadas pela segunda formula de Moivre:
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Exemplo 1. Determine as raizes quadradas de 2i.

Solugao: Primeiro devemos escrever o nimero complexo na forma
trigonométrica.
Todo do nimero complexo é da forma z = a + bi. Assim, temos que:
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lz] =02 +22=+4=2

Sabemos também que:
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Com os valores de seno e cosseno podemos concluir que:
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Assim, a forma trigonométrica de z = 2i é:

z=2 [cnsg+ i 'E'E'?lg)

Agora, vamos calcular as raizes quadradas de z utilizando a férmula de Moivre.
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Como queremos as raizes quadradas de z, obteremos duas raizes distintas zo e
Z1.

Para k = 0, teremos
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Para k = 1, teremos:
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Exemplo 2. Obtenha as raizes clUbicas de z = 1«(cosm + iesenm)

Solucao: Como o niumero complexo ja esta na forma trigonométrica, basta
utilizar a formula de Moivre. Pelo enunciado temos que g = e |z| = 1. Assim,
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Teremos trés raizes distintas, zo, z1 e z2.
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Ouzi=-1,poiscosn=-1esenmn=0.
Para k = 2
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