Funcéo
IDEIA INTUITIVA DE FUNCAO

O conceito de funcéo é um dos mais importantes da matematica. Ele estd sempre presente na relacao
entre duas grandezas variaveis. Assim sao exemplos de funcdes:

- O valor a ser pago numa corrida de taxi é funcdo do espaco percorrido;

- A area de um quadrado é funcéo da medida do seu lado;

- Em um termdmetro, a temperatura é dada em funcdo do comprimento da coluna de mercdrio.
Definicao

Sejam A e B conjuntos diferentes do vazio. Uma relacéo f de A em B é funcéo se, e somente se, todo
elemento de A estiver associado através de f a um Unico elemento de B.

Usaremos a notagao f : A — B para indicar que f € fungdo de A em B.

A funcéo determina uma relagdo entre os elementos de dois conjuntos. Podemos defini-la
utilizando uma lei de formacgé&o, em que, para cada valor de x, temos um valor de f(x). Chamamos
x de dominio e f(x) ou y de imagem da funcéo.
A formalizacdo matemética para a definicdo de fungdo é dada por: Seja X um conjunto com
elementos de x e Y um conjunto dos elementos de y, temos que:
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Assim sendo, cada elemento do conjunto x é levado a um Unico elemento do conjunto y. Essa
ocorréncia € determinada por uma lei de formag&o.
A partir dessa definicdo, é possivel constatar que x é a variavel independente e que y é a variavel
dependente. Isso porque, em toda funcdo, para encontrar o valor de y, devemos ter inicialmente o
valor de x.
Tipos de funcoes
As fungbes podem ser classificadas em trés tipos, a saber:

Funcéo injetora ou injetiva
Nessa funcéo, cada elemento do dominio (x) associa-se a um Unico elemento da imagem f(x).
Todavia, podem existir elementos do contradominio que ndo sdo imagem. Quando isso acontece,
dizemos que o contradominio e imagem sé&o diferentes. Veja um exemplo:

Conjunto dos elementos do dominio da fun¢éo: D(f) = {-1,5, +2, +8}

Conjunto dos elementos da imagem da funcéo: Im(f) = {A, C, D}

Conjunto dos elementos do contradominio da fungéo: CD(f) = {A, B, C, D}
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Funcéo Sobrejetora ou sobrejetiva
Na funcao sobrejetiva, todos os elementos do dominio possue um elemento na imagem. Pode
acontecer de dois elementos do dominio possuirem a mesma imagem. Nesse caso, imagem e
contradominio possuem a mesma quantidade de elementos.

Conjunto dos elementos do dominio da fungéo: D(f) = {-10, 2, 8, 25}

Conjunto dos elementos da imagem da funcéo: Im (f) = {A, B, C}

Conjunto dos elementos do contradominio da fungéo: CD (f) = {A, B, C}

Funcéo bijetora ou bijetiva
Essa fungdo é ao mesmo tempo injetora e sobrejetora, pois, cada elemento de x relaciona-se a
um Unico elemento de f(x). Nessa funcao, ndo acontece de dois numeros distintos possuirem a
mesma imagem, e o contradominio e a imagem possuem a mesma quantidade de elementos.

Conjunto dos elementos do dominio da funcdo: D(f) = {12, 0,1, 5}
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Conjunto dos elementos da imagem da funcéo: Im (f) = {A, B, C, D}
Conjunto dos elementos do contradominio da fun¢éo: CD (f) = {A, B, C, D}

f(x)
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As funcdes podem ser representadas graficamente. Para que isso seja feito, utilizamos duas
coordenadas, que séo x e y. O plano desenhado é bidimensional. A coordenada x é chamada de
abscissa e a y, de ordenada. Juntas em funcdes, elas formam leis de formacgdo. Veja a imagem do
gréficodo eixo x e y:
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1 - Funcao constante
Na funcéo constante, todo valor do dominio (x) tem a mesma imagem (y).
Férmula geral da funcéo constante:
f(x)=c
x = Dominio
f(x) = Imagem
C = constante, que pode ser qualquer nimero do conjunto dos reais.
Exemplo de gréafico da funcéo constante: f(x) = 2
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2 — Funcao Par


http://www.brasilescola.com/matematica/numeros-reais.htm
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A funcdo par € simétrica em relacdo ao eixo vertical, ou seja, a ordenada y. Entenda simetria
como sendo uma figura/grafico que, ao dividi-la em partes iguais e sobrepb-las, as partes
coincidem-se perfeitamente.

Férmula geral da funcéo par:
f(x) = (- x)
X = dominio
f(x) = imagem
- X = simétrico do dominio

Exemplo de gréafico da funcéo par: f(x) = x?
44

3 — Funcéo impar
A funcédo impar é simétrica (figura/grafico que, ao dividi-la em partes iguais e sobrepé-las, as
partes coincidem-se perfeitamente) em relacdo ao eixo horizontal, ou seja, a abscissa x.
Férmula geral da funcé@o impar
f(— x) = =f(x)
— X =dominio
f(— x) = imagem
- f(X) = simétrico da imagem
Exemplo de grafico da funcao impar: f(x) = 3x


http://www.brasilescola.com/matematica/funcao-par-funcao-impar.htm
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4 — Funcéao afim ou polinomial do primeiro grau
Para saber se uma funcéo é polinomial do primeiro grau, devemos observar 0 maior grau da
variavel x (termo desconhecido), que sempre deve ser igual a 1. Nessa funcéo, o gréfico é uma

fx)=ax+b

Foérmula geral da funcéo afim ou polinomial do primeiro grau

X = dominio

reta. Além disso, ela possui: dominio X, imagem f(x) e coeficientes a e b.

f(x) = imagem
a = coeficiente

b = coeficiente

b
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Exemplo de grafico da funcéo polinomial do primeiro grau: f(x) = 4x + 1
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5 — Funcéo Linear

particular, pois b sempre sera igual a zero.

Foérmula geral da funcéo linear

f(x) = ax

A funcéo linear tem sua origem na funcéo do primeiro grau (f(x) = ax + b). Trata-se de um caso


http://www.brasilescola.com/matematica/funcao-de-primeiro-grau.htm
http://www.brasilescola.com/matematica/funcao-linear.htm

X = dominio
f(x) = imagem
a = coeficiente

Exemplo de grafico da funcao linear: f(x) = -x/3
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A funcéo polinomial do primeiro grau sera crescente quando o coeficiente a for diferente de zero e

6 — Funcéo crescente
maior que um (a > 1).

Foérmula geral da funcéo crescente

fx)=+ax+b

X = dominio

f(x) = imagem
a = coeficiente sempre positivo
b = coeficiente

Exemplo de gréafico da funcéo crescente: f(x) = 5x
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7 — Funcédo decrescente


http://www.brasilescola.com/matematica/funcao-crescente-funcao-decrescente.htm

negativo.
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Na funcdo decrescente, o coeficiente a da funcdo do primeiro grau (f(x) = ax + b) é sempre

Formula geral da funcéo decrescente
fx)=-ax+b
x= dominio/ incégnita
f(x) = imagem
- a = coeficiente sempre negativo

b = coeficiente
Exemplo de gréafico da funcéo decrescente: f(x) = - 5x
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) Grafico de uma funcéo do 1° grau.
FUNCAO COMPOSTA E FUNCAO INVERSA — RESUMO TEORICO E EXERCICIOS




Funcdo Composta

Definicdo: Sejam as funcbes f e g tais que: gc A — Be f: B — C. Definimos a composta de
f com g e denotamos por fo.g (Ié-se f “bola” g), a funcdo dada por (f.g)(x) = f(g(x)). A funcdo h(x) =
f(g(x)) é entdo denominada funcdo composta de f com g, aplicada em x.
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Exemplos:

1) Dadas as fungdes f(x) =2x — 3 e g(x) = x2 + 2, calcular:

a) fog(x) = f(g(x)) = fOR+2) =2(@+2) —3=2x2+ 4 —3 = 2x2 + 1.

b) gof(X) = g(F(X)) = g(2x = 3) = (2X — B)2 + 2 = 4x2 — 12X + 9 + 2 = = 4x2 — 12X + 11.
¢) fof(x) = F(f(x)) = f(2x - 3) =2(2x—3) =3 =4x -6 —3 = 4x — 0.

Funcdao Inversa

Dada a fungdo f: A em B, chama-se fungéo inversa de f, indicada por f *(x), a fungéo ft:
B em A que associa cada y de B ao elemento x de A, tal que y = f(x).

OBS.:
1) Apenas as fung¢des bijetoras admitem funcéo inversa.

2) Regra Prética para obtencdo de uma Fungéo Inversa:
*Trocar f(x) ou a fungao que esta representada pory.
*Trocar x pory e y por X.

*Isolar y para representa-lo como fungéo de x.

*Trocar y por f * (x).

Exemplo:

1) Obter a fun¢éo inversa da fungao f(x) = 3x — 2.

f(x)=3x-2
y=3x-2
x=3y-2
Jy=x+2
y=(X+2)/3
Frx)=(x+2)/3

Exercicios:

2X+3

1 - Dadaafuncdo f(x)=
¢do f(x) VT

. determine o valor de f 1(%) .



Solucédo. Calculando a inversa de f(x), temos:

2
i) Trocando “y” por “x”: |X = e
3y-5
ii) Expressando y = F1(x): [x = zzf — 3Xy—5X =2y +3=>3Xy—2y =5Xx+3=>y = 2)):+2

317 31

OBS: 3xy — 2y = y(3x — 2y). Fatoracéo por evidéncia.
5(2)+3 10 , 10+21
2\ \7 7 7 o

e g _ _ 31
) {2, 6, 61 71735 8
7 7

iii) Calculando f‘l[éj .

7

2 — (Centec-BA) Considerem-se as fungdes f(x)=x+1e g(x)=x*. Determine a soma das raizes da
equacdo f(g(x))+g(f(x))-14=0.

Solucéo. Calculando as compostas, temos:

DI f(g(x) = f(x*)=x*+1 i) [g(f(x)) =g(x+1) = (x+1)> =x* +2x+1

Substituindo na equacéo e encontrando a soma das raizes, temos:

f(g())+9(f(X)-14=0= x* +1+ x> +2x+1-14=0= 2x* +2x-12=0 — (+2)

x2+x—6=0:>(x+3)(x—2)=0:>{§i;3:>8 —(-3)+(2) =1

3 —Dada as fungdes f(x)=5x e g(x)=3x+2, calcule:
a) f(9(3) b) g(f(-1) c) f(g(0))+g(f(®) d) g7 () + f (%)

Solucéo. Aplicando em cada caso a composta ou inversa, temos:
a)[f(g(3)) = f(3.(3)+2) = f(11) =5(11) = 55|

b) [o(fF (1)) = g5.(-1) = g(5) =3.(5)+2=15+2= 13

o) [f(@@)+g(fM) = FB.(0) +2) + g6.M) = (2)+ g(5) =5.(2) + 3.(5) + 2=10+17 = 27|

X =3y +2 — (troca) X =5y — (troca)

2 f(x)=5x=

d =3Xx+2 _
PO ER gy 2y X2 ri0=y=~

X—2 X b5x-10+3x 8x-10
Logo, gt (x)+ f (x) = I _
9o, |9 (x) (%) = = - T

4 — Dada a fungéo f(x)=x3+1, determine sua inversa.

x =y +1— (troca)

fr(x)=y=%¥x-1

5 — O gréafico de uma funcio de 1°. Grau passa pelos pontos (-3, 4) e (3, 0). Determine f(2).

Solucéo. Aplicando 0 mesmo procedimento, temos: | f (x) = x° +1:>{
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Solugéo. O gréafico é uma reta. Com os dois pontos indicados, podemos encontrar a equacao da

forma y = ax + b, onde “a” é o coeficiente angular e “b” o linear.

I){P=(—3,4) a= 4-0 _ 4 _ 2

—>a= ===
Q=(3,0) —3-3 -6 3

f(x)=ax+b= f(x):—gx+b

.. 3 2

i) 5 = f(x)=—§x+2
Ponto:Q —» f(3)=0:>0:—§(3)+b:>b=2

x=—zy+2—>(troca)
2
f(x):—§x+2:>

Calculando a inversa, temos: 3Xx==2y+6=f'(X)=y= =SX+H0

2

-3.(2)+6 -6+6
2 0

Logo, f *(2) = =0

6 — Sendo f(x)=x2—2, determine o valor de x paraque f(x)= f(x+1).

Solugéo. Encontrando f(x + 1) e resolvendo a equacéo pedida, temos:

f(x)=x*-2 ) ) 1
> X -2=X"+2X+1-2=2Xx+1=0=>x=——
f(x+1) =(x+1)*-2=x*+2x+1-2 2

OBS: Se f(f(x)) = x, entdo significa que a inversa de f(x) é ela mesma: f(x) = f1(x).

7—Se f(x):X—jLi,com (x#1), determine f(f(x)).
X_

Solug&o. E pedido a aplicacio da funcéo sobre si mesma.

X+1+1 X+1+x-1  2x
_x+1 X+ _x-1 7 x-1  _x-1_ 2x x-1_
f(x)= —:>f(f()) f( J Lﬂ_l_x+1—x+1_ 2 x-1 2 =X
x-1 x-1 x-1

8—-Se f(x)=3x+1 e fog(x)=2x-1, determine g(Xx).
Solugéo. Utilizando a lei de formagéo de f(x) para g(x), temos: f(g(x)) = 3.(9(x)) + 1. Mas a

composta ja foi informada. Logo podemos igualar as compostas:

{f(g(x))=3-9(x)+1 _2x-2

£(g(%) = 2% -1 =309(X)+1=2x-1=3.g(x) =2x-1-1=g(x) = 3

9—Sejam f(x)=2x-1e g(x)=x+1.Entdo g(f(2)).
Solucéo. Calculando as compostas, temos:

)f(2)=2(2)-1=4-1=3
i) g(f(2) = 9(3) =3+ 1=4

10 —Seja f(x)= ? , determine o valor de x, sabendo que f*(x) :%
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Solugéo. Calculando a inversa pelo procedimento j& utilizado, temos:

X= 2y-3 — (troca)
2X—3 o
f(x)= = . Igualando ao valor indicado e resolvendo a
5 . 5x+3
5x=2y-3=f " (x)=y= >
5x+3
fH(x)=—"—-—
. () 2 5x+3 7 4
equacao, temos: = =—=5X+3=7T=>5x=4=X=—
4 7 2 5
f~(x) =2

f(10°%) - f (10°)
10°-10°
Solucdo. Calculando as poténcias em separado, temos:
i)f(10°)=100(10"°)+3=10%10"° -3
ii) f (10°) =100(10°) +3=10%10° -3

11- (UFBA) Sendo f(x) =100x+3, calcule

Calculando a expressao pedida, vem:

f(0°®) - f(10°) 10%10°+3-10%10°-3 10%(10°-10°)
10°% -10° 10°% -10° 108 -10°

=102 =100

12- Dadas as fungbes f(x)=1-2xe g(x)=2x+k, determine o valor de k para que

f(g(x)) =g(f(x).

Solucgdo. Calculando as compostas e igualando, temos:

i f(g(x)) = f(2x+k)=1-2(2x+k) =1-4x-2k
g(f(x)) =g-2x)=2.1-2x)+k =2—-4x+Kk

) f(g(x)=9(f(x)) >1-4x-2k =2-4x+k= -3k =1=k =—%

Mais sobre Funcao do 1° Grau

O estudo das funcoes é importante, uma vez que elas podem ser aplicadas em diferentes
circunstancias: nas engenharias, no calculo estatistico de animais em extincao, etc.

O significado de funcio é intrinseco a matematica, permanecendo o mesmo para qualquer
tipo de funcao, seja ela do 1° ou do 2° grau, ou uma funcdo exponencial ou logaritmica. Portanto, a
funcdo é utilizada para relacionar valores numéricos de uma determinada expressao algébrica de
acordo com cada valor que a variavel x assume.

Sendo assim, a func¢ao do 1° grau relacionara os valores numéricos obtidos de expressoes
algébricas do tipo (ax + b), constituindo, assim, a funcao f(x) = ax + b.
Note que para definir a funcdo do 1° grau, basta haver uma expressao algébrica do 1° grau. Como
dito anteriormente, o objetivo da funcao é relacionar para cada valor de x um valor para o f(x).
Vejamos um exemplo para a funcao f(x)= x — 2.
x=1,temosquef(1)=1—-2=-1
Xx=4,temosquef(4)=4—-2=2
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Note que os valores numéricos mudam conforme o valor de x é alterado, sendo assim obtemos
diversos pares ordenados, constituidos da seguinte maneira: (x, f(x)). Veja que para cada coordenada
X, iremos obter uma coordenada f(x). Isso auxilia na construcao de graficos das fungoes.

Portanto, para que o estudo das funcées do 1° grau seja realizado com sucesso, compreenda bem a

construcao de um grafico e a manipulacao algébrica das incognitas e dos coeficientes.

Coeficiente Linear de uma Funcao do 1° Grau

As funcoes do tipo f(x) = y = ax + b, com a e b nimeros reais e a # 0, sao consideradas do 1° grau.
Ao serem representadas no plano cartesiano, constituem uma reta crescente ou decrescente. E no
caso de a = 0, a funcao é chamada de constante.

Uma funcao possui pontos considerados essenciais para a composicao correta de seu grafico, e um
desses pontos é dado pelo coeficiente linear da reta representado na funcao pela letra b, que indica
por qual ponto numérico a reta intercepta o eixo das ordenadas (y).

Nas func¢oes a seguir, observe o valor numérico do coeficiente linear e o grafico representativo da
funcao:

y=x+1
b=1

y=2x+4
b=y4
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y=2x—4
b=-4

1. Estudo dos Sinais

Definimos funcao como relacao entre duas grandezas representadas por x e y. No caso de uma
funcao do 1° grau, sua lei de formacao possui a seguinte caracteristica: y = ax + b ou f(x) = ax + b,
onde os coeficientes a e b pertencem aos reais e diferem de zero. Esse modelo de fun¢do possui como
representacdo grafica a figura de uma reta, portanto, as relagoes entre os valores do dominio e da
imagem crescem ou decrescem de acordo com o valor do coeficiente a. Se o coeficiente possui sinal

positivo, a func¢ao é crescente, e caso ele tenha sinal negativo, a funcao é decrescente.

Funcao Crescente —a > 0
YA

4

//

v

Na funcao crescente, a medida que os valores de x aumentam, os valores de y também aumentam;
ou, a medida que os valores de x diminuem, os valores de y diminuem. Observe a tabela de pontos e

o grafico da funcaoy = 2x — 1.

x|y
|2 | 5
1| -3
ERE
11
2 | 3




Funcao Decrescente —a < 0
yﬂ

A

v
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No caso da func¢ao decrescente, a medida que os valores de x aumentam, os valores de y diminuem;

ou, a medida que os valores de x diminuem, os valores de y aumentam. Veja a tabela e o grafico da

funcioy = — 2x — 1.
x|y
-2 | 3
N
Lo | -
1| 3
2 5
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De acordo as analises feitas sobre as funcoes crescentes e decrescentes do 1° grau, podemos

relacionar seus graficos aos sinais. Veja:

Sinais da funcao do 1° grau crescente

/

Exemplo:

Determine os sinais da funcdo y = 3x + 9.

Fazendo y = 0 — célculo da raiz da fungao

3Xx+9=0
3x=-9
X=-9/3
X=-3

A funcao possui o coeficiente a = 3, no caso maior que zero, portanto, a funcao é crescente.

/
d

2. Grafico de Funcao do 1° grau

Toda funcao pode ser representada graficamente, e a funcao do 1° grau é formada por uma reta. Essa

reta pode ser crescente ou decrescente, dependendo do sinal de a.
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Quando a > o0
Isso significa que a sera positivo. Por exemplo, dada a funcao: f(x) = 2x — 1 ou
y =2x-1,0onde a = 2 e b = -1. Para construirmos seu grafico devemos atribuir valores reais para x,

para que possamos achar os valores correspondentes em y.

X y
-5 -5
-1 -3
0 -1
1/2 o0
1 1

Podemos observar que conforme o valor de x aumenta o valor de y também aumenta, entao dizemos

que quando a > 0 a funcao é crescente.

Com os valores de x e y formamos as coordenadas, que sao pares ordenados que colocamos no plano

cartesiano para formar a reta. Veja:

No eixo vertical colocamos os valores de y e no eixo horizontal colocamos os valores de x.

Quandoa <o

Isso indica que a sera negativo. Por exemplo, dada a funcao f(x) = - x + 1 ou
y=-X+1,onde a = -1 e b = 1. Para construirmos seu grafico devemos atribuir valores reais para x,

para que possamos achar os valores correspondentes em y.

X y
-2 3
-1 2
(o) 1
1 o)

Podemos observar que conforme o valor de x aumenta o valor de y diminui, entao dizemos que
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quando a < 0 a funcao é decrescente.

Com os valores de x e y formamos as coordenadas que sao pares ordenados que colocamos no plano
cartesiano para formar a reta. Veja:

No eixo vertical colocamos os valores de y e no eixo horizontal colocamos os valores de x.

Raiz
Caracteristicas de um grafico de uma func¢ao do 1° grau.

« Com a > 0 o grafico sera crescente.

« Com a < 0 o grafico sera decrescente.

« O angulo a formado com a reta e com o eixo x sera agudo (menor que 90°) quando a > 0.
+ O angulo a formado com reta e com o eixo x sera obtuso (maior que 90°) quando a < 0.

« Na construcao de um grafico de uma fungao do 1° grau basta indicar apenas dois valores pra x, pois
o grafico é uma reta e uma reta é formada por, no minimo, 2 pontos.

« Apenas um ponto corta o eixo X, e esse ponto € a raiz da funcao.

» Apenas um ponto corta o eixo y, esse ponto é o valor de b.

3. Raiz de uma Funcao do 1° Grau
As funcoes do tipo y = ax + b ou f{x) = ax + b, onde a e b assumem valores reais e a # 0 sao
consideradas funcoes do 1° grau. Esse modelo de funcao possui como representacao geométrica a

figura de uma reta, sendo a posicao dessa reta dependente do valor do coeficiente a. Observe:

Funcao crescente: a > 0.

//x
F

Funcao decrescente: a < 0.

¥
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Raiz da funcao

Calcular o valor da raiz da funcao é determinar o valor em que a reta cruza o eixo x, para isso
consideremos o valor de y igual a zero, pois no momento em que a reta intersecta o eixo x, y = 0.
Observe a representacao grafica a seguir:

¥y
OI/ % .

/ raz_da_ funcao

Podemos estabelecer uma formacao geral para o calculo da raiz de uma funcao do 1° grau, basta
criar uma generalizacao com base na propria lei de formacao da funcao, considerandoy =0 e

isolando o valor de x (raiz da funcao). Veja:

y=ax+b
y=0
ax+b=0
ax=-b
x=-b/a

Portanto, para calcularmos a raiz de uma funcao do 1° grau, basta utilizar a expressao x = x = —b/a.

Exemplo 1

Calcule a raiz da funcao y = 2x — 9, esse é o momento em que a reta da func¢ao intersecta o eixo x.

Resolucao:
x=-b/a
x=-(-9)/2
x=9/2

X =45
Exemplo 2

Dada a funcao f(x) = —6x + 12, determine a raiz dessa funcao.

Resolucao
x=-b/a
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x=-12/-6

Exercicios:

1.Faca o grafico das fungdes de primeiro grau definidas de R em R:

a) f(x) = x+3
b) g(x) = -x+3
c) h(x) = 3x-4

d) r(x) = -2x+2

2. O grafico da fungao f(x) = ax +b corta o eixo x no ponto de abscissa -7 e 0 eixo y no
ponto de ordenada 8. Calcule a e b.

3. Determine m para que o gréfico de f(x) = x+(m2-7m) corte o eixo y no ponto de
ordenada -10.

4. Faca os graficos, num mesmo sistema de eixos cartesianos, das fungdes definidas de R
em R por f (x) = 3x-2 e g(f) = -x+2. Em seguida, determine algebricamente o ponto de
interseccao dos graficos e compare com o ponto obtido graficamente.

5. Obtenha a formula que define a fungao de primeiro grau cujo grafico é a reta que passa
pelos pontos (1;2) e (2;-13).

6. Determine a lei da funcdo para cada um dos graficos a seqguir:

F(x)
F

A\




b)

A

-1
C) /

7. Esboce o grafico das seguintes fungdes lineares
a) f(x) = 2x
3
X)=-=X
0y 3¢ )=-%

-3, 5ex<-2
f(x)= %x, se-2<x<2

8. Faca o grafico da fungao definida de R em R por: X435 5ex>2

9. Estude os sinais das fungdes definidas por:
a) f(x) = 3x+6
b) g(x) = -5x+10

4
& h(x)= _FK -2

x 1
d) r(}()_g_§

10. Estude os sinais de f(x) = 2x-11 e, sem calcular o valor das imagens, dé os sinais de
f(3), f(-1), f(0), f(6) e f(10).
11. A tabela abaixo refere-se ao estudo de sinais de uma funcao g de primeiro grau.

2 >

20
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a) Qual é a raiz da fungdo g?

b) g é crescente ou decrescente?

\
c) Dé os sinais de g(0), g(10), g(-5), g(‘-"rl_ﬂ] e Q(—wfl_ﬂ J
d) Calcule, se existirem, os valores de g(-2).9(5), 9(-2)/9(-8), (9(7).(-10))/g9(-2)

Respostas:

fiix alx)

h{x)

4,3

~3

c) ed)

2.
a=8/7eb=8

3.
m=2oum =5,

4.



-

L1

S/
\J{[x] = g{x)

z.ra,r’|f r \\

ral

[

Ll !

ff 1 2\\\
gix)™

/
/
2

5.
f(x) = -15x+17

6.
a) f(x) = -2x+4
- 7 5
flx)=—Lx_2
c) f(x) = x-1
7.
Y
L)
4_-
fix)

Ponto de interseccdo é (1;1)

8.
¥
.
54
sl .
//’\\\\
i / 4 \\i\ > X
-3 X/D 2 5 \\
/S N
—_— =3
9.
-2

22



2 >
+ —
b)
7rf2
! F
) * _
3
B h
d) - *
10.
11/2
19 3 N6 1w
- +

f(3)>0, f(-1)<0, f(0)<0, f(6)>0 e f(10)>0

11.
a) -2
b) decrescente

\
c) g(0)<0, g(10)<0, g(-5)>0 g(“{ﬁ]«)’ Q(—u'rl_ﬂbo

d) 9(-2).9(5) = 0, g(-2)/9(-8) = 0,
(g(7).(-10))/g(-2) ndo esta definido

Um pouco - Inequacdo do 1° Grau

Resolvendo uma inequacgédo de 1° grau

Uma maneira simples de resolver uma inequacgao do 1° grau é isolarmos a incognita x em um

dos membros. Observe dois exemplos:
Exemplo 1: -2x + 7 >0

Solucao:

-2x > -7

Multiplicando por (-1)

2Xx <7
X <7/2

Portanto a solugdo da inequagdo é x < 7/2.

Exemplo 2: 2x -6 < 0

23



Solucao:
2X < 6
X < 6/2

X <3

Portanto a solugdo da inequagdo e x < 3

24

Pode-se resolver qualquer inequacdo do 1° grau por meio do estudo do sinal de uma funcdo do

1° grau, com o seguinte procedimento:

1. Iguala-se a expressao ax + b a zero;
2. Localiza-se a raiz no eixo Xx;

3. Estuda-se o sinal conforme o caso.

Exemplo 1:
-2x+7>0
-2x+7 =0
X =7/2

Exemplo 2:
2x-6<0
2x-6=0

Xx=3

Inequacéo Produto

Resolver uma inequag&o produto consiste em encontrar os valores de x que satisfazem a condigéo estabelecida pela

inequacdo. Para isso utilizamos o estudo do sinal de uma funcéo. Observe a resolucdo da seguinte equacéo produto: (2x +

Vamos estabelecer as seguintes funcfes: y1 =2x + 6 ey, =—3x + 12.

Determinando a raiz da funcdo (y = 0) e a posicéo da reta (a > 0 crescente e a < 0 decrescente).

y1=2x+6
2x+6=0

6)*(—3x +12) > 0.
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Y2 =—3x+12
-3x+12=0
-3x=-12

s
<

Verificando o sinal da inequagéo produto (2x + 6)*(— 3x + 12) > 0. Observe que a inequacdo produto exige a seguinte

condicdo: os possiveis valores devem ser maiores que zero, isto é, positivo.

=3 4
O O
b1 - + +
¥z + + =
* - _
W' » ¥
O O

Atraveés do esquema que demonstra os sinais da inequacdo produto y1*y2, podemos chegar a seguinte concluséo quanto
aos valores de x:

x€E€R/-3<x<4
Inequacgdo quociente

Na resolucdo da inequacdo quociente utilizamos 0s mesmos recursos da inequagdo produto, o que difere é que, ao
calcularmos a funcdo do denominador, precisamos adotar valores maiores ou menores que zero e nunca igual a zero.
Observe a resolugdo da seguinte inequacao quociente:

x—+1£0
2x—1

Resolver as fungbes y1 = x + 1 e y» = 2x — 1, determinando a raiz da fun¢do (y = 0) e a posicao da reta (a > 0 crescente e a

< 0 decrescente).

yi=x+1
x+1=0

Xx=-1
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Yo=2x-1
2x-1=0
2x=1
x=1/2

1

-1 2

L O
A = + +
¥y = = 8
¥y, E - +

P O

Com base no jogo de sinal concluimos que x assume os seguintes valores na inequagao quociente:
X€ER/-1<x<1/72

Restrigbes do Dominio de uma funcgéo
As fungbes devem ser caracterizadas de acordo com algumas condi¢des de existéncia:

Dois conjuntos: um denominado dominio e outro contradominio.

Uma expresséao y = f(x) associando os valores de x e y, formando pares ordenados pertencentes aos
conjuntos dominio e contradominio.

Através de alguns exemplos, demonstraremos como determinar o dominio de uma funcéo, isto &,
descobrir quais 0os nimeros que a funcao ndo pode assumir para que a sua condi¢do de existéncia nao
seja afetada.

a)

f@=

Nesse caso, 0 denominador ndo pode ser nulo, pois ndo existe divisdo por zero na Matematica.
x—1#0

X#1

Portanto, D(f)={x ? R/x# 1} =R - {1}.

x+2




b

)
f(x)=+4x—

Nos nimeros reais, o radicando de uma raiz de indice ndo pode ser negativo.
4x-6=20

4x 6

X = 6/4

X2 3/2

Portanto, D(f) = {x ? R/ x = 3/2}

c)
f(x)=%3x-9

O radicando de uma raiz de indice impar pode ser um ndmero negativo, nulo ou positivo, isto é, 3x — 9
pode assumir qualquer valor real. Portanto, D(f) = R.

d)
_W2—x
T~

Nesse caso, temos restricdes tanto no numerador quanto no denominador. As restricbes podem ser
calculadas da seguinte maneira:

N2-x20—>-x2-2—>x<2

Mx+1>0—-x>-1

Executando a interseccao entre | e Il, obtemos:

24 2
|

I T
I & ’
Inir - ®

Portanto, D(f) = {x ? R/ -1 <x <2} — ] -1, 2].

Exercicios
1. Resolva as inequagfes U =R
a)8x—-10>2x+8 b) 2(3x +7) <—4x + 8 c) 20 — (2x +5) =11 + 8x
2. Resolva as inequagbes U =N
a) 2x + 5<—3x +40 b) 6(x — 5) — 2(4x +2) > 100 C) 7X—9<2x+16
3. Resolva as inequagfes U=2Z
a)2x +52=-3x+40 b) 6(x — 5) — 2(4x +2) 2 80 €) 20— (7x+4) <30
4. Resolva as inequacdes em R:
2x+1 2x -3
a) >0 c) <0 2x =7
X+2 X+2 f) >3
3X -5
o) X1 g d) (1—2x).(3+4x)>0 9 F-1_g
x-1 (4-x) X—2
e) i < 2

X-1 Xx-2



h) (x —1)(x - 2) <0 ) (5% +2).(2—-x).(4x+3)>0
(x+3)(x + 4)
5. (UFRS) Se —1< 2x + 3 <1, entdo 2 — x esta entre:
a)le3 b)-1e0 c)0el dyle2 e)3e4

6. (UNAERP) Se 3<5-2x <7, entdo:
a)-1<x<1 b)l1<x<-1 c)-1<x 21 dx=1 e)x=0

7. (PUC) Fabio quer arrumar um emprego de modo que, do total do salario que receber, possa gastar
1/4 com alimentacéo, 2/5 com aluguel e R$ 300,00 em roupas e lazer. Se, descontadas todas essas
despesas, ele ainda pretende que lhe sobrem no minimo R$ 85,00, entdo, para que suas pretensdes
sejam atendidas, seu salario deve ser no minimo:

a) R$ 950,00 b) R$ 1100,00 c) R$ 980,00 d) R$ 1500,00 e) R$ 1000,00

8. (FUVEST) Um estacionamento cobra R$6,00 pela primeira hora de uso, R$3,00 por hora adicional e
tem uma despesa diaria de R$320,00. Considere-se um dia em que sejam cobradas, no total, 80 horas
de estacionamento. O nimero minimo de usuarios necessario para que o estacionamento obtenha
lucro nesse dia é:

a) 25 b) 26 c) 27 d) 28 e) 29

9. (UNESP) Carlos trabalha como DJ e cobra uma taxa fixa de R$100,00, mais R$20,00 por hora, para
animar uma festa. Daniel, na mesma fungéo, cobra uma taxa fixa de R$55,00, mais R$35,00 por hora.
O tempo méximo de duracdo de uma festa, para que a contratacdo de Daniel ndo fique mais cara que
a de Carlos, é:

a) 6 horas b) 5 horas c) 4 horas d) 3 horas e) 2
horas

10. (UNICAMP) Trés planos de telefonia celular séo apresentados na tabela abaixo:

PLANO CUSTO FIXO MENSAL CUSTO ADICIONAL POR MINUTO
A R$ 35,00 R$ 0,50
B R$ 20,00 R$ 0,80
C 0 R$ 1,20

a) Qual é o plano mais vantajoso para alguém que utilize 25 minutos por més?
b) A partir de quantos minutos de uso mensal o plano A é mais vantajoso que os outros dois?

28

Respostas: 1)a) S={xe R/x>3}; b) S={xeR/x<-3/5};c) S={x e R/ x22/5};
2)a)$={0,1,2,3,4,5,6};b)S=®;¢c)S={0,1,2,3,4}; 3)a)S={7,8,9,10,..}; b) S={...,-59, -58, -57};
c)S={1,01,2,..} 4)a)]->, -2[ U]-1/2, +=[; b) ]-1, 1[; c) ]-2, 3/2]; d)]-3/4, 1/2[ U 14, +=[; €) 10, 1[ U ]2, +[;
f) [8/7, 5/3[; g) ]- ~, 2[; h) -4, -3[ U [1, 2]; i) ]-~, -3/4] U [-2/5, 2]; 5) e; 6) a; 7) b; 8) c; 9) d; 10) a) C; b) 50
minutos.

Mais exercicios
Exercicios

1) Verifique quais relagfes abaixo representam fungdes.

y E— g ||I

T |
--_-\'""--L._ - |
S 3o
o _-"/ \_l/
- B

N&o é funcao, pois o elemento 0 de A esta associado a 3 elementos de B.
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b)

E fungéo, pois todos os elementos de A estdo associados a um Gnico elemento de B.

d)

e)

E funcao, pois todos os elementos de A estdo associados a um Unico elemento de B.

f)
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i i
O R S
~a
= 4 *0
100 —_ ERT
e \ "2
20 > e
A B

E funcéo, pois todos os elementos de A estdo associados a um Gnico elemento de B.

a)

e X Y

(94

A

N&o é funcao, pois o elemento 4 de A esta associado a 2 elementos de B.

2) Dados A ={0, 1, 2, 3}, B ={-1, 0, 1} e a correspondéncia entre A e B dada por y=x -2, com Xe A e
y € B, faca um diagrama e diga se f é uma funcdo de A em B.

GABARITO:

N&o é funcdao, pois o elemento 0 de A néo estéd associado a algum elemento de B.

3) Dados A={-2,-1,0,1,2}e B ={-8, -6, -4, -3, 0, 3, 6, 7} e arelacdo R = {(x,y)e AxB /y = 3.x} faca um
diagrama e diga se f € uma funcéo de A em B.

GABARITO:

E funcéo, pois todos os elementos de A estio associados a um Unico elemento de B.
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4) Dados A={-3,-2,0,3}eB={-1,0,1, 2,4,5,7} e uma relagao expressa pela formula y =x + 2,
com x pertencendo a A e y pertencendo a B. Faga o diagrama e verifique se f € uma funcdo de A em B.
GABARITO:

E funcéo, pois todos os elementos de A estdo associados a um Unico elemento de B.

5) O preco a ser pago por uma corrida de taxi inclui uma parcela fixa de R$ 6,00, denominada
bandeirada mais uma parcela variavel de R$ 0,90 por km rodado.

Determine:

a) A funcéo que representa o preco P de uma corrida em fungéo de x quilémetros rodados.

b) O preco de uma corrida de 12 km.

c) A distancia percorrida por um passageiro que pagou R$ 96,00 pela corrida.

GABARITO:
a)P=6+0,90.x

b)P=6+090.12 >P=6+10,80 - P =16,80 > P =R$16,30.

C)96:6+O,90.X—>90=0,90.X—>X=%—>X=100km

Dominio, Contradominio e Conjunto Imagem
Dados os conjuntos A ={0, 1, 2,3} e B={0, 1, 2, 3, 4, 5, 6}, vamos considerar a funcéo f: A— B que
transforma xe A em ye B.

Em toda funcéo f de A
Ds — a0 em B, Im(f) < B.

w

Nesse caso, a funcdo f: A—> B esté definida por y = 2.x ou por f(x) = 2.x.

Veja que para caracterizar uma funcéo é necessario conhecer seus trés componentes: o dominio (A), o
contradominio (B) e uma regra que associa cada elemento de A a um Unico elemento y = f(x) de B.
Nesse exemplo, o dominio é A = {0, 1, 2, 3}, o contradominio é B ={0, 1, 2, 3, 4, 5, 6}, a regra é dada
pory = 2.x e 0 conjunto imagem é dado por Im(f)= {0, 2, 4, 6}.

Exercicios

1) O diagrama de flechas abaixo representa uma funcéo f de A em B. Determine:
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0
2
o4
6
.8

10

B

aD@ b)yCD{ c)lm(@ d)f(3) e)f(5) f)x\ fx)=4
GABARITO:
a)D(f)={2,3,5}

b) CD(f) = {0, 2, 4, 6, 8,10}
c)Im(f)={4, 6,10}
d)f(3)=6

e) f(5)=10

fyx=2

2) Seja a fungdo f: R — R definida por f(x) = x2 - 7x + 9. Determine:
a) O valor de f(-1)
b) Os valores de x para que se tenha f(x) = -1.

GABARITO:

) f(X)=Xx2—7Xx+9 > (D) = (-12-7(-D+9 > f(-) =1+ 7+9 — f(-1) =17
b) f(X)=-1—>X2—7x+9=-1—>x2-7x+10=0 > A=(-7)2-40 > A=9

+
X:E—)X1:58X2=2
2

3) Dadas as fung0es f(x) = 4x + 3 e g(x) = x2 + a. Sabendo que f(2) - g(1) = 3, calcule o valor de a.
GABARITO:

f(x)=4x+3eg(x)=x2+a
f(2)=4.(2)+3 > f(2) =11
g=D?*+a—>g)=1+a

f(2)-g(1)=3 »>11-(1+a)=3 >11-1-a=3 >7=a
2

X
4) Seja f: IR* - IR a funcao definida por f(x) =
GABARITO:

1
. Qual o valor de f(2) + f( 5 )?



2
f(x):x+1
X
2
f2)= 2t 522
2
2
1 (;j A 41 1 > 1. 52 .1 5
4 4
Q)= Lf)=4  LiD)=251(D)="251)=2
= )= > 1= > 1= 1> 1)
2 2 2
1, 5 5 1, 10
fQ+f(Z)==+=->f(2)+f(Z)=—=5
@+)=2+2 > 1@ +() =
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5) Um vendedor recebe mensalmente um salario fixo de R$ 1200,00 mais uma comisséo de 8% sobre

0 que vender.

a) Num més em que suas vendas chegaram a R$ 6000,00, qual foi o salério total recebido?
b) Se, em certo més, esse vendedor recebeu R$ 1520,00, qual foi o valor de suas vendas?

GABARITO:

Vendas = 3208ﬂ — Vendas = R$4000,00

a) Comissao = %.6000 — Comissao = 480 — Salario =1200 + 480 — Salario = R$1680,00

b) Salario =1520 — Comissdo +1200 =1520 — Comisséo = 320 — %.Vendas =320

6) Considere a relacdo f de M em N representada no diagrama abaixo:
M N

Assinale verdadeiro (V) ou falso (F) nas afirmativas abaixo, para que f seja uma funcédo de M em N.

( F) apagar a seta 1 e retirar o elemento s.

(F ) apagar as setas 1 e 4 e apagar o elemento k.
( F ) retirar os elementos k e s.

(V) apagar a seta 4 e retirar o0 elemento k.

(F) apagar a seta 2 e retirar o elemento k.

7) O prego do servigo executado por um pintor consiste em uma taxa fixa de R$ 50,00 mais R$ 15,00

por metro quadrado (m2) de area pintada. Determine:
a) O preco cobrado pela pintura de 200 m2.
b) Um cliente pagou R$ 2300,00 pelo servigo de pintura. Qual a area pintada?

GABARITO:
a) O preco sera: P =50 + 15.(200) = 50 + 3000 = R$3050,00.
b) Considerando A, a area pintada, temos:

P =50+A.(15)

P =2300
{ :>50+A.(15):2300:>15A=2300—50:>A:%

=150m?|

8) Considere a funcéo f, dada por:
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2X,se x<0
f(x)={x*+5x-1,se0<x<5,
—2X+2,se Xx>5

Flo)+fFl—1)+F (1)

f5)+f(e)
GABARITO:

f(0)=2.(0)=0

f(-1) = 2.(-1) = -2

fM)=(1) +5.0)-1=1+5-1=5 = QD +I@ _0-2+5_3 1
: i(5)+f(6)  49-10 39 13

f(5) = (5)° +5.(5) 1= 25+ 25-1= 49

f(6) = —2.(6)+2=-12+2 =10

Calcule

9) A empresa de telefonia celular ABC oferece um plano mensal para seus clientes com as seguintes
caracteristicas:

¢ Para um total de ligacdes de até 50 minutos, o cliente paga um valor fixo de R$40,00;

¢ Se os 50 minutos forem excedidos, cada minuto de excesso sera cobrado pelo valor de R$1,50 (além
dos R$40,00 fixos).

a) Determine o valor pago por um cliente que utilizou o celular por 74 minutos em certo més.

b) Em certo més, utilizando o plano descrito acima, o valor a ser pago por um cliente foi de R$101,50.

Determine quantos minutos foram utilizados nesse més.

GABARITO:

a) 74 minutos, menos 50 minutos que tém direito, sdo 24 minutos excedentes. Portanto, ir4
pagar: 40 + 24 x 1,50 =40 + 36 = 67.
Resp. R$ 76,00

b) 101,50 — 40,00 = 61,50

61,50 : 1,50 = 41 minutos

Logo, além dos 50 minutos que tém direito, gastou mais 41 minutos excedentes.
Resp. 50 + 41 = 91 minutos.

10) Dada a funcéo f(x) = 2x3 - 4x + 2, calcule (1) — f(3).
GABARITO:

f(X)=2x3-4x+2
f=2.02-4.D)+2>f1)=2-4+2->f1=0
f(3)=2.(3-4.3)+2>1f(3)=54-12+2 > f(3) =44
f()-f(3)=0-44=-44

11) Considere as fungdes com dominio nos ndmeros reais dadas por f(X)=3x2—x+5 e
g(x)=-2x+9.
f0)+9@)

f@

b) Determine o valor de x tal que f(x) = g(x).

a) Calcule o valor de

GABARITO:
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f(x)=3.x2—x+5eg(x)=-2x+9
a) f(0)=3.(02-0+5—>f(0)=5
f)=3.02-D+5->f)=7
9 =-20D+9—>g()=7
f(0)+9(1) 5+7 12
f 7 7
b) f(x) = 9(x)
3X2—X+5=-2x+9 > 3x2+x-4=0—>A=(1)2+48 > A =49
—1+7 6 -8 -4

X = >X ==-2>X=1>X,=—>X, =—
23 1 6 1 2 6 2 3

. . -, 4x -1 - .
12) Seja a fungdo f :R — R definida por f(X) =T. Calcule o elemento do dominio de f cuja
imagem é 5.

GABARITO:

f(x)=5ef(x)= 4X3_1—> 4X3_1=5—>4x—1=15—>4x=16—>x=4
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