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Resumo da Tese apresentada à UFSC como parte dos requisitos necessários para a
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Número de páginas: 101

Esta tese tem como objetivo projetar bons códigos espácio-temporais em treliça (STTCs)

sobre GF(p) e Zpk , onde GF(p) e Zpk representam corpos e anéis finitos, respectiva-

mente, sendo p um número primo e k um inteiro positivo, para sistemas de comunicação

sem fio com um número arbitrário de antenas transmissoras e que utilizam modulações

do tipo pk-PSK. Os códigos são projetados para o canal com desvanecimento Rayleigh

plano quase-estático, segundo os critérios do Posto, do Determinante e do Traço. Para

tornar a busca por tais códigos sistemática e computacionalmente viável, uma estru-

tura de codificador convolucional espácio-temporal sobre GF(p) e Zpk é inicialmente

proposta. Em seguida, três conjecturas e três teoremas, válidos para qualquer número

de antenas transmissoras e modulações do tipo pk-PSK, são apresentados para simpli-

ficar a busca computacional. Em conseqüência, uma grande variedade de STTCs para

as modulações 3-PSK, 4-PSK, 5-PSK, 7-PSK, 8-PSK, 9-PSK, 11-PSK, 13-PSK, 16-

PSK e 17-PSK, e para duas, três e quatro antenas transmissoras, atingindo eficiências

espectrais de 1,58; 2; 2,23; 2,81; 3; 3,17; 3,46; 3,7; 4 e 4,08 b/s/Hz, respectivamente,

é apresentada. Alguns novos STTCs são comparados com STTCs existentes na litera-

tura.
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The goal of this thesis is to design good space-time trellis codes (STTCs) over GF(p)

and Zpk , where GF(p) and Zpk means finite fields and rings, respectively, p is a prime

number and k is a positive integer, for wireless communications systems with an arbi-

trary number of transmit antennas and pk-PSK modulations. The codes are designed

for the quasi-static flat Rayleigh fading channels, according to the rank, determinant,

and trace criteria. In order to make the search for such codes systematic and compu-

tationally feasible, a structure of space-time convolutional encoder over GF(p) and Zpk

is first proposed. Then, three conjectures and three theorems, valid for any number of

transmit antennas and pk-PSK modulations, are presented towards the simplification

of the computer search. As a consequence, a wide variety of STTCs for the 3-PSK,

4-PSK, 5-PSK, 7-PSK, 8-PSK, 9-PSK, 11-PSK, 13-PSK, 16-PSK and 17-PSK modu-

lations, and for two, three, and four transmit antennas, achieving spectral efficiencies
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Lista de Figuras

2.1 Modelo do sistema espácio-temporal. . . . . . . . . . . . . . . . . . . . 8

2.2 Constelações 4-PSK (a) e 8-PSK (b). . . . . . . . . . . . . . . . . . . . 14
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dos no critério do traço, projetados para sistemas com n = 2 antenas

transmissoras e m = 2 receptoras. . . . . . . . . . . . . . . . . . . . . . 54

4.9 Comparação do desempenho de STTCs com modulação 3-PSK basea-
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dos no critério do traço, projetados para sistemas com n = 4 antenas

transmissoras e m = 2 receptoras. . . . . . . . . . . . . . . . . . . . . . 58

4.17 Comparação do desempenho de STTCs com modulação 7-PSK basea-
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Caṕıtulo 1

Introdução

Os sistemas de comunicação de dados atuais operam com taxas de transmissão cada

vez mais elevadas. Um grande desafio tem sido projetar esquemas codificados que su-

portem estas taxas respeitando algumas limitações práticas como faixa de freqüências,

potência de transmissão e confiabilidade no enlace. Este desafio se torna ainda maior

quando a transmissão dos sinais é feita por ondas de rádio, pois as adversidades encon-

tradas neste tipo de canal, tais como o desvanecimento por multipercursos e o efeito

Doppler, dificultam sobremaneira a comunicação neste meio. Técnicas de diversidade,

que permitem ao receptor enxergar o sinal transmitido sob condições de canais diferen-

tes, tornam mais confiável a transmissão de dados a altas taxas em sistemas sem fio.

Em particular, a diversidade espacial (múltiplas antenas) vem sendo muito utilizada

pois fornece ganhos sem induzir perdas na eficiência do espectro. Adicionalmente, a

capacidade de canal de sistemas com múltiplas antenas tem um aumento significativo

[1], [2] e [3].

Motivados por este resultado, Tarokh et al. [4] propuseram os chamados Códigos

Espácio-Temporais (STCs, do inglês: Space-Time Codes ). Os STCs atingem uma alta

taxa de transmissão e um excelente desempenho, codificando os sinais a serem transmi-

tidos tanto no domı́nio do tempo quanto no do espaço. Alguns tipos de STCs são: os

códigos espácio-temporais em treliça [4] (STTCs, do inglês:Space-Time Trellis Codes),

os códigos espácio-temporais em bloco [5],[6] (STBCs, do inglês: Space-Time Block

Codes) e os ’Layered Space-Time (LST) codes’ [7]. Na literatura atual podem-se en-

1
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contrar várias referências sobre STCs, nas versões turbo, diferencial e/ou combinadas

com a modulação OFDM (OFDM, do inglês: Orthogonal Frequency Division Multiple-

xing) [8], [9], [10], [11]. Uma outra variação de STCs é a combinação do STBC com

uma treliça, resultando nos códigos Espácio-Temporais em Treliça super-ortogonais

(SOSTTCs, do inglês: Super Orthogonal STTC) [12]. Neste trabalho serão abordados

apenas os STTCs. Os STTCs são uma classe de códigos em treliça para sistemas de

comunicações sem fio que utilizam múltiplas antenas transmissoras e, opcionalmente,

múltiplas antenas receptoras. Em [4], critérios de projeto foram propostos para se

construir STTCs para canais com desvanecimento.

Segundo [4], para o canal com desvanecimento Rayleigh plano e quase-estático,

e com o conhecimento perfeito do canal no receptor, a probabilidade de erro mı́nima

com relação ao par (do inglês: pairwise error probability) é obtida quando os STTCs

são projetados de acordo com dois critérios, a saber, o critério do Posto e o do Deter-

minante, os quais serão detalhados mais adiante. O primeiro critério está relacionado

com o ganho de diversidade, que representa a inclinação da curva da probabilidade de

erro versus relação sinal-rúıdo, enquanto o segundo está relacionado com o ganho de

codificação, e determina o deslocamento horizontal da mesma curva. Para um canal

com desvanecimento plano, com n antenas transmissoras e m antenas receptoras, o

ganho de diversidade máximo (máxima inclinação da curva de probabilidade de erro)

é dado por mn. Trabalhos subsequentes [13], [14], [15], [16] mostraram que o projeto

de STTCs para canais com desvanecimento Rayleigh plano e quase-estático não de-

vem estar restritos apenas aos critérios anteriormente citados, mas incluir também um

novo critério, chamado de critério do Traço, o qual é baseado na distância Euclidiana

quadrática (DE2). Estes trabalhos mostraram também que a escolha do critério de

projeto é dependente da ordem de diversidade do sistema, sendo os critérios do posto

e do determinante a melhor opção para sistemas com ordem de diversidade menor

que quatro, e o critério baseado na DE2 o mais adequado para sistemas com ordem

de diversidade maior ou igual a quatro. Outros critérios para o projeto de STTCs,

levando-se em consideração a relação sinal-rúıdo, foram propostos em [17].

A principal dificuldade para a obtenção de STTCs com bom desempenho é que,

como veremos, além dos critérios mencionados acima se aplicarem ao corpo complexo de
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sinais de modulações em banda básica, o número de possibilidades de códigos encontra-

dos em uma treliça é muito elevado. Os primeiros trabalhos relacionados à simplificação

da busca por STTCs levaram em conta apenas os critérios do posto e do determinante,

e visavam obter códigos com diversidade completa. A primeira técnica para simplificar

a busca de STTCs foi proposta por Tarokh et al. em [4], onde foram apresentadas duas

regras simples para garantir diversidade completa de STTCs com duas antenas trans-

missoras. Grimm et al. [18], através do conceito de “simetria de zeros,” generalizaram

as regras de Tarokh possibilitando o projeto de STTCs com diversidade completa para

mais de duas antenas transmissoras. Em [19], Baro et al. sistematizaram a busca por

STTCs para obterem códigos com ganho de codificação máximo em sistemas com duas

antenas transmissoras e modulação 4-PSK. Em [20], [21], Hammons e El Gamal de-

senvolveram critérios de posto binário, em substituição ao critério do posto baseado

nos complexos, que são mais simples e garantem que os STTCs associados atinjam

diversidade completa para as modulações BPSK e 4-PSK. Eles também mostraram

que o STTC que decorre de um código convolucional C de taxa R = 1/n satisfaz o

critério do posto binário se, e somente se, a matriz função de transferência de C, como

uma matriz de coeficientes sobre o corpo binário, possuir posto completo n. Em [22],

foi desenvolvida uma teoria para garantir diversidade completa para STTCs utilizando

constelações 22.k-QAM, onde k é um inteiro positivo. Esta teoria inclui, como um caso

particular, o critério do posto binário proposto em [20] para modulações BPSK. Em

[23], [24] Blum considerou códigos convolucionais binários que servem como STTCs.

Condições suficientes e necessárias foram apresentadas para que STTCs tivessem ga-

nho de diversidade completo. Além disso, Blum desenvolveu métodos para calcular

um limitante para o ganho de codificação. Em [25], Noronha-Neto et al. introduziram

um procedimento alternativo para se obter STTCs com diversidade completa sobre o

corpo de Galois, GF(p), (do inglês: Galois Field) onde p é um número primo, utilizando

duas antenas na transmissão. Em [25], os śımbolos de informação, os coeficientes do

codificador convolucional e os śımbolos de sáıda do codificador são todos elementos

de GF(p), levando a uma eficiência espectral de log2(p) b/s/Hz. Em [26], a estrutura

do codificador apresentada em [25] foi utilizada para realizar uma busca exaustiva por

STTCs sobre GF(p) com ganho de codificação máximo. Em [27] foi realizada uma

comparação do desempenho de STTCs com modulações BPSK, 3-PSK e 4-PSK, onde
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o código com modulação 3-PSK apresentou algumas vantagens em relação à modulação

4-PSK. Já em [28], os mesmos autores de [26] realizaram uma busca exaustiva em uma

estrutura de um codificador convolucional de taxa R = 1/2, linear sobre o anel Z16

e com 16 estados, para obter STTCs com ganho de codificação máximo utilizando a

modulação 16-PSK. Outro trabalho interessante é a referência [29], onde os autores

apresentam dois métodos ótimos para a busca de STTCs com modulações 4-PSK, 4-

QAM, 8-PSK e 16-QAM, utilizando uma estrutura com entradas binárias e śımbolos

de sáıdas M-ários, onde M = 4, 8 e 16.

1.1 Objetivos

Este trabalho tem como objetivo simplificar a busca por STTCs sobre GF(p) e Zpk , onde

p é primo e k um inteiro positivo, em sistemas com um número arbitrário de antenas

transmissoras e que utilizam modulações do tipo pk-PSK. Com isso, outro objetivo, que

é a apresentação de uma gama variada de novos STTCs para a utilização em sistemas

de comunicação sem fio, pode ser alcançado. Cabe ressaltar que a simplicidade e a

sistematicidade dos codificadores propostos são também de grande interesse prático.

1.2 Contribuições

Nesta tese apresentaremos seis resultados, sendo três conjecturas e três teoremas, que

servirão para simplificar a busca de STTCs sobre GF(p) e Zpk gerados por uma estru-

tura contendo um codificador espácio-temporal sobre GF(p) e Zpk . Todas os resulta-

dos aqui apresentados são válidos para qualquer número de antenas transmissoras e

modulações do tipo pk-PSK. As duas primeiras conjecturas são aplicadas aos STTCs

com modulações p-PSK, sendo que a primeira estabelece a diversidade completa para

STTCs testando apenas o posto em matrizes-diferença entre palavras-código sobre

GF(p), ao invés de matrizes-diferença no domı́nio dos complexos, e a segunda verifica

se um STTC tem diversidade completa apenas com um simples teste de posto em uma

matriz geradora escalar G de um codificador linear sobre GF(p) [30] e [31]. Com a ter-

ceira conjectura, é posśıvel se obter STTCs sobre Zpk com diversidade completa para
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qualquer número de antenas transmissoras garantindo-se apenas o posto completo de

uma única matriz, G’, formada pelos coeficientes do codificador convolucional linear

reduzidos a módulo-p [32]. Para o caso de k = 1, a terceira e a segunda conjecturas

são equivalentes. Estas três conjecturas são mais focadas aos STTCs projetados pelos

critérios do posto e do determinante, pois com elas pode-se descartar códigos que não

têm diversidade completa. O primeiro e o segundo teoremas são adaptações de [29, Te-

oremas 1 e 2] para os codificadores utilizados neste trabalho, e servem para simplificar a

busca de STTCs sobre Zpk projetados tanto através do critério do determinante quanto

através do critério do traço. O terceiro teorema é válido apenas para a simplificação da

busca de STTCs sobre Zpk projetados pelo critério do traço, e pode reduzir de forma

significativa o número de códigos a serem testados. Nos três teoremas, a simplificação

ocorre pelo fato de se descartar códigos equivalentes, ou seja, códigos que possuem os

mesmos valores de ganhos. A partir destes resultados, foi posśıvel obter uma gama

variada de STTCs sobre GF(p) e Zpk utilizando modulações pk-PSK, com um esforço

computacional relativamente pequeno.

1.3 Organização

No Caṕıtulo 2, será apresentado o modelo de um sistema espácio-temporal, e em se-

guida será feita uma análise para se chegar aos critérios de projeto para STTCs em ca-

nais com desvanecimento Rayleigh plano quase-estático. Será mostrado também neste

caṕıtulo o procedimento de construção de um STTC. No Caṕıtulo 3 serão propostas

três conjecturas e três teoremas para a simplificação da busca por STTCs sobre GF(p)

e Zpk . O Caṕıtulo 4 apresentará alguns códigos novos obtidos através das técnicas pro-

postas e algumas simulações. Finalmente, no Caṕıtulo 5, faremos algumas conclusões

sobre os resultados obtidos nesta tese.



Caṕıtulo 2

Códigos Espácio-Temporais em

Treliça

De acordo com [1], [2] e [3] a capacidade de canal para sistemas de comunicações móveis

que empregam múltiplas antenas transmissoras e receptoras é significativamente maior

do que a de sistemas que utilizam apenas uma antena transmissora e uma receptora.

Em sistemas com múltiplas antenas (MIMO, do inglês:Multiple Input Multiple Output),

nas condições em que o canal é conhecido nos receptores e possui desvanecimento plano

e independente, a capacidade de canal cresce linearmente com o número mı́nimo de

antenas transmissoras ou receptoras. Uma maneira de se obter tal ganho na capacidade

em sistemas práticos é a utilização dos códigos espácio-temporais (STCs). Os STCs

exploram as múltiplas antenas para proporcionar um excelente desempenho com boa

eficiência espectral, codificando os sinais transmitidos no domı́nio do tempo e do espaço.

Como mencionado na seção de introdução, esta tese focará apenas nos STCs em treliça.

Os STTCs, propostos por Tarokh et al. [4] em 1998, quando transmitidos através

de canais com desvanecimento Rayleigh plano quase-estático, devem ser constrúıdos

com base em critérios que variam de acordo com o grau de diversidade do sistema.

Veremos adiante quais serão esses critérios e que impacto cada um deles tem na curva de

desempenho dos STTCs. Esses critérios estão relacionados a parâmetros associados a

matrizes formadas pelas diferenças de posśıveis pares de seqüências transmitidas. Uma

das principais dificuldades em se obter esses códigos vem do fato de que seus critérios de

6
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projeto são baseados na estrutura algébrica do domı́nio complexo de sinais em banda

base, e não numa estrutura algébrica finita, o que torna dif́ıcil a sistematização da

busca computacional de bons códigos.

A Seção 2.1 apresentará o modelo do sistema espácio-temporal com múltiplas

antenas. Em seguida, a Seção 2.2 mostrará a análise de desempenho dos STTCs em

canais com desvanecimento lento. Na Seção 2.3, apresentaremos os critério de projeto

dos STTCs e, finalmente, na Seção 2.4, mostraremos os procedimentos necessários para

calcular os ganhos dos STTCs.

2.1 Modelo do Sistema

Considere um sistema de comunicação móvel com desvanecimento do tipo Rayleigh

plano quase-estático empregando n antenas transmissoras e m antenas receptoras como

mostrado na Figura 2.1. No transmissor a seqüência de informação é codificada pelo

codificador de canal. Em seguida os dados codificados entram em um conversor se-

rial/paralelo e são divididos em n subseqüências. Essas subseqüências são então ma-

peadas em n seqüências de śımbolos de uma constelação. Em cada instante de tempo

t, um śımbolo de cada seqüência é enviado por uma antena, resultando em n trans-

missões simultâneas. No receptor, cada antena recebe em cada instante de tempo t

uma superposição dos n sinais transmitidos no instante de tempo t. Desta maneira o

sinal dj
t recebido pela j-ésima antena receptora no instante t é dado por:

dj
t =

n∑

i=1

hi,jc
i
t

√

Es + ηj
t (2.1)

onde cit é o sinal transmitido pela i-ésima antena no instante t, Es é a energia média do

sinal transmitido, ηj
t é um rúıdo Gaussiano branco complexo de média zero e variância

N0/2 por dimensão e hi,j denota o desvanecimento presente no caminho da i-ésima

antena transmissora para a j-ésima antena receptora. Neste trabalho consideraremos

que os desvanecimentos são amostras independentes de um processo aleatório Gaus-

siano complexo de média zero e variância 0.5 por dimensão. Na prática, para que

os desvanecimentos sejam independentes, as antenas têm que estar separadas de pelo

menos algumas unidades de comprimento de onda. Além disso, vamos supor que o
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Figura 2.1: Modelo do sistema espácio-temporal.

receptor conheça perfeitamente o canal e que o algoritmo de Viterbi com métrica Eu-

clideana seja usado no decodificador. Por outro lado, o transmissor não tem qualquer

informação sobre o estado do canal.

2.2 Análise de Desempenho dos STTCs em Canais

com Desvanecimento Rayleigh Plano Quase-Estático

Nesta seção mostraremos a análise feita em [4] e [34] para se chegar aos critérios de

projeto dos STTCs para canais com desvanecimento Rayleigh plano quase-estático.

Os critérios de projeto para STTCs utilizados em sistemas de comunicações que são

modelados pelo desvanecimento rápido, assim como os que são modelados por uma

mistura dos desvanecimento lento e rápido, são diferentes dos que serão apresentados

neste trabalho e podem ser encontrados em [4] e [34]. Antes de começarmos a análise de

desempenho, definiremos algumas notações e algumas propriedades de álgebra linear, as

quais serão utilizadas no decorrer desta seção. Considere os vetores x = (x1, x2, . . . , xk)

e y = (y1, y2, . . . , yk) sobre os complexos Ck. O produto interno entre x e y é dado por:

x · y =

k∑

i=1

xiyi (2.2)

onde yi denota o complexo conjugado de yi . Se A = A∗, onde A∗ denota o conjugado

transposto de A, então A é uma matriz Hermitiana. Para qualquer vetor complexo

x1×n, a matriz A será definida não negativa se xAx∗ ≥ 0. Uma matriz Vn×n é unitária
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se V V ∗ = I, onde I é a matriz identidade. Uma matriz Bn×l é raiz quadrada de A

se BB∗ = A. A seguir mostraremos as propriedades de álgebra utilizadas nesta seção

[35].

• Um autovetor v de uma matriz An×n correspondente a um autovalor λ é um

vetor 1 × n de comprimento unitário tal que vA = λv. O espaço vetorial criado

pelos autovetores de A correspondentes ao autovalor zero tem dimensão n − r,

onde r é o posto da matriz A.

• Qualquer matriz A com raiz quadrada B é definida não negativa.

• Para qualquer matriz Hermitiana A definida não negativa, existe uma matriz

triangular inferior quadrada B tal que BB∗ = A.

• Dada uma matriz Hermitiana A, os autovetores de A geram um espaço complexo

n-dimensional. Além disso, existe uma matriz unitária V e uma matriz diagonal

D tal que V AV ∗ = D. As linhas de V formam uma base ortonormal de Cn, dada

pelos autovetores de A. Os elementos da diagonal de D são os autovalores λi de

A incluindo os autovalores múltiplos.

• Os autovalores de uma matriz Hermitiana definida não negativa são reais e não

negativos.

No canal com desvanecimento quase-estático, o ganho entre a i-ésima antena

transmissora e a j-ésima antena receptora permanece constante durante um frame,

isto é, durante l transmissões, e muda independentemente de um frame para o outro.

Para o sistema descrito na Seção 3.1, a probabilidade de erro com relação ao

par, denotada por P (c → e), é definida como a probabilidade de um decodificador de

máxima verossimilhança decidir-se erroneamente pela palavra

e = e11e
2
1 · · · e

n
1e

1
2e

2
2 · · · e

n
2 · · · e

1
l e

2
l · · · e

n
l

quando a palavra código transmitida foi

c = c11c
2
1 · · · c

n
1c

1
2c

2
2 · · · c

n
2 · · · c

1
l c

2
l · · · c

n
l ,
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dado que os parâmetros do desvanecimento do canal, hi,j, são conhecidos. Esta proba-

bilidade é limitada superiormente por:

P (c → e|hi,j, i = 1, 2, . . . , n, j = 1, 2, . . . , m)

≤ 1
2
exp(−d2(c, e)Es/4N0)

(2.3)

onde N0/2 é a variância do rúıdo por dimensão e

d2(c, e) =

m∑

j=1

l∑

t=1

∣
∣
∣
∣
∣

n∑

i=1

hi,j(c
i
t − ei

t)

∣
∣
∣
∣
∣

2

. (2.4)

Após algumas manipulações a Equação (2.4) pode ser reescrita como:

d2(c, e) =

m∑

j=1

n∑

i=1

n∑

i′=1

hi,jhi′,j

l∑

t=1

(cit − ei
t)(c

i′
t − ei′

t ) (2.5)

Definindo-se Ωj = (h1,j, h2,j, . . . , hn,j) e Ap,q(c, e) =
∑l

t=1(c
p
t − ep

t )(c
q
t − eq

t ), para 1 ≤

p, q ≤ n, a Equação (2.5) se torna:

d2(c, e) =
m∑

j=1

ΩjA(c, e)Ω∗
j . (2.6)

Substituindo (2.6) em (2.3) obtemos a seguinte expressão para a probabilidade de erro

com relação ao par:

P (c → e|hi,j, i = 1, 2, . . . , n, j = 1, 2, . . . , m)

≤ 1
2
exp(−

∑m
j=1 ΩjA(c, e)Ω∗

jEs/4N0).
(2.7)

Como A(c, e) é Hermitiana, e

B(c, e)
∆
=











e11 − c11 e12 − c12 · · · e1l − c1l

e21 − c21 e22 − c22 · · · e2l − c2l
...

...
. . .

...

en
1 − cn1 en

2 − cn2 · · · en
l − cnl











(2.8)
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é a raiz quadrada de A(c, e), então os autovalores de A(c, e) são números reais e não

negativos.

O próximo passo é expressar d2(c, e) em termos dos autovalores da matriz

A(c, e). Como já mencionado, para cada matriz Hermitiana A(c, e) existe uma ma-

triz unitária V e uma matriz diagonal real D tal que V AV ∗ = D. Se a matriz V for

unitária, então V V ∗ = I e portanto

V A(c, e)V ∗ = D ⇒

A(c, e) = V ∗DV ⇒

ΩjA(c, e)Ω∗
j = (ΩjV

∗)D(VΩ∗
j ).

Definindo (β1,j , β2,j, . . . , βn,j) = ΩjV
∗, podemos chegar à seguinte expressão:

ΩjA(c, e)Ω∗
j =

n∑

i=1

λi |βi,j|
2 . (2.9)

Com isso:

d2(c, e) =
m∑

j=1

n∑

i=1

λi |βi,j|
2 . (2.10)

Substituindo (2.10) no limitante superior de (2.3) teremos a seguinte expressão:

P (c → e|hi,j, i = 1, 2, . . . , n, j = 1, 2, . . . , m)

≤ 1
2
exp(−

∑m
j=1

∑n
i=1 λi |βi,j|

2Es/4N0).
(2.11)

Como hi,j são modelados como amostras independentes de um processo aleatório

Gaussiano complexo de média zero e variância 0.5 por dimensão, e V é unitária, então

βi,j também serão variáveis aleatórias Gaussianas complexas com média zero e variância

0.5 por dimensão. A seguir, será calculado o valor esperado da Equação (2.11) com

relação a βi,j para duas situações de rm.



12

2.2.1 Probabilidade de Erro com Relação ao Par para Peque-

nos Valores de rm

Em [34] ficou estabelecido um limiar para os valores de rm sendo rm < 4, considerado

um pequeno valor para a ordem de diversidade e rm ≥ 4 um valor elevado. Para

rm < 4, e para o caso de desvanecimento Rayleigh, a probabilidade média de erro com

relação ao par pode ser expressa por [4]:

P (c → e) ≤

(
n∏

i=1

1

(1 + λi(Es/4N0))

)m

. (2.12)

Considerando valores altos para a relação sinal-rúıdo (SNR > 10), podemos aproximar

a expressão (2.12) para:

P (c → e) ≤

(
r∏

i=1

λi

)−m(
Es

4N0

)−rm

, (2.13)

Com base na Equação (2.13), podemos observar os ganhos de diversidade e de codi-

ficação do sistema. O ganho de diversidade rm é o expoente da relação sinal-rúıdo

Es/N0 e determina a inclinação na curva da probabilidade de erro versus Es/N0. O

ganho de codificação representa um deslocamento horizontal na curva da probabilidade

de erro versus Es/N0 e pode ser definido como sendo:

Gc =
(λ1λ2 . . . λr)

1/r

DE2
u

, (2.14)

onde DE2
u é a distância Euclideana quadrática do sistema não codificado.

De acordo com a expressão (2.13), para minimizarmos a probabilidade de erro

é necessário maximizar tanto rm quanto (λ1λ2 . . . λr)
1/r. Com isso, pode-se chegar aos

seguintes critérios de projeto [4]:

• O Critério do Posto: Neste critério o parâmetro a ser maximizado é o posto

mı́nimo r da matriz B(c, e) com relação a todos os pares distintos de palavras-

código c e e. O ganho de diversidade é rm ≤ nm, com igualdade se o posto for

completo, ou seja, r = n.
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• O Critério do Determinante: Para um dado ganho de diversidade rm, a meta

deste critério é maximizar a média geométrica mı́nima dos autovalores não nu-

los da matriz A(c, e), (λ1λ2 . . . λr)
1/r, com relação a todos os pares distintos de

palavras-código c e e.

2.2.2 Probabilidade de Erro com Relação ao Par para Valores

Grandes de rm

Quando o desvanecimento é Rayleigh e rm ≥ 4, o limitante da probabilidade média de

erro com relação ao par pode ser escrita como [34]:

P (c → e) ≤ 1
2
exp

(

1
2

(
Es

4N0

)2

m
∑r

i=1 λ
2
i −

Es

4N0
m
∑r

i=1 λi

)

.Q

(

Es

4N0
(m
∑r

i=1 λ
2
i )

1/2
−

(m)1/2
Pr

i=1
λi

(
Pr

i=1
λ2

i )
1/2

) (2.15)

Novamente, considerando valores altos para a relação sinal-rúıdo, podemos aproximar

a expressão (2.15) para:

P (c → e) ≤
1

4
exp

(

−m
Es

4N0

r∑

i=1

λi

)

. (2.16)

Pela expressão (2.16), devemos maximizar o somatório dos autovalores da matriz

A(c, e) para minimizarmos a probabilidade de erro. Note que para uma matriz qua-

drada o somatório de todos os autovalores é igual ao somatório dos elementos de sua

diagonal principal, conhecido como o traço da matriz, ou seja,

tr(A(c, e)) =
r∑

i=1

λi =
n∑

i=1

Ai,i, (2.17)

onde Ai,i são os elementos da diagonal principal de A(c, e). Como

Ai,i =
l∑

t=1

(cit − ei
t)(c

i
t − ei

t)
∗, (2.18)

podemos dizer que:

tr(A(c, e)) =
n∑

i=1

l∑

i=1

|cit − ei
t|

2. (2.19)
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Figura 2.2: Constelações 4-PSK (a) e 8-PSK (b).

A equação (2.19) mostra que o traço de A(c, e) é equivalente à distância Euclideana

quadrática entre as palavras-código c e e.

Com base nas expressões anteriores, pode-se chegar ao seguinte critério de pro-

jeto [34]:

• O Critério do Traço: Garantir posto r para todos os pares distintos de palavras-

código c e e, tal que rm ≥ 4, e maximizar o traço mı́nimo de A(c, e) com relação

a todos os pares distintos de palavras-código c e e.

2.3 Projeto dos STTCs para Canais com Desvane-

cimento Rayleigh Plano Quase-Estático

Nesta seção apresentaremos dois exemplos de STTCs, retirados de [4], para mostrar

como se determinar os ganhos relacionados aos critérios do posto e determinante, e do

traço.

Considere a constelação 4-PSK mostrada na Figura 2.2 (a). A treliça da Figura

2.3 descreve um STTC de 4 estados para a modulação 4-PSK e com duas antenas

transmissoras. O ganho de diversidade é rm = 2m, e o ganhos proporcionados pelos

critérios do determinante e do traço são, respectivamente, 2 e 4. A eficiência espectral

para este código é de log2(4) = 2 b/s/Hz. A treliça mostrada na Figura 2.4 refere-

se a um STTC que usa duas antenas transmissoras para transmitir śımbolos de uma

constelação 8-PSK, vista na Figura 2.2 (b), para um receptor equipado com m antenas.
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Figura 2.3: Código espácio-temporal em treliça, 4-PSK, 2 bits/s/Hz.

Este código proporciona um ganho de diversidade de 2m, mı́nimo determinante igual

a 1, 4 e mı́nimo traço igual a 4, com uma eficiência espectral de 3 b/s/Hz. Nestas

treliças cada par de śımbolos no canto esquerdo representa, respectivamente, o sinal

transmitido pela primeira e segunda antenas. Ao lado esquerdo de cada estado, no

canto esquerdo da treliça, o número de pares de śımbolos é igual ao número de ramos

saindo deste estado. O par de śımbolos mais à esquerda rotula o ramo mais acima,

e corresponde ao śımbolo de informação 0, o par de śımbolos seguinte rotula o ramo

imediatamente abaixo, e corresponde ao śımbolo de informação 1, e assim por diante.

Para se chegar aos ganhos de diversidade dos códigos citados anteriormente, foi

necessário verificar se todas as matrizes B(c, e), referentes aos posśıveis pares distintos

de seqüências que iniciam em estados iguais e terminam em estados iguais, tivessem

posto completo. Após essa verificação, foi preciso calcular a média geométrica dos au-

tovalores e o traço referente a cada matriz A(c, e), para finalmente escolher os menores

valores e fixar os ganhos referentes aos critério do determinante e do traço. Como

exemplo, mostraremos o cálculo do posto, da média geométrica dos autovalores e do

traço de uma matriz A(c, e) referente ao par de seqüências mostrados na treliça da

Figura 2.5, onde as seqüências têm comprimento l = 2. A Figura 2.5 mostra os cami-

nhos correspondentes à seqüência correta, abd, e a seqüência errada, acd. Essa treliça

ilustra um STTC com 4 estados.

Através da Equação (2.8) e dos śımbolos complexos da constelação 4-PSK, ob-
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00 01 02 03 04 05 06 07

50 51 52 53 54 55 56 57

20 21 22 23 24 25 26 27

70 71 72 73 74 75 76 77

40 41 42 43 44 45 46 47

10 11 12 13 14 15 16 17

60 61 62 63 64 65 66 67

30 31 32 33 34 35 36 37

Figura 2.4: Código espácio-temporal em treliça, 8-PSK, 3 bits/s/Hz.

temos a seguinte matriz:

B(c, e) =




0 j − 1

j − 1 0



 . (2.20)

A partir de B podemos facilmente determinar a matriz A como sendo

A(c, e) =




2 0

0 2



 . (2.21)

A matriz A tem posto r = 2, autovalores λ1 = λ2 = 2, com uma média geométrica

igual a 2 e traço igual a 4. Note que a estrutura de codificação apresentada nesta tese

não garante uniformidade geométrica para os códigos [4], e por isso a busca é realizada

sobre todos os posśıveis pares distintos de palavras-código na treliça.

Comentário 1 É importante observar também que para se obter grau máximo de

diversidade, r = n, para um STTC, é necessário que l ≥ n. Isto pode ser verificado

pelo fato de A(c, e) ter o mesmo posto de B(c, e), que tem dimensão n× l.

Devemos chamar a atenção para o fato de que os códigos apresentados nesta

seção não são ótimos. Para se obter o código ótimo seria necessária uma busca exaustiva
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Figura 2.5: Par de seqüências.

num universo de M (S·2M) códigos, onde M é o número de śımbolos da constelação e

S é o número de estados da treliça. Por exemplo, para achar o código ótimo de uma

treliça com 4 estados que utiliza śımbolos de uma constelação 4-PSK, através de uma

busca não sistemática, teŕıamos que procurá-lo em um universo de 432 ≈ 1, 844x1019

códigos. Esta procura se torna impraticável mesmo quando o número de estados da

treliça e/ou o número de śımbolos da constelação são modestos. Dáı a relevância do

estudo de métodos para sistematizar a busca por STTCs.



Caṕıtulo 3

Técnicas para o Projeto de STTCs

sobre Corpos e Anéis Finitos

Neste caṕıtulo serão apresentados alguns resultados através dos quais pode-se simplifi-

car o projeto de bons STTCs sobre GF(p) e Zpk , onde GF(p) denota o corpo de Galois

e Zpk um anel de inteiros finitos, para qualquer número de antenas transmissoras e mo-

dulações pk-PSK. Na Seção 3.1 será apresentada uma conjectura que simplifica o teste

de posto completo para STTCs sobre GF(p), transferindo-o do domı́nio dos complexos

para GF(p). A Seção 3.2 apresentará a estrutura do codificador convolucional sobre

GF(p) e Zpk utilizado nesta tese. A Seção 3.3 mostrará como a busca de STTCs com

diversidade completa pode ser simplificada − um único teste de posto completo em

uma matriz escalar sobre GF(p) substitui uma infinidade de testes de posto completo

em matrizes complexas. Finalmente, na Seção 3.4, serão apresentados três teoremas

que identificam STTCs que possuem o mesmo traço e/ou determinante.

Daqui por diante, para simplificar a notação, em alguns casos GF(p) será consi-

derado como sendo Zpk , para k = 1. O leitor que desejar mais informações sobre álgebra

aplicada à teoria da codificação pode consultar o Apêndice A deste documento.
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3.1 O Critério do Posto p-ário: Conjectura 1

Considere a matriz D(v,w) de dimensão n × l como sendo uma matriz diferença de

palavras-código espácio-temporais sobre GF(p):

D(v,w) ≡ v −w (mod p)

≡











v1,1 − w1,1 v1,2 − w1,2 · · · v1,l − w1,l

v2,1 − w2,1 v2,2 − w2,2 · · · v2,l − w2,l

...
...

. . .
...

vn,1 − wn,1 vn,2 − wn,2 · · · vn,l − wn,l











(mod p),

onde v e w são as palavras-código correta e errônea, respectivamente, sobre GF(p) e

cada elemento di,j = vi,j −wi,j da matriz é reduzido módulo p para se tornar um inteiro

pertencente ao conjunto {0, 1, 2, . . . , p− 1}.

Considerando a matriz D(v,w), apresentaremos uma conjectura através da qual

se torna posśıvel garantir diversidade completa para STTCs verificando apenas o posto

de matrizes diferença sobre GF(p) e não mais de matrizes diferença sobre os complexos.

Com isso, o critério do posto proposto por Tarokh et al., em [4], pode ser simplificado

quando se trata de STTCs sobre GF(p). Este critério simplificado também se aplica

tanto aos códigos lineares quanto aos não lineares.

Conjectura 1 Sejam n e l inteiros positivos com l ≥ n, e p um número primo qual-

quer. Se a matriz D(v,w) de dimensão n × l definida anteriormente for de posto

completo sobre GF(p), então a matriz

B(c, e)
∆
=











e
( j2π

p
v1,1)

− e
( j2π

p
w1,1)

e
( j2π

p
v1,2)

− e
( j2π

p
w1,2)

· · · e
( j2π

p
v1,l) − e

( j2π
p

w1,l)

e
( j2π

p
v2,1) − e

( j2π
p

w2,1)
e
( j2π

p
v2,2) − e

( j2π
p

w2,2) · · · e
( j2π

p
v2,l) − e

( j2π
p

w2,l)

.

.

.

.

.

.

.

.

.

.

.

.

e
( j2π

p
vn,1) − e

( j2π
p

wn,1) e
( j2π

p
vn,2) − e

( j2π
p

wn,2) · · · e
( j2π

p
vn,l) − e

( j2π
p

wn,l)











,

(3.1)

também será de posto completo. O contrário geralmente não é verdade.

Comentário 2 Note que a matriz B(c, e) em (3.1) é exatamente a matriz B(c, e)

em (2.8), onde Bi,t(c, e) = ei
t − cit = e(

j2π
p

vi,t) − e(
j2π
p

wi,t).
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Comentário 3 No Anexo B uma prova é apresentada para a Conjectura 1 quando o

número de antenas transmissoras é n = 2, e no Anexo C são apresentadas algumas

propriedades que dão ind́ıcios de que a Conjectura 1 é verdadeira para qualquer número

de antenas transmissoras.

Comentário 4 A Conjectura 1 não tem um impacto significativo na simplificação

da busca por STTCs, uma vez que ainda há a necessidade de se verificar o posto das

matrizes diferença associadas a todos os posśıveis pares de palavras-código. Mas, como

veremos adiante, a Conjectura 1 servirá como base para chegarmos a outro resultado

importante, que simplificará drasticamente tal busca.

3.2 O Codificador Convolucional sobre GF(p) e Zpk

Uma das contribuições desta tese é a proposição da seguinte estrutura do codificador

para a geração de STTCs para a modulação pk-PSK.

Seja Zpk o anel de inteiros módulo pk, onde p é um número primo e k é um

inteiro positivo. Seja Zp1 = GF (p) o corpo de inteiros módulo p para o caso k =

1. Seja também U(D) = u0 + u1D + u2D
2 + · · · o polinômio de informação sobre

Zpk , representando uma seqüência de informação. Esta seqüência é codificada por um

codificador convolucional sobre Zpk de taxa R = 1/n, o qual é uma realização direta

de um vetor gerador polinomial:

G(D) = [G1(D), G2(D), . . . , Gn(D)] ,

produzindo o vetor codificado

V(D) = U(D)G(D) =
[
V 1(D), V 2(D), . . . , V n(D)

]
,

onde V i(D) = vi
0+vi

1D+vi
2D

2+· · ·+vi
tD

t+· · · , para i = 1, 2 . . . , n, são as n seqüências

codificadas. Os geradores do código são Gi(D) = g0,i + g1,iD + g2,iD
2 · · · + gK,iD

K ,

para i = 1, 2 . . . , n, onde K é a memória do codificador. Um exemplo genérico de

um codificador convolucional sobre Zpk de taxa R = 1/n é apresentado na Figura 3.1,

onde as operações de soma e multiplicação são realizadas módulo-pk, e os śımbolos de
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Figura 3.1: Codificador convolucional genérico de taxa R = 1/n.

entrada, os coeficientes do codificador e os śımbolos de sáıda são elementos do anel Zpk

ou do corpo GF(p), dependendo do valor de k. Da teoria de códigos convolucionais, [37],

o código gerado por esse codificador é linear sobre Zpk . O número de estados da treliça

que representa o código gerado pela estrutura da Figura 3.1 é dado por (pk)K . Por

exemplo, para um codificador sobre Z4 e com K = 2 o código gerado teria uma treliça

com 42 = 16 estados. Quando k > 1, graças a estrutura do anel Zpk , é posśıvel se obter

códigos com número de estados intermediários entre potências de (pk). Para que isso

ocorra basta acrescentar um multiplicador com valor pk−z, onde z = 1, 2, . . . , k−1, entre

a K-ésima e a (K − 1)-ésima memórias do codificador. As Figuras 3.2 e 3.3 mostram

dois exemplos destes codificadores. Na Figura 3.2 é considerado um codificador de

taxa 1/3 com ordem de memória K = 2. Para este caso, se fossem utilizadas, por

exemplo, as modulações 4, 9 e 25-PSK, posśıveis valores de multiplicadores seriam

ψ = 2, 3, 5, respectivamente, resultando em códigos com (pk)K/ψ estados, no caso, 8,

27 e 125 estados. A Figura 3.3 mostra um codificador de taxa 1/3 e ordem de memória

K = 3. Tomando-se como exemplo outras modulações, por exemplo, 8 e 16-PSK, os

multiplicadores seriam ψ = 4, 8, respectivamente, e os códigos teriam 128 e 512 estados

A seguir, baseando-nos na estrutura do codificador utilizado, definiremos duas

matrizes que serão de grande importância para o projeto de STTCs sobre GF(p) e Zpk .

A primeira será uma matriz geradora escalar G, de dimensão n×K+1, formada pelos



22

ut−2

3vt

1

2vt

vt

tu
t−1u

g
0,3

0,2
g

0,1
g

1,3g

1,2g

1,1g

g

g
2,2

g

2,3

2,1

Ψ

Figura 3.2: Codificador convolucional de taxa R = 1/3 e memória K = 2.
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Figura 3.3: Codificador convolucional de taxa R = 1/3 e memória K = 3.

coeficientes do codificador da Figura 3.1:

G
def
=











g0,1 g1,1 · · · gK,1

g0,2 g1,2 · · · gK,2

...
...

. . .
...

g0,n g1,n · · · gK,n











(3.2)

onde gx,i, para x = 0, 1, . . . , K e i = 1, 2, . . . , n são os coeficientes do codificador da

Figura 3.1. A segunda matriz, G’, será definida como a matriz G reduzida módulo-p:

G′ def
= G (mod p) =











g′0,1 g′1,1 · · · g′K,1

g′0,2 g′1,2 · · · g′K,2

...
...

. . .
...

g′0,n g′1,n · · · g′K,n











(3.3)

onde g′x,i, para x = 0, 1, . . . , K e i = 1, 2, . . . , n são elementos de GF(p).

Comentário 5 Note que se o codificador utilizado for sobre GF(p), as duas matrizes
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serão idênticas.

3.3 Técnicas para o Projeto de STTCs sobre GF(p)

e Zpk com Diversidade Completa

Nesta seção serão apresentadas duas conjecturas muito úteis para a obtenção de STTCs

com diversidade completa.

3.3.1 Técnica para o Projeto de STTCs sobre GF(p) com Di-

versidade Completa: Conjectura 2

Para dizer que um STTC possui ganho de diversidade máximo, é necessário garantir

que o posto de todas as matrizes B(c, e) correspondentes ao código seja completo.

Este teste, quando realizado individualmente em cada matriz, se torna muito complexo

devido ao elevado número de matrizes a serem verificadas. A seguir, apresentaremos

uma conjectura através da qual é posśıvel obter STTCs sobre GF(p) com diversidade

completa com apenas um único teste de posto completo em uma matriz escalar sobre

GF(p).

Conjectura 2 Considere um codificador convolucional sobre GF(p) de taxa R = 1/n,

como o mostrado na Figura 3.1, e a correspondente matriz geradora escalar G, definida

em (3.2). A matriz B(c, e) terá posto completo sobre os complexos, com relação a todos

os posśıveis pares distintos de palavras-código c e e se, e somente se, a matriz G tiver

posto completo sobre GF(p). Portanto, o STTC associado a G atingirá o máximo

ganho de diversidade.

Comentário 6 É importante ressaltar que nessa conjectura uma infinidade de testes

de posto de matrizes complexas é substitúıda por um único teste de posto de uma matriz

de inteiros sobre GF(p).

Prova direta: Inicialmente, suponha que a Conjectura 1 seja verdadeira e depois

utilize o argumento a seguir (apresentado na prova do [20, Teorema 14]) para garantir
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que uma matriz G de posto completo sobre GF(p) só irá gerar palavras-código também

de posto completo sobre GF(p).

Se uma matriz palavra-código sobre GF(p) é de posto incompleto podemos afir-

mar que:
n∑

i=1

ai

K∑

x=0

ut−xgx,i =

n∑

i=1

aiGi(D)U(D) = 0, (3.4)

onde ai é uma solução não trivial para a expressão (3.4) e
∑K

x=0 ut−xgx,i é a expressão

para a i-ésima sáıda do codificador da Figura 3.1. A expressão (3.4) será verdadeira

quando U(D) 6= 0 se, e somente se,

n∑

i=1

aiGi(D) = 0, (3.5)

ou seja, se e somente se a matriz G for de posto incompleto.

Com isso, usaremos a propriedade de que em um código linear a diferença entre

duas palavras-código também é uma palavra-código. Portanto, pela Conjectura 1,

poderemos concluir que se a matriz geradora G for de posto completo sobre GF(p),

todas as matrizes diferença de palavras-código D(v,w) serão de posto completo sobre

GF(p), resultando em um STTC com diversidade completa. �

A prova de que uma matriz geradora G de posto incompleto irá gerar um STTC

de diversidade incompleta (prova inversa) ainda não foi conseguida, mas essa proprie-

dade se verificou em todos os casos simulados.

Para ilustrar este resultado, mostraremos o seguinte exemplo:

Exemplo 1 Considere um sistema espácio-temporal com duas antenas transmissoras

utilizando a modulação 7-PSK e o codificador convolucional sobre GF(7) de taxa R =

1/2 mostrado na Figura 3.4. Segundo (3.2), a matriz G é dada por:

G =




5 1

2 4





Pode-se verificar facilmente que a matriz G possui posto completo sobre GF(7) e, por-

tanto, segundo a Conjectura 2, o codificador da Figura 3.4 irá gerar um STTC sobre

GF(7) para a modulação 7-PSK com ganho de diversidade máximo.
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Figura 3.4: Codificador convolucional sobre GF(7), R = 1/2.

3.3.2 Técnica para o Projeto de STTCs sobre Zpk com Diver-

sidade Completa: Conjectura 3

Na Conjectura 2, foi estabelecido que é posśıvel garantir diversidade completa para

um STTC sobre GF(p) desde que os coeficientes de seu correspondente codificador

convolucional constituam uma matriz geradora escalar de posto completo sobre GF(p).

Na próxima conjectura, estenderemos esse resultado para codificadores convolucionais

sobre Zpk de taxa R = 1/n, com o intuito de utilizarmos modulações usuais como, por

exemplo, 4-PSK e 8-PSK.

Conjectura 3 Considere um codificador convolucional sobre Zpk de taxa R = 1/n

com uma matriz geradora escalar G. A matriz B(c, e) terá posto completo sobre os

complexos, com relação a todos os posśıveis pares distintos de palavras-código c e e se, e

somente se, a matriz G reduzida módulo-p, denotada por G’, tiver posto completo sobre

GF(p). Portanto, o STTC associado a G atingirá o máximo ganho de diversidade.

Comentário 7 Note que para k = 1 o resultado apresentado se torna um caso parti-

cular da Conjectura 2.

Para propor esta conjectura, fizemos uma analogia a um teorema apresentado

por Massey e Mittelholzer em [38] para códigos convolucionais sobre o anel Zpk , que

diz: “Um polinômio gerador G(D) sobre o anel Zpk , onde p é primo e k é um inteiro

positivo, é catastrófico se, e somente se, seus coeficientes polinomiais reduzidos módulo-

p resultarem em um polinômio gerador sobre GF(p) também catastrófico”. Apesar

de não apresentarmos formalmente uma prova matemática, que relacione diretamente



26

v

v

t

t

1

2

tu
t−1u

7 1

36

Figura 3.5: Codificador convolucional sobre Z8, R = 1/2.

estes dois resultados, a Conjectura 3 foi verificada em todos os casos onde realizamos

buscas exaustivas nos coeficientes do codificador.

Para ilustrar a Conjectura 3, apresentaremos o seguinte exemplo:

Exemplo 2 Considere um sistema espácio-temporal com duas antenas transmissoras

utilizando a modulação 8-PSK e o codificador convolucional linear sobre Z8 de taxa

R = 1/2 mostrado na Figura 3.5. Seguindo as definições de G e G’, tem-se:

G =




7 1

6 3



 e G′ =




1 1

0 1



 .

Pode-se verificar facilmente que a matriz G’ possui posto completo sobre GF(2) e,

portanto, segundo a Conjectura 3, o codificador da Figura 3.5 irá gerar um STTC

sobre Z8 para a modulação 8-PSK com ganho de diversidade máximo.

Apesar de a Seção 3.3 ser focada nos STTCs com diversidade completa, esses

resultados também podem ser úteis para o projeto de STTCs baseados no critério do

traço, pois antes de maximizar o traço mı́nimo é necessário garantir que rm ≥ 4. No

próximo caṕıtulo usaremos as Conjecturas 2 e 3 para simplificar a busca de STTCs

com diversidade completa, e realizaremos algumas simulações para comprovar o bom

desempenho dos códigos obtidos.
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3.4 Outras Técnicas para se Projetar STTCs sobre

GF(p) e Zpk

Nesta seção serão apresentados três teoremas que simplificam a busca de STTCs sobre

Zpk sem descartar os códigos ótimos. Os dois primeiros teoremas (Teoremas 1 e 2) são

adaptações de [29, Teoremas 1 e 2] para os codificadores utilizados neste trabalho, e

servem tanto para os STTCs projetados através do critério do determinante quanto

para os projetados pelo critério do traço. O último teorema (Teorema 3) é válida

apenas para a simplificação da busca de STTCs projetados pelo critério do traço.

3.4.1 Teorema 1

Em [29], os autores mostraram que é posśıvel reduzir a busca de STTCs sem descartar

códigos ótimos. Isto é feito desconsiderando-se os conjuntos de coeficientes que geram

matrizes diferença de palavras-código complexas conjugadas, evitando assim avaliar

códigos com os mesmos ganhos. No próximo teorema apresentaremos um resultado

similar ao obtido em [29, Seção 3.2], porém desenvolvido para STTCs gerados por

codificadores convolucionais sobre Zpk .

Teorema 1 Considere um STTC sobre Zpk gerado por uma matriz geradora G com

coeficientes gx,i, para x = 0, 1, . . . , K e i = 1, 2, . . . , n. As matrizes A(c, e), definidas

como B(c, e)B(c, e)∗, geradas por este código serão complexas conjugadas das matrizes

A(c, e) geradas por um código cuja matriz geradora possui coeficientes pk − gx,i. Por-

tanto, para fins de projeto de STTCs, os dois códigos terão as mesmas caracteŕısticas

com relação ao posto, determinante e traço.

Prova: Considere que as sáıdas do codificador da Figura 3.1 sejam dadas por:

vi
t =

K∑

x=0

ut−xgx,i, (mod pk). (3.6)
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Tabela 3.1: Exemplos de STTCs Equivalentes - Teorema 1

pk − PSK n Matriz G Matriz G̃ = pk −G Determinante Traço

4 2 [0 3 1 3] [0 1 ; 3 1] 2 6

5 2 [3 0 0 1] [2 0 ; 0 4] 2,23 5

16 2 [15 5 9 8] [1 11 ; 7 8] 0,78 4,58

Alterando os coeficientes do codificador por pk−gx,i teremos as seguintes sáıdas:

ṽi
t =

K∑

x=0

ut−x(p
k − gx,i) (mod pk) =

K∑

x=0

(ut−xp
k) − (ut−xgx,i) (mod pk)

=
K∑

x=0

−ut−xgx,i (mod pk) = −vi
t (mod pk)

= pk − vi
t. (3.7)

Agora vamos analisar o impacto desta alteração na matriz diferença de palavras-

código B(c, e). Cada elemento de B(c, e) é uma diferença de números complexos da

forma:

bi,j = exp(
j2πc

pk
) − exp(

j2πe

pk
)

Com a alteração dos coeficientes por pk − gx,i teremos:

b̃i,j = exp(
j2π(pk − c)

pk
) − exp(

j2π(pk − e)

pk

= exp(
−j2πc

pk
) − exp(

−j2πe

pk
)

= bi,j , (3.8)

onde bi,j denota o complexo conjugado.

Com isso, podemos concluir que alterar os coeficientes do codificador sobre Zpk

por pk − gx,i implica em obter uma matriz B(c, e) conjugada, e como A = BBH ,

Ã = (BBH) = A. Segundo [4], A é Hermitiana e portanto A e A terão o mesmo posto,

determinante e traço. �

A Tabela 3.1 mostra, como exemplo, alguns STCCs equivalentes para cons-

telações pk-PSK.
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Comentário 8 Note que através deste teorema é posśıvel reduzir aproximadamente

pela metade o número de STCCs a serem testados sem que os códigos com maior de-

terminante e traço sejam descartados. Esta redução é obtida ignorando-se a verificação

de códigos com coeficientes pk − gx,i.

3.4.2 Teorema 2

Com base em [29, Teorema 2], mostraremos um teorema a partir da qual é posśıvel

simplificar a busca de STTCs considerando que permutações nas linhas das matrizes

diferenças de palavras-código não afetam caracteŕısticas como posto, determinante e

traço dos STTCs.

Teorema 2 Considere um STTC sobre Zpk gerado por uma matriz geradora G. Uma

permutação das linhas de G não afeta caracteŕısticas como posto, determinante e traço

do respectivo STTC.

Prova: Observando a estrutura do codificador da Figura 3.1 podemos facilmente notar

que uma permutação nas linhas de sua matriz geradora G implica em uma permutação

nas linhas de B(c, e), pois cada sáıda vi
t depende apenas dos coeficientes da i-ésima

linha de G. Em [29], devido à estrutura do codificador utilizado, as permutações nas

linhas de B(c, e) são ocasionadas por permutações das colunas da matriz geradora,

mas para analisar os efeitos que as permutação nas linhas de B(c, e) causam na matriz

A(c, e), podemos utilizar a mesma prova apresentada em [29] para garantir que per-

mutações nas linhas de B(c, e) não afetam caracteŕısticas como posto, determinante e

traço da matriz A(c, e) correspondente. Esta prova é baseada no fato de que:

det(A) = (−1)q det(Ã), (3.9)

onde Ã é a matriz A permutada e q é o número de permutações realizadas tanto em

linha como em coluna.

Sabemos que x permutações nas linhas de G implicam em x permutações nas

linhas de B. Ao se obter BH , inevitavelmente são feitas mais x permutações em B.

Com isso, A e Ã serão diferentes em 2x permutações e, portanto:

det(A) = det(Ã). (3.10)
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Tabela 3.2: Exemplos de STTCs Equivalentes - Teorema 2

pk − PSK n Matriz G Matriz G com Permutações nas Linhas Determinante Traço

4 2 [0 3 ; 1 3] [1 3 ; 0 3] 2 6

7 3 [1 6 4 ; 3 3 2 ; 2 5 6] [3 3 2 ; 1 6 4 ; 2 5 6] 0.44 21

9 3 [7 7 6 ; 6 2 8 ; 1 4 4] [1 4 4 ; 7 7 6 ; 6 2 8] 0.35 18

Com relação ao traço de A, alterar quaisquer x linhas ou colunas de uma matriz

simplesmente altera a ordem do somatório requerido para o cálculo de seu traço. �

Na tabela 3.2, mostramos alguns exemplos de STTCs sobre Zpk para ilustrar o

Teorema 2.

Comentário 9 Note que com esse teorema é posśıvel se obter uma redução fatorial

na busca de STTCs. Por exemplo, um sistema com n = 3 antenas transmissoras teria

uma redução do número de códigos verificados de 3! = 6 vezes.

Comentário 10 Uma maneira alternativa de se provar o Teorema 2 é através do

seguinte argumento. Note que uma permutação das linhas de G implicam numa cor-

respondente permutação espacial das antenas transmissoras. Como supostamente o

canal definido a partir de cada antena transmissora tem o mesmo comportamento es-

tat́ıstico, e como o critério de desempenho é baseado na probabilidade de erro média,

tal permutação não deveria alterar o desempenho médio do sistema.

3.4.3 Teorema 3

Para finalizar o caṕıtulo, apresentaremos um teorema que reduz o esforço da busca

por STTCs projetados pelo critério do traço sem descartar os códigos ótimos. Essa

redução é baseada no fato de que alterar uma linha da matriz B(c, e) por seu complexo

conjugado não altera o traço da matriz A(c, e) correspondente.

Teorema 3 Considere um STTC sobre Zpk gerado por uma matriz geradora G com

coeficientes gx,i, para x = 0, 1, . . . , K e i = 1, 2, . . . , n. Alterar os coeficientes gx,i de χ

linhas de G por pk − gx,i, onde 1 ≤ χ ≤ n, não altera o traço da matriz A(c, e) para

qualquer par de palavras-código c e e do STTC.
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Tabela 3.3: Exemplos de STTCs com Traços Iguais - Teorema 3

pk − PSK n Matriz G Matriz G com Algumas linhas pk − gk,i Traço

3 2 [2 1 1 ; 1 1 2] [2 1 1 ; 2 2 1] 18

8 3 [3 4 7 5 6 2 ; 7 1 3] [5 4 1 5 6 2 ; 7 1 3] 19,17

11 3 [3 10 2 7 1 8 ; 6 1 6] [8 1 9 4 10 3 ; 6 1 6] 16,42

Prova: Considere um codificador convolucional sobre GF(p) de taxa R = 1/n

com uma matriz geradora escalar G, definida na Seção 3.2. Como mostrado no Teorema

1, ao substituirmos os coeficientes gx,i de uma linha da matriz G por pk − gx,i estamos

conjugando a correspondente linha da matriz diferença de palavras-código B(c, e). Pelo

fato de A = BBH , o elemento da diagonal ai,i da matriz A será dado pelo somatório dos

módulos ao quadrado dos elementos da i-ésima linha da matriz B. Como |bi,j |
2 = |bi,j|

2

e como o traço de uma matriz é dado pelo somatório dos elementos de sua diagonal,

pode-se concluir que o Teorema 3 é verdadeiro. �

A Tabela 3.3 apresenta alguns exemplos de STTCs para ilustrar este resultado.

Comentário 11 Note que esse resultado reduz a busca por um fator 2n.

Comentário 12 Observe que quando todas as linhas são modificadas, i.e., χ = n,

esse teorema se torna o Teorema 1, e portanto se torna válida para simplificar também

a busca de STTCs projetados pelo critério do determinante.



Caṕıtulo 4

Resultados: Aplicações das

Técnicas Propostas

O objetivo deste caṕıtulo é apresentar alguns STTCs sobre GF(p) e Zpk obtidos a partir

das técnicas propostas neste trabalho. Inicialmente, na Seção 4.1, será feita uma análise

da redução de complexidade da busca de STTCs devido à estrutura do codificador

utilizado e das técnicas propostas. A Seção 4.2 apresentará algumas tabelas contendo

STTCs sobre GF(p) e Zpk , sendo alguns desses inéditos na literatura, e apresentará

também comentários sobre as vantagens e desvantagens em se utilizar codificadores

sobre corpos e aneis. Por último, na Seção 4.3, serão apresentados alguns resultados de

simulações para comprovar o bom desempenho desses códigos diante dos canais com

desvanecimento.

4.1 Simplificação da Busca de STTCs

Nesta seção mostraremos o quanto é posśıvel reduzir a busca de STTCs utilizando a

estrutura e as técnicas propostas nesta tese. Antes disso, para uma análise compara-

tiva, apresentaremos a estrutura de codificação para STTCs usualmente utilizada na

literatura.

32
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4.1.1 Estrutura Padrão

Baro et al. [19] foram um dos pioneiros na sistematização da busca de STTCs. Eles

utilizaram o conceito de matriz geradora para descrever os códigos, e assim realiza-

ram as buscas variando os elementos desta matriz. Este processo tornou a busca por

STTCs um pouco mais simples. Porém, quando se trata de busca exaustiva, o esforco

computacional mesmo para os casos mais simples ainda é bastante elevado. A seguir,

descreveremos esta estrutura.

Seja Gb uma matriz geradora de dimensão (z+K)×n cujos elementos pertencem

ao anel ZM , onde z = log2(M) e K é o número de registradores do codificador. Seja

ut = (uzt+(z−1) . . . uzt+1 uzt . . . uzt−K) o vetor contendo os bits de informação. O

vetor codificado é obtido pela operação

vt = (ut · Gb) ( mod M),

seus elementos pertencem ao anel ZM e são diretamente mapeados em valores de uma

constelação M-PSK, para em seguida serem transmitidos pelas n antenas transmisso-

ras.

Com este esquema Baro et al. encontraram alguns STTCs com diversidade com-

pleta utilizando uma modulação 4-PSK e duas antenas transmissoras. Para um codifi-

cador com 4 estados foi obtido um STTC com ganho de codificação máximo a partir de

uma busca exaustiva sobre todos os posśıveis códigos desta estrutura. Para termos uma

idéia da complexidade dessa busca, considere o codificador com 4 estados da Figura

4.1 cuja matriz Gb é:

Gb =











g011 g012

g021 g022

g111 g112

g121 g122











Como para esse exemplo foi utilizada uma modulação 4-PSK, houve a necessidade de

analisar 48 = 65536 códigos. Caso fosse utilizada uma modulação 8-PSK, o número

total de códigos a serem analisados seria de 812 = 68719476736. Em [34], os autores

propõem um método sub-ótimo para simplificar a busca nesta estrutura. Neste método,

os coeficientes da matriz geradora para n − 1 antenas e um determinado número de
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Figura 4.1: Exemplo da estrutura de codificação padrão de taxa R = 1/2 e 4 estados

estados são mantidos fixos e a busca ocorre apenas nos coeficientes extras que são

adicionados devido à inserção da n-ésima antena transmissora.

Comentário 13 Note que nesse processo de busca todos os códigos são analisados,

até mesmo os que não possuem posto suficiente para garantir o bom desempenho do

código.

Comentário 14 Todos os códigos apresentados por Baro et al. em [19] são não-

lineares sobre o anel Zpk , visto que vt é um vetor binário e os elementos de Gb estão

sobre o anel.

A estrutura da Figura 4.1 é utilizada em [34], onde pode-se encontrar algumas

tabelas contendo uma grande variedade de STTCs para as modulações 4 e 8-PSK.
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Tabela 4.1: Comparação das Estruturas para Buscas Exaustivas

pk − PSK n N. de estados N. total de códigos (Estrutura padrão) N. total de códigos (Estrutura sobre o anel)

4 2 4 48 44

2∗ 8 410 49

3 16 418 49

8 2 8 812 84

2∗ 16 814 89

3 64 827 89

9 2 9 98 94

3 81 918 99

16 2 16 1616 164

3 256 1636 169

4.1.2 Estrutura Utilizada

Como visto na Seção 4.2, a estrutura de codificação proposta nesta tese para gerar os

STTCs é diferente da apresentada na Seção 5.1.1, uma vez que nesta tese os śımbolos

de entrada estão sobre GF(p) ou Zpk e não apenas no corpo binário. Pelo fato de

esta estrutura possuir um número menor de coeficientes, a busca exustiva neste caso

é proporcionalmente reduzida. A seguir, na Tabela 5.1, faremos algumas comparações

para quantificar esta redução. Note pela Tabela 5.1 que enquanto o número de códigos

a serem analisados pela estrutura do anel (proposta nesta tese) é de pkn(K+1), com a

estrutura padrão será de pk2n(K+1), onde n é o número de antenas transmissoras e K é

a ordem de memória do codificador sobre o anel.

Não podemos deixar de mencionar que em consequêcia da redução do número

total de códigos a serem analisados no caso da estrutura sobre o anel, o código com o

melhor ganho poderá ser descartado em alguns casos. Comentaremos melhor este fato

na seção seguinte.

4.1.3 Técnicas Propostas

No caṕıtulo anterior foram apresentadas seis técnicas que simplificam a busca por

STTCs sobre GF(p) e Zpk . A seguir, mostraremos alguns exemplos numéricos para

ilustrar estas simplificações.
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Tabela 4.2: Busca exaustiva para STTCs com modulações p-PSK

p n K N. total de códigos Div. completa Div. incompleta

2 1 81 48 33

3 3 2 19683 11232 8451

5 2 1 625 480 145

7 2 1 2401 2016 385

No primeiro exemplo, faremos referência à Tabela 4.2, a qual compara o número

de códigos que são analisados em uma busca exaustiva para o caso de STTCs sobre

GF(p) considerando ou não a Conjectura 2. Quando a Conjectura 2 é utilizada, os

códigos com diversidade incompleta são descartados e o cálculo do determinante e

do traço são realizados apenas nos códigos com diversidade completa. Como menci-

onado anteriormente, essa conjectura é mais eficaz para o caso de STTCs projetados

pelo critério do determinante, uma vez que esses códigos exigem diversidade completa.

Quando o critério de projeto é o do traço, esta conjectura pode ser utilizada para

garantir um posto mı́nimo r, tal que rm ≥ 4.

Comentário 15 Nas buscas da Tabela 5.2, todos os posśıveis códigos foram anali-

sados de acordo com o critério do posto e em seguida classificados como sendo de di-

versidade completa ou não. Neste procedimento pôde-se verificar que todos os STTCs

com diversidade completa possúıam matrizes G com posto completo sobre GF(p), en-

quanto os STTCs com diversidade incompleta não tinham esta mesma caracteŕıstica.

Através destes resultados, pôde-se verificar também que a Conjectura 2 é uma condição

necessária e suficiente para se obter STTCs com ganho de diversidade máximo.

A Tabela 4.3 ilustra, de maneira similar ao exemplo anterior, a redução da busca

exaustiva para STTCs sobre Zpk proporcionada pela Conjectura 3. Os comentários

anteriores feitos para a Tabela 4.2 também são válidos para a Tabela 4.3.

A redução proporcionada pelos Teoremas 1, 2 e 3 foram mencionadas no caṕıtulo

anterior e podem ser combinadas entre si para trazer uma redução significante na busca.

A seguir, mostraremos um exemplo para ilustrar a redução que pode ser obtida
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Tabela 4.3: Busca exaustiva para STTCs com modulações pk-PSK

pk n K N. total de códigos Div. completa Div. incompleta

4 2 1 256 96 160

8 2 1 4096 1536 2560

9 2 1 6561 3888 2673

combinando os resultados propostos nesta seção.

Exemplo 3 Considere um sistema com 3 antenas transmissoras e um codificador con-

volucional sobre Z4 de taxa R = 1/3 e K = 2. Para esta configuração, o número total

de posśıveis códigos é de 49 = 262144. Se o critério de projeto for o do determinante,

nós poderiamos utilizar o Teorema 1 e reduzir a busca para 49/2 = 131072 códigos.

Combinando este resultado com o Teorema 2, o número de código pode ser reduzido

a (49/2)/3! = 21845 códigos. Destes 21845 códigos, ainda podemos utilizar a Conjec-

tura 3 para testar apenas os códigos com diversidade completa e reduzir ainda mais a

busca. Caso o critério de busca seja o do traço, ainda há a possibilidade de utilizar o

Teorema 3 para reduzir o número de códigos para ((49/2)/3!)/23 = 2731. Destes 2731

ainda poderiamos utilizar a Conjectura 3 para testar apenas os códigos cujo posto r

mantenham a relação rm ≥ 4.

Podemos comparar o exemplo anterior com as reduções obtidas por [34] e [29].

Em [34], utilizando um método sub-ótimo e a estrutura padrão, torna-se necessário

testar 48+44 = 65792 códigos. Já em [29], através das técnicas comentadas no Caṕıtulo

3, consegue-se reduzir a busca para (412/2)/3! = 1398101 códigos. Apesar da redução

obtida em [29] ser menor, o método aplicado não descarta os códigos com os melhores

ganhos.

Comentário 16 Note que os métodos apresentados nesta tese para simplificar a busca

exaustiva não descartam os códigos ótimos para as estruturas sobre corpos e aneis

mas, como veremos na seção seguinte, existem casos em que o código ótimo obtido

pela estrutura utilizada nesta tese tem ganho menor que o código ótimo obtido pela
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estrutura padrão, considerando ambos os códigos equivalentes em número de antenas

transmissoras e estados.

4.2 Resultados das Buscas de Códigos

Nesta seção, serão apresentados os resultados das buscas de códigos realizadas com o

aux́ılio das técnicas propostas nesta tese. Na Subseção 4.2.1, serão apresentados os

resultados de busca para STTCs com modulações pk-PSK projetados pelo critério do

determinante. Na Subseção 4.2.2 serão apresentados os STTCs projetados pelo critério

do traço e serão feitos também alguns comentários sobre os resultados obtidos.

4.2.1 STTCs para Modulações pk-PSK Projetados pelo Critério

do Posto e do Determinante

Para STTCs com duas e três antenas transmissoras e uma receptora, a ordem de

diversidade do sistema sempre será menor do que quatro e, portanto, os critérios de

projeto mais apropriados para esta situação são o do posto e do determinante. Nesta

subseção, apresentaremos varias tabelas (4.4 a 4.11) com STTCs para modulações

pk-PSK, utilizando duas, três e quatro antenas transmissoras. A ordem de memória

dos codificadores varia de K = 1 até K = 3. Nestas tabelas serão indicados os

seguintes dados: número de antenas transmissoras (n), número de estados (n. de est),

os coeficientes da matriz geradora (G), o posto do STTC (posto) e a média geométrica

mı́nima dos autovalores deA(c, e) (ηdet), indicando o ganho do STTC através do critério

do determinante e o traço da matriz A(c, e) (ηtr). A eficiência espectral dos códigos

apresentados nesta subseção são de log2 p
k b/s/Hz.

Comentário 17 Em todas as tabelas desta subseção, os códigos que estiverem marca-

dos com ∗ são códigos obtidos através de uma busca exaustiva, ou seja, são os códigos

que possuem os maiores parâmetros (posto, ηdet) com relação à estrutura proposta nesta

tese, ao número de antenas transmissoras, ao número de estados e a modulação utili-

zada, enquanto que os que estão sem ∗ foram obtidos por uma busca parcial. Os códigos
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com a notação † são inéditos na literatura com relação à modulação, ao número de es-

tados e/ou ao número de antenas transmissoras.

Tabela 4.4: STTCs para a modulação 3-PSK com n = 2, 3 e 4 antenas transmissoras

baseados nos critérios do posto e do determinante

n n. de est. G posto ηdet ηtr

2 3∗ [0 1 ; 1 0] 2 3 6

2 9∗ [0 1 1 ; 2 1 2] 2 5, 19 15

2 27∗ [1 1 0 2 ; 1 0 1 1] 2 7, 35 18

3 9†∗ [0 0 1 ; 0 1 0 ; 1 0 0] 3 3 9

3 27†∗ [2 2 0 2 ; 2 1 0 0 ; 2 2 1 1] 3 4, 76 27

4 27† [0 0 2 0 ; 0 1 1 0 ; 2 2 0 2 ; 1 2 2 0] 4 3 27

Tabela 4.5: STTCs para a modulação 4-PSK com n = 2, 3 e 4 antenas transmissoras

baseados nos critérios do posto e do determinante

n n. de est. G posto ηdet ηtr

2 4∗ [0 3 ; 1 3] 2 2 6

2 8∗ [1 0 1 ; 2 1 1] 2 4 8

2 16∗ [0 1 1 ; 1 0 2] 2 4 10

2 64∗ [1 0 1 2 ; 0 2 1 1] 2 6, 63 16

3 16∗ [1 0 0 ; 0 0 1 ; 0 1 0] 3 2 6

3 64 [0 3 0 2 ; 1 0 2 0 ; 2 0 0 3] 3 4 12

4 64 [0 3 0 2 ; 3 3 1 2 ; 3 1 3 3 ; 3 3 2 3] 4 2 34
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Tabela 4.6: STTCs para a modulação 5-PSK com n = 2, 3 e 4 antenas transmissoras

baseados nos critérios do posto e do determinante

n n. de est. G posto ηdet ηtr

2 5∗ [3 0 ; 0 1] 2 2, 23 5

2 25∗ [1 0 2 ; 0 2 1] 2 3, 96 10

2 125† [3 4 2 4 ; 0 4 1 1] 2 4, 28 14, 14

3 25†∗ [0 4 3 ; 1 3 1 ; 2 1 1] 3 1, 94 17, 76

3 125† [3 4 0 1 ; 0 2 0 0 ; 4 1 2 3] 3 2, 67 20

4 125† [1 3 2 0 ; 4 1 0 0 ; 4 2 1 2 ; 4 4 0 0] 4 1, 75 24, 14

Tabela 4.7: STTCs para a modulação 7-PSK com n = 2, 3 antenas transmissoras

baseados nos critérios do posto e do determinante

n n. de est. G posto ηdet ηtr

2 7∗ [5 3 ; 4 5] 2 1, 79 6, 39

2 49†∗ [0 1 2 ; 4 6 0] 2 3, 21 7, 75

3 49† [6 0 0 ; 5 6 4 ; 0 4 1] 3 1, 93 12, 30

Tabela 4.8: STTCs para a modulação 8-PSK com n = 2, 3 antenas transmissoras

baseados nos critérios do posto e do determinante

n n. de est. G posto ηdet ηtr

2 8∗ [4 1 ; 5 4] 2 2 4

2 16∗ [4 5 0 ; 7 4 1] 2 2 4

2 64† [5 4 5 ; 1 1 4] 2 2, 83 8

3 64† [0 7 4 ; 3 4 0 ; 4 0 1] 3 2 6



41

Tabela 4.9: STTCs para a modulação 9-PSK com n = 2, 3 antenas transmissoras

baseados nos critérios do posto e do determinante

n n. de est. G posto ηdet ηtr

2 9∗ [6 4 ; 2 3] 2 1, 06 6

2 27† [0 8 6 ; 5 6 8] 2 1, 79 6

2 81† [4 8 3 ; 1 0 5] 2 2, 47 7, 24

3 81† [0 5 5 ; 7 0 0 ; 0 8 0] 3 1, 44 6, 46

Tabela 4.10: STTCs para a modulação 11-PSK com n = 2, 3 antenas transmissoras

baseados nos critérios do posto e do determinante

n n. de est. G posto ηdet ηtr

2 11†∗ [10 6 ; 6 1] 2 0, 86 2, 97

3 121† [2 9 3 ; 7 4 0 ; 2 0 0] 3 1, 07 6, 60

Tabela 4.11: STTCs para a modulação 13, 16 e 17-PSK com n = 2 antenas transmis-

soras baseados nos critérios do posto e do determinante

pk − PSK n n. de est. G posto ηdet ηtr

13 2 13†∗ [0 1 ; 5 0] 2 0, 89 2, 62

16 2 16∗ [15 5 ; 9 8] 2 0, 78 4, 58

17 2 17†∗ [10 16 ; 6 4] 2 0, 80 5, 53
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4.2.2 STTCs para Modulações pk-PSK Projetados pelo Critério

do Traço

Quando o sistema possuir uma configuração de antenas na qual seja posśıvel se obter

uma ordem de diversidade maior ou igual a quatro, o STTC utilizado terá um melhor

desempenho se for projetado de acordo com o critério do traço. As tabelas a seguir

(4.12 a 4.21) mostram STTCs obtidos pelo critério do traço em sistemas com duas, três

e quatro antenas transmissoras utilizando modulações pk-PSK. Para que o STTC tenha

o melhor desempenho, é necessário que se tenha pelo menos duas antenas receptoras

para o caso de n = 2, 3 e uma para o caso de n = 4. A eficiência espectral dos códigos

apresentados nesta subseção são de log2 p
k b/s/Hz.

Comentário 18 Novamente, em todas as tabelas desta subseção, os códigos que es-

tiverem marcados com ∗ são códigos obtidos através de uma busca exaustiva, ou seja,

são os códigos que possuem os maiores parâmetros (posto, ηdet) com relação à estru-

tura proposta nesta tese, ao número de antenas, ao número de estados e a modulação

utilizada, enquanto que os que estão sem ∗ foram obtidos por uma busca parcial. Os

códigos com a notação † são inéditos na literatura com relação à modulação, ao número

de estados e/ou ao número de antenas transmissoras.
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Tabela 4.12: STTCs para a modulação 3-PSK com n = 2, 3 e 4 antenas transmissoras

baseados no critério do traço

n n. de est. G posto ηtr ηdet

2 3∗ [1 1 ; 1 2] 2 12 3

2 9∗ [2 1 1 ; 1 1 2] 2 18 4, 24

2 27∗ [1 0 1 1 ; 1 1 1 2] 2 21 6, 70

3 3†∗ [1 1 ; 1 2 ; 2 1] 2 18 −

3 9†∗ [1 1 1 ; 1 1 2 ; 1 2 1] 3 27 3

3 27†∗ [1 0 1 2 ; 1 1 1 1 ; 1 1 2 1] 3 33 4, 32

4 3†∗ [1 1 ; 1 1 ; 1 1 ; 1 2] 2 24 −

4 9†∗ [0 2 1 ; 1 1 1 ; 1 2 1 ; 2 2 1] 3 33 −

4 27† [2 1 2 2 ; 2 0 2 1 ; 1 1 2 2 ; 2 2 2 1] 4 45 3

Tabela 4.13: STTCs para a modulação 4-PSK com n = 2, 3 e 4 antenas transmissoras

baseados no critério do traço

n n. de est. G posto ηtr ηdet

2 4∗ [1 1 ; 1 2] 2 10 2

2 8∗ [1 1 0 ; 2 1 1] 2 12 3, 46

2 16∗ [1 1 2 ; 2 1 3] 2 16 3, 46

2 64∗ [1 0 1 2 ; 1 1 2 1] 2 18 5, 29

3 4∗ [1 1 ; 1 1 ; 1 2] 2 14 −

3 8∗ [3 3 0 ; 1 0 1 ; 1 3 1] 2 18 −

3 16∗ [1 1 1 ; 1 2 2 ; 2 1 3] 2 24 −

4 4∗ [1 1 ; 1 1; 1 2 ; 1 2] 2 20 −

4 8∗ [1 0 1 ; 1 1 0 ; 1 1 1 ; 1 3 1] 2 26 −

4 16∗ [1 1 1 ; 1 1 2 ; 1 2 2 ; 2 1 3] 3 32 −

4 64 [1 3 2 3 ; 1 2 1 1 ; 2 2 1 2 ; 3 3 1 0] 4 40 2
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Tabela 4.14: STTCs para a modulação 5-PSK com n = 2, 3 e 4 antenas transmissoras

baseados no critério do traço

n n. de est. G posto ηtr ηdet

2 5∗ [1 1 ; 2 3] 2 10 1, 38

2 25∗ [2 1 3 ; 1 2 4] 2 15 3, 16

2 125† [1 3 4 3 ; 2 4 0 1] 2 16, 38 4, 66

3 5†∗ [1 1 ; 1 2 ; 2 2] 2 15 −

3 25†∗ [1 1 1 ; 1 3 2 ; 2 3 1] 3 21, 38 1

3 125† [4 2 2 2 ; 1 2 1 1 ; 2 4 2 4] 3 30 1, 66

4 5†∗ [1 2 ; 1 2 ; 2 1 ; 2 1] 2 20 −

4 25† [1 1 1 ; 1 1 2 ; 2 1 3 ; 2 2 3] 3 30 −

4 125† [1 0 1 1 ; 2 2 3 4 ; 3 2 3 0 ; 4 0 4 3] 4 31, 01 0, 85

Tabela 4.15: STTCs para a modulação 7-PSK com n = 2, 3 e 4 antenas transmissoras

baseados no critério do traço

n n. de est. G posto ηtr ηdet

2 7∗ [1 1 ; 2 3] 2 7, 75 0, 75

2 49∗ [1 1 2 ; 2 4 4] 2 12, 30 1, 36

3 7†∗ [2 4 ; 3 5 ; 6 1] 2 14 −

3 49† [1 6 4; 3 3 2 ; 2 5 6] 3 21 0, 44

4 7†∗ [1 1 ; 1 2 ; 2 3 ; 3 3] 2 17, 19 −

4 49† [4 5 6 ; 2 4 1 ; 1 2 1 ; 4 4 4] 3 24, 95 −
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Tabela 4.16: STTCs para a modulação 8-PSK com n = 2, 3 e 4 antenas transmissoras

baseados no critério do traço

n n. de est. G posto ηtr ηdet

2 8∗ [1 2 ; 4 3] 2 7, 17 1, 41

2 16∗ [2 1 0 ; 3 0 1] 2 8 2

2 64 [5 1 6 ; 1 1 3] 2 10, 58 1, 17

3 8∗ [1 1 ; 2 2 ; 3 4] 2 12 −

3 16 [5 1 0 ; 3 6 1 ; 1 5 0] 2 12, 58 −

3 64 [3 4 7 ; 5 6 2 ; 7 1 3] 3 19, 17 0, 32

4 8∗ [1 1 ; 1 2 ; 2 3 ; 3 4] 2 16, 58 −

4 16 [2 2 1 ; 1 6 0 ; 5 7 0 ; 5 5 1] 12 20 −

Tabela 4.17: STTCs para a modulação 9-PSK com n = 2, 3 e 4 antenas transmissoras

baseados no critério do traço

n n. de est. G posto ηtr ηdet

2 9∗ [6 1 ; 7 4] 2 6, 77 0, 51

2 27† [1 6 1 ; 7 7 1] 2 8, 58 0, 65

2 81† [8 6 7 ; 7 6 1] 2 10, 24 1, 04

3 9∗ [1 3 ; 6 4 ; 7 2] 2 12 −

3 27† [7 7 6 ; 6 2 8 ; 1 4 4] 3 18 0, 35

4 9† [1 6 ; 4 8 ; 2 4 ; 6 2] 2 18 −

Tabela 4.18: STTCs para a modulação 11-PSK com n = 2, 3 e 4 antenas transmissoras

baseados no critério do traço

n n. de est. G posto ηtr ηdet

2 11†∗ [1 2 ; 4 6] 2 6, 69 0, 46

3 11† [1 3 ; 2 1 ; 5 7] 2 11, 31 −

4 11† [9 4 ; 5 5 ; 8 8 ; 10 10] 2 15, 79 −
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Tabela 4.19: STTCs para a modulação 13-PSK com n = 2, 3 e 4 antenas transmissoras

baseados no critério do traço

n n. de est. G posto ηtr ηdet

2 13†∗ [1 5 ; 9 11] 2 5, 96 0, 44

3 13† [3 6 ; 9 5 ; 11 1] 2 11, 27 −

4 13† [5 3 ; 8 12 ; 4 7 ; 1 2] 2 15, 62 −

Tabela 4.20: STTCs para a modulação 16-PSK com n = 2, 3 e 4 antenas transmissoras

baseados no critério do traço

n n. de est. G posto ηtr ηdet

2 16∗ [5 12 ; 13 5] 2 5, 75 0, 28

3 16† [5 1 ; 6 7 ; 2 13] 2 11, 35 −

4 16† [3 14 ; 5 1 ; 2 7 ; 6 10] 2 16 −

Tabela 4.21: STTCs para a modulação 17-PSK com n = 2, 3 e 4 antenas transmissoras

baseados no critério do traço

n n. de est. G posto ηtr ηdet

2 17†∗ [1 3 ; 5 13] 2 5, 54 0.24

3 17† [15 1 ; 5 11 ; 4 8] 2 10, 75 −

4 17† [12 13 ; 9 10 ; 15 11 ; 3 16] 2 17 −
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Comentário 19 Os STTCs listados anteriormente (Tabelas 4.4 a 4.21) não levam em

consideração o espectro de cada código, ou seja, é posśıvel que códigos com parâmetros

idênticos aos apresentados aqui tenham um desempenho melhor.

Como pode-se observar nas tabelas desta seção, é apresentada uma grande varie-

dade de STTCs para modulações pk-PSK, onde boa parte dos códigos não é encontrada

na literatura. A seguir, apresentaremos as Tabelas 4.22 e 4.23 que comparam alguns

STTCs de [34], com modulações 4 e 8-PSK, com alguns códigos encontrados nesta tese,

sendo esta comparação feita sempre para códigos com mesma eficência espectral. Já

para os códigos com modulação p-PSK, a única estrutura que existe na literatura é

a estrutura utilizada nesta tese e, portanto, não apresetaremos uma tabela compara-

tiva tendo em vista que os STTCs apresentados aqui têm os mesmos ganhos quando

comparados com os poucos STTCs sobre GF(p) encontrados na literatura [26].

Tabela 4.22: Comparação entre STTCs - Critérios do posto e do determinante

pk-PSK n n. de est. ηdet [34] ηtr [34] ηdet ηtr

4-PSK 2 4 2, 82 − 2 6

2 8 4 − 4 8

2 64 6, 92 − 6, 63 16

3 64 4, 57 18 4 12

4 64 2, 82 26 2 34

8-PSK 2 8 2 4 2 4

2 16 2 4 2 4

Pela Tabela 4.22 pode-se observar que os STTCs apresentados nesta tese que

utilizam modulações 4 e 8-PSK e que são projetados pelo critério do posto e do de-

terminante, não conseguem obter, na maioria dos casos, o mesmo determinante que

os STTCs equivalentes obtidos pela estrutura padrão. Para a modulação 8-PSK com

n = 3, 4 antenas transmissoras bem como para a 16-PSK (n = 2, 3, 4 antenas trans-

missoras), não foram encontradas referências que apresentassem STTCs gerados pela

estrutura padrão.



48

Através da Tabela 4.23, nota-se que quando o critério de projeto é o do traço

os códigos propostos neste trabalho obtiveram, na maioria das vezes, o mesmo ganho

que os códigos obtidos através da estrutura padrão.

Uma outra fonte de tabelas de STTCs é a referência [29], onde os resultados

apresentam códigos com 4 e 32 estados para n = 5, 6 antenas transmissoras e mo-

dulação 4-PSK. Apesar de o método de busca utilizado em [29] ser ótimo, o esforço

computacional para casos mais complexos torna a busca proibitiva, uma vez que eles

utilizam a estrutura padrão para obtenção dos códigos. Com relação aos ganhos dos

STTCs encontrados em [29], não são feitas comparações uma vez que a configuração

de n = 5, 6 antenas transmissoras não é considerada em nenhum dos trabalhos citados

nesta tese.

Segundo os resultados de busca obtidos nesta seção, podemos dizer que a estru-

tura que utilizamos nesta tese é uma boa opção para realizar buscas exaustivas mais

complexas de STTCs projetados pelo critério do traço, porém quando os critérios de

projetos são os do posto e do determinante, e quando as modulações são 4 e 8-PSK,

esta estrutura não apresenta resultados muitos satisfatórios.

Comentário 20 Devido ao fato de o método utilizado em [34] não ser ótimo, casos

onde o traço obtido pela estrutura padrão é menor que o obtido pela estrutura sobre o

anel se tornam posśıveis (veja a linha da Tabela 4.23 marcada com ∗). Por outro lado,

a estrutura padrão fornece um universo maior para a busca e por isso o caso contrário

pode acontecer (veja as linhas da Tabela 4.23 marcadas com ∗∗).
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Tabela 4.23: Comparação entre STTCs - Critério do traço

pk-PSK n n. de est. ηtr [34] ηdet [34] ηtr ηdet

4-PSK 2 4 10 2 10 2

2 8 12 2, 82 12 3, 46

2 16 16 2, 82 16 3, 46

2 64 18 4 18 5, 29

3∗∗ 4 16 − 14 −

3∗∗ 8 20 − 18 −

3 16 24 − 24 −

4 4 20 − 20 −

4 8 26 − 26 −

4 16 32 − 32 −

4∗ 64 38 − 40 2

8-PSK 2 8 7, 17 1, 41 7, 17 1, 41

2 16 8 0, 82 8 2

3 8 12 − 12 −

4 8 16, 58 − 16, 58 −
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4.3 Resultados de Simulações

Nesta seção, serão apresentadas simulações de alguns dos STTCs obtidos e tabelados

anteriormente. Através destes resultados, será posśıvel comprovar o bom desempenho

desses códigos diante do canal com desvanecimento, e ainda observar os impactos de

seus parâmetros nas curvas de desempenho. Para estas simulações, será considerado

que cada frame tem comprimento de 130 śımbolos.

Os primeiros resultados apresentados (Figuras 4.2 a 4.7) mostram o desempe-

nho, em termos de FER (FER, do inglês: Frame Error Rate) versus SNR = nEs/No,

de STTCs sobre GF(p) e Zpk projetados pelos critérios do posto e do determinante.

Em cada figura é feita uma comparação entre códigos com mesma eficiência espectral

e números de estados diferentes, o que possibilita observar o aumento do ganho de

codificação (deslocamento horizontal da curva para a esquerda) de acordo com o au-

mento do número de estados. Os códigos simulados neste conjunto de figuras utilizam

n = 2, 3 antenas transmissoras, m = 1 antena receptora e atingem grau de diversidade

de nm. Este conjunto de figuras tem o objetivo apenas de apresentar o desempenho

de alguns STTCs obtidos nesta tese.
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Figura 4.2: Comparação do desempenho de STTCs com modulação 3-PSK baseados

nos critérios do posto e do determinante, projetados para sistemas com n = 2 antenas

transmissoras e m = 1 receptora.
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Figura 4.3: Comparação do desempenho de STTCs com modulação 3-PSK baseados

nos critérios do posto e do determinante, projetados para sistemas com n = 3 antenas

transmissoras e m = 1 receptora.
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Figura 4.4: Comparação do desempenho de STTCs com modulação 4-PSK baseados

nos critérios do posto e do determinante, projetados para sistemas com n = 2 antenas

transmissoras e m = 1 receptora.
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Figura 4.5: Comparação do desempenho de STTCs com modulação 5-PSK baseados

nos critérios do posto e do determinante, projetados para sistemas com n = 2 antenas

transmissoras e m = 1 receptora.
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Figura 4.6: Comparação do desempenho de STTCs com modulação 7-PSK baseados

nos critérios do posto e do determinante, projetados para sistemas com n = 2 antenas

transmissoras e m = 1 receptora.
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Figura 4.7: Comparação do desempenho de STTCs com modulação 8-PSK baseados

nos critérios do posto e do determinante, projetados para sistemas com n = 2 antenas

transmissoras e m = 1 receptora.
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Comentário 21 Devemos notar que em alguns casos, ex. Figura 5.4, aumentar o

número de estados não é tão compensador. Entretanto, para o caso apresentado na

Figura 5.7, por exemplo, aumentar de 16 para 64 estados leva a um ganho de apro-

ximadamente 5 dB, que é bastante expressivo. Essa mesma observação se aplica aos

demais casos , analisados a seguir.

O conjunto das Figuras 4.8 a 4.22 mostram o desempenho de STTCs sobre GF(p) e

Zpk projetados pelo critério do traço. Novamente é posśıvel observar o aumento do

ganho de codificação, neste caso mensurado pelo traço, proporcionado pelo aumento

do número de estados. Para estas simulações foram utilizadas n = 2, 3, 4 antenas

transmissoras e m = 2 antenas receptoras, o que proporciona um grau de diversidade

de rm ≥ 4. Novamente, o objetivo deste conjunto de curvas é apenas apresentar o

desempenho de alguns STTCs obtidos nesta tese.
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Figura 4.8: Comparação do desempenho de STTCs com modulação 3-PSK baseados no

critério do traço, projetados para sistemas com n = 2 antenas transmissoras e m = 2

receptoras.
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Figura 4.9: Comparação do desempenho de STTCs com modulação 3-PSK baseados no

critério do traço, projetados para sistemas com n = 3 antenas transmissoras e m = 2

receptoras.
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Figura 4.10: Comparação do desempenho de STTCs com modulação 3-PSK baseados

no critério do traço, projetados para sistemas com n = 4 antenas transmissoras e m = 2

receptoras.
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Figura 4.11: Comparação do desempenho de STTCs com modulação 4-PSK baseados

no critério do traço, projetados para sistemas com n = 2 antenas transmissoras e m = 2

receptoras.
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Figura 4.12: Comparação do desempenho de STTCs com modulação 4-PSK baseados

no critério do traço, projetados para sistemas com n = 3 antenas transmissoras e m = 2

receptoras.
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Figura 4.13: Comparação do desempenho de STTCs com modulação 4-PSK baseados

no critério do traço, projetados para sistemas com n = 4 antenas transmissoras e m = 2

receptoras.
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Figura 4.14: Comparação do desempenho de STTCs com modulação 5-PSK baseados

no critério do traço, projetados para sistemas com n = 2 antenas transmissoras e m = 2

receptoras.
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Figura 4.15: Comparação do desempenho de STTCs com modulação 5-PSK baseados

no critério do traço, projetados para sistemas com n = 3 antenas transmissoras e m = 2

receptoras.
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Figura 4.16: Comparação do desempenho de STTCs com modulação 5-PSK baseados

no critério do traço, projetados para sistemas com n = 4 antenas transmissoras e m = 2

receptoras.
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Figura 4.17: Comparação do desempenho de STTCs com modulação 7-PSK baseados

no critério do traço, projetados para sistemas com n = 2 antenas transmissoras e m = 2

receptoras.
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Figura 4.18: Comparação do desempenho de STTCs com modulação 7-PSK baseados

no critério do traço, projetados para sistemas com n = 3 antenas transmissoras e m = 2

receptoras.
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Figura 4.19: Comparação do desempenho de STTCs com modulação 7-PSK baseados

no critério do traço, projetados para sistemas com n = 4 antenas transmissoras e m = 2

receptoras.
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Figura 4.20: Comparação do desempenho de STTCs com modulação 8-PSK baseados

no critério do traço, projetados para sistemas com n = 2 antenas transmissoras e m = 2

receptoras.
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Figura 4.21: Comparação do desempenho de STTCs com modulação 8-PSK baseados

no critério do traço, projetados para sistemas com n = 3 antenas transmissoras e m = 2

receptoras.
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Figura 4.22: Comparação do desempenho de STTCs com modulação 8-PSK baseados

no critério do traço, projetados para sistemas com n = 4 antenas transmissoras e m = 2

receptoras.
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Nas Figuras 4.23 a 4.26 é posśıvel observar os efeitos do número de antenas

transmissoras e receptoras no desempenho dos STTCs. As Figuras 4.23, 4.24 e 4.25,

apresentam STTCs para as constelações 4, 5 e 8-PSK com n = 2, 3, 4 antenas trans-

missoras e m = 1, 2 antenas receptoras. Nestas figuras pode-se observar ao mesmo

tempo os efeitos da diversidade de transmissão e recepção. O ganho de diversidade de

transmissão só é atingido quando o posto do código aumenta junto com o número de

antenas transmissoras e quando rm < 4. Um caso em que o aumento do número de

antenas transmissoras não implica num aumento da diversidade pode ser observado na

Figura 4.25. Isso acontece porque os códigos com n = 2, 3 e 4 têm o mesmo posto, no

caso, posto 2. Observe também que quando rm < 4 (n = 2, 3 e m = 1), os códigos

têm um desempenho semelhante e são dominados pelos critérios do posto e do deter-

minante, e quando rm ≥ 4 o desempenho passa a ser descrito pelo critério do traço, e

com isso os códigos com maiores traços possuem um melhor desempenho. Na Figura

4.26 fica bem evidente o efeito da diversidade de transmissão, pois nesse caso o posto

do código aumentou junto com o número de antenas transmissoras. No caso da di-

versidade de recepção, um aumento do número de antenas receptoras implica em um

aumento direto na ordem de diversidade do sistema sem depender do posto do código.

Esta caracteŕıstica pode ser observada nas Figuras 4.23 a 4.25.

A seguir, as Figuras 4.27 a 4.29 mostram uma comparação entre o desempenho e

a eficiência espectral de STTCs sobre GF(p) e Zpk para várias modulações PSK. Nestas

figuras todos os STTCs têm o mesmo grau de diversidade.

Na Figura 4.30 é feita uma comparação entre códigos obtidos por diferentes

critérios de projeto. Neste caso, os dois STTCs utilizam n = 2 antenas transmissoras

e m = 1, 2 e 4 antenas receptoras. O STTC1, apresentado na Tabela 4.3, tem ηdet = 2.

O STTC2 foi apresentado em [34] e tem ηdet = 2, 81 (um dos códigos com o maior

ganho de codificação encontrado na literatura). Ambos os códigos utilizam mesma

modulação (4-PSK) e possuem 4 estados. Note que para m = 1 os códigos têm quase

o mesmo desempenho. Mas à medida que m aumenta o STTC1 começa a ter um

desempenho melhor. Isto pode ser explicado devido ao fato de a distância Euclidiana

quadrática mı́nima do STTC1 ser igual a 8, enquanto que a do STTC2 é igual a 6.

Como esperado, pôde-se comprovar o resultado da literatura de que quando o produto
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Figura 4.23: Comparação do desempenho de STTCs com modulação 4-PSK baseados

no critério do traço e projetados para sistemas com n = 2, 3, 4 antenas transmissoras e

m = 1, 2 antenas receptoras.

rm ≥ 4, o desempenho do código passa a ser dominado pela distância Euclidiana

quadrática, e não mais pelos critérios do posto e do determinante.
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Figura 4.24: Comparação do desempenho de STTCs com modulação 5-PSK baseados

no critério do traço e projetados para sistemas com n = 2, 3, 4 antenas transmissoras e

m = 1, 2 antenas receptoras.
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Figura 4.25: Comparação do desempenho de STTCs com modulação 8-PSK baseados

no critério do traço e projetados para sistemas com n = 2, 3, 4 antenas transmissoras e

m = 1, 2 antenas receptoras.
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Figura 4.26: Comparação do desempenho de STTCs com modulação 7-PSK baseados

nos critérios do posto e do determinante e projetados para sistemas com n = 2, 3

antenas transmissoras e m = 1 antena receptora.
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Figura 4.27: Comparação do desempenho de STTCs com modulações 3, 5, 7 e 11-PSK

baseados nos critérios do posto e do determinante e projetados para sistemas com n = 3

antenas transmissoras e m = 1, 2 antenas receptoras.
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Figura 4.28: Comparação do desempenho de STTCs com modulação 9, 11, 13, 16 e

17-PSK baseados nos critérios do posto e do determinante e projetados para sistemas

com n = 2 antenas transmissoras e m = 1 antena receptora.
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Figura 4.29: Comparação do desempenho de STTCs com modulação 9, 11, 13, 16 e

17-PSK baseados no critério do traço e projetados para sistemas com n = 2 antenas

transmissoras e m = 2 antenas receptoras.



67

2 4 6 8 10 12 14 16 18
10

−3

10
−2

10
−1

10
0

SNRdB

F
E

R

 

 

STTC1
STTC2

Figura 4.30: Comparação do desempenho de STTCs com modulação 4-PSK projetados

por diferentes critérios.



Caṕıtulo 5

Conclusão e Trabalhos Futuros

Nesta tese consideramos códigos espácio-temporais de treliça sobre GF (p) ≡ Zp e Zpk ,

onde p é primo e k é um inteiro positivo, para o canal com desvanecimento Rayleigh

plano quase-estático. Os códigos foram projetados para proporcionar o melhor desem-

penho de acordo com os critérios do posto, determinante e também através do critério

do traço. Com relação ao critério de projeto a escolher podemos observar que este é

muito dependente da ordem de diversidade do sistema, sendo o critério do posto e do

determinante adotado quando rm < 4 e o critério traço adotado quando rm ≥ 4. Com

isso pôde-se concluir que quando a diversidade total do sistema é elevada, aumentar

a ordem de diversidade não implica em uma melhora significativa no desempenho do

sistema.

Como contribuição deste trabalho, foram apresentadas seis técnicas através das

quais pôde-se simplificar o projeto de STTCs para qualquer número de antenas trans-

missoras. A primeira delas, a Conjectura 1, mostrou que é posśıvel garantir diversidade

completa para STTCs testando apenas o posto em matrizes diferença entre palavras-

código sobre GF(p), ao invés de matrizes diferença no domı́nio dos complexos. Nesse

caso o STTC pode ser linear ou não-linear. As Conjecturas 2 e 3, mostraram que

pode-se garantir diversidade completa para STTCs com modulações pk-PSK através

de um único teste de posto completo em uma matriz sobre GF(p). Nos Teoremas 1,

2 e 3, foi visto que é posśıvel simplificar a busca de STTCs sobre Zpk , sem descartar

os códigos ótimos, sendo que os Teoremas 1 e 2 são válidas para os STTCs projetados
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pelos critérios do posto, determinante e do traço, e o Teorema 3 é válida somente para

STTCs projetados através do critério do traço. Foi apresentado também uma análise

comparativa entre a estrutura utilizada nesta tese e a estrutura padrão. Através desta

comparação pôde-se concluir que quando se utiliza uma modulação pk-PSK, com k > 1,

a estrutura apresentada aqui é uma boa opção para STTCs projetados pelo critério do

traço, pois reduz significativamente o número de códigos a serem testados sem descar-

tar, na maioria das vezes, os códigos com maiores traços. Já para o caso dos STTCs

projetados pelo critério do posto e do determinante, e para as modulações 4 e 8-PSK,

a estrutura padrão consegue, na maioria das vezes, obter códigos com determinantes

maiores. No caso dos STTCs que utilizam modulações p-PSK, a estrutura utilizada

nesta tese é a única opção.

Utilizando a estrutura sobre Zpk e as técnicas propostas aqui, pôde-se encontrar

uma grande variedade de STTCs utilizando modulações 3-PSK, 4-PSK, 5-PSK, 7-PSK,

8-PSK, 9-PSK, 11-PSK, 13-PSK, 16-PSK e 17-PSK para n = 2, 3 e 4 antenas trans-

missoras, atingindo eficiências espectrais de 1,58; 2; 2,23; 2,81; 3; 3,17; 3,46; 3,7; 4 e

4,08 b/s/Hz, respectivamente. As eficiências espectrais fracionárias apresentadas aqui

podem servir para uma variada gama de diferentes aplicações em sistemas de comu-

nicações móveis, fornecendo ao projetista uma larga opção em termos de desempenho

e taxa de transmissão. Com o intuito de validar as técnicas propostas nesta tese e

também de analisar os efeitos dos ganhos obtidos, foram realizadas várias simulações

com os STTCs apresentados neste trabalho.

Para os casos onde o número de śımbolos da constelação não é uma potência de

2, poderia existir um problema se a fonte de informação fosse intrinsicamente binária.

Uma solução simples para este problema foi proposta pelo autor em [25], onde uma

palavra de np śımbolos p-ários é associada a cada palavra de n2 bits de informação,

onde pnp > 2n2 . Este mapeamento ocasionará uma perda despreźıvel na eficiência

espectral se a escolha de np e n2 for apropriada [25].

Algumas sugestões para trabalhos futuros:

• Apresentação de provas formais da Conjectura 1 para n > 2 e da Conjectura 3.

• A utilização de uma estrutura de codificação recursiva, observando como as con-
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jecturas e os teoremas propostos nesta tese seriam aproveitados.

• A utilização da estrutura proposta nesta tese para se obter STTCs sobre corpos

e anéis finitos projetados para o canal com desvanecimento rápido.

• O impácto do uso de algoritmos de otimização na redução da busca por STTCs.



Apêndice A

Álgebra Aplicada à Teoria da

Codificação

Este apêndice tem como objetivo apresentar alguns conceitos de álgebra, tais como

operadores binários, grupos, corpos e anéis, da maneira como eles se aplicam à teoria

da codificação.

A.1 Operadores Binários

Seja S um conjunto de elementos. Um operador binário ∗ definido sobre S tem a função

de mapear qualquer par de elementos (a, b) ∈ S em um terceiro elemento c = a ∗ b

também pertencente a S. Quando existir um operador binário ∗ definido sobre S

dizemos que S é fechado com relação a este operador. Segundo [36], podemos definir

um operador binário da seguinte maneira.

Definição 1 Um operador binário ∗ definido sobre um conjunto S é uma função que

mapeia S × S em S. Para cada (a, b) ∈ S × S, denotaremos o elemento ∗((a, b)) de S

por a ∗ b.

Por exemplo, as operações usuais de adição: +, e de multiplicação: ·, são dife-

rentes operadores binários definidos sobre o conjunto dos inteiros Z, pois quaisquer dois

inteiros somados ou multiplicados produzirão também um número inteiro. Por outro
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lado, a operação de adição no conjunto Z∗ (inteiros não nulos) não é um operador

binário porque a operação 2 + (−2), onde 2 ∈ Z
∗ e −2 ∈ Z

∗, produz o elemento 0, e

0 /∈ Z∗. Desta maneira, o conjunto Z∗ não é fechado com relação ao operador binário

+.

A.2 Grupos

Um grupo é um conjunto de elementos que pode ser definido da seguinte maneira.

Definição 2 Seja G um conjunto de elementos. Seja ∗ um operador binário definido

sobre G. Então, o conjunto G fechado sobre o operador ∗ será um grupo 〈G, ∗〉 se

satisfizer as seguintes condições:

• O operador binário ∗ tem que ser associativo, ou seja, para a, b, c ∈ G, teremos

(a ∗ b) ∗ c = a ∗ (b ∗ c).

• Existe um elemento e em G tal que, para todo x ∈ G,

e ∗ x = x ∗ e = x.

Este elemento é chamado de elemento identidade de G.

• Correspondente a cada a ∈ G, existe um elemento a′ em G tal que

a ∗ a′ = a′ ∗ a = e.

Este elemento é chamado de inverso de a.

Um grupo é dito comutativo se seus operadores binários também satisfizerem a

seguinte condição:

a ∗ b = b ∗ a,

para quaisquer a, b ∈ G.

O conjunto de todos os inteiros é um grupo comutativo com relação à adição

real, onde o inteiro 0 é o elemento identidade e o inteiro −a é o elemento inverso de
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Tabela A.1: Adição módulo-3

⊕ 0 1 2

0 0 1 2

1 1 2 0

2 2 0 1

a. O conjunto Z
+ (inteiros não negativos) tem como elemento identidade o número 0,

mas não é um grupo com relação à adição, porque não contém, por exemplo, o inverso

de 3.

Os exemplos de grupos mostrados até aqui possuem um número infinito de

elementos. Grupos com um número finito de elementos também existem, como mos-

traremos nos dois exemplos a seguir.

Exemplo 4 Considere um grupo G = {0, 1, 2, . . . , m− 1}, onde m é um inteiro posi-

tivo. Considere também a adição real + e um operador binário ⊕ definido sobre G de

modo que, para quaisquer inteiro i e j pertencentes a G,

i⊕ j = r,

onde r é o resto da divisão de (i+j) por m. O resto r é portanto um inteiro e está entre

0 e m− 1, logo pertence a G. Com isso conclúımos que G é fechado sobre a operação

⊕, a qual é chamada de adição módulo-m. A Tabela A.1 mostra para todos os posśıveis

pares de elementos de G o resultado da operação de adição módulo-3. Pode-se verificar

facilmente que < G,⊕ > é um grupo comutativo.

Exemplo 5 Agora vamos considerar · como sendo a operação real de multiplicação.

Seja G∗ = {1, 2, 3, . . . , p − 1}, onde p é um número primo. Considere ⊙ como sendo

o operador binário definido sobre G⋆ da seguinte maneira: para quaisquer elementos

i, j ∈ G,

i⊙ j = r,

onde r é o resto da divisão de (i · j) por p. Como p é primo, e é maior do que i e maior

do que j, então i · j não é diviśıvel por p, logo o resto r ficará no intervalo 0 < r < p, e

portanto pertence a G⋆. Com isso, o conjunto G é fechado sobre a operação binária ⊙.
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Tabela A.2: Multiplicação módulo-5

⊙ 1 2 3 4

1 1 2 3 4

2 2 4 1 3

3 3 1 4 2

4 4 3 2 1

Este tipo de operação é conhecida como multiplicação módulo-p. A Tabela A.2 mostra,

para todos os posśıveis pares de elementos de {1, 2, 3, 4}, o resultado da operação ⊙.

Pode-se verificar facilmente que < G⋆,⊙ > é um grupo comutativo.

No exemplo anterior, é importante notar que se p não for primo, alguns elementos

de G⋆ não terão o inverso, fazendo com que G⋆ não seja fechado com relação ao operador

⊙ . Por exemplo, para p = 4, o elemento 2 não possui inversa multiplicativa, pois

2 ⊙ 1 = 2, 2 ⊙ 2 = 0 /∈ {1, 2, 3}, 2 ⊙ 3 = 2. Ou seja, não existe a ∈ {1, 2, 3} tal que

a⊙ 2 = 2 ⊙ a = 1.

A.3 Corpos e Anéis

Baseados na definição de grupos, apresentaremos agora duas estruturas algébricas

muito importantes para a teoria da codificação, chamadas corpo (ou campo) e anel.

Um corpo é um conjunto onde se pode realizar as operações de adição, sub-

tração, multiplicação e divisão sem resultar num elemento fora do conjunto. A adição

e a multiplicação devem satisfazer as leis da comutação, distribuição e associação.

Formalmente, um corpo pode ser definido da seguinte maneira.

Definição 3 Seja F um conjunto de elementos. Seja + e · os operadores binários de

adição e multiplicação. O conjunto F será um corpo 〈F,+, ·〉 se satisfizer as seguintes

condições:

• 〈F,+〉 é um grupo comutativo cujo elemento identidade é denotado por 0.

• 〈F, ·〉 é um grupo comutativo cujo elemento identidade é denotado por 1.
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• Para qualquer tripla a, b e c pertencentes a F,

a · (b+ c) = (a · b) + (a · c)

e

(a+ b) · c = (a · c) + (b · c)

Um anel tem quase as mesmas propriedades de um corpo a não ser a de que

alguns elementos não possuem inverso multiplicativo (os zeros do anel) nem identidade

multiplicativa. A definição de um anel pode ser formalizada da seguinte maneira.

Definição 4 Seja R um conjunto de elementos. Seja + e · os operadores binários de

adição e multiplicação. O conjunto R será um anel 〈R,+, ·〉 se satisfizer as seguintes

condições:

• 〈R,+〉 é um grupo comutativo cujo elemento identidade é denotado por 0.

• A multiplicação é associativa.

• Para qualquer tripla a, b e c pertencentes a R,

a · (b+ c) = (a · b) + (a · c)

e

(a+ b) · c = (a · c) + (b · c)



Apêndice B

Prova da Conjectura 1 para o caso

de 2 Antenas Transmissoras

Antes de mostrarmos a prova da Conjectura 1 para o caso de duas antenas trans-

missoras, apresentaremos algumas propriedades da matriz B(c, e) que serão utilizadas

durante a prova.

Considere cada elemento diferença em B(c, e) na forma polar:

b = e− c = exp

(
j2πv

p

)

− exp

(
j2πw

p

)

= |b| exp(jθb).

As duas próximas propriedades são relacionadas ao módulo de b, enquanto a Proprie-

dade 3 é relacionada à fase de b.

Propriedade 1 O módulo de b, denotado por |b|, é dado por:

|b| = 2 sin

(
π

p
|v − w|p

)

,

onde o subscrito p denota módulo-p. Isto significa que o módulo de b não depende

especificamente dos valores de v e w, mas do valor absoluto da diferença módulo-p.

Além disso, existem apenas p−1
2

módulos diferentes de zero distintos, os quais são

indicados na Figura B.1, e se |b| = |b′|, então ou |v − w|p = |v′ − w′|p ou |v − w|p =

p− |v′ − w′|p.
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p−1
2

p+1
2

v−w| |p

|  |

0

2

21 p−1

b

Figura B.1: Módulos de b.

Prova:

|b|2 = bb∗

= 2 − exp

[
j2π(v − w)

p

]

− exp

[
j2π(v − w)

p

]

= 2 − 2 cos

(
2π(v − w)

p

)

= 4 sin2

(
π

p
(v − w)

)

|b| = 2 sin

(
π

p
|v − w|p

)

. (B.1)

O resto da prova segue das propriedades da função seno. �

Propriedade 2 Seja M o conjunto de todos os posśıveis módulos de b diferentes de

zero. Defina a matriz Q de dimensão p−1
2

por p−1
2

como segue. O (i, j)-ésimo elemento

de Q é dado por qi,j = mi/mj, onde mi = 2 sin
(

π
p
i
)

∈ M, para i, j ∈ {1, 2, . . . , p−1
2
}.

Então, os elementos de Q que não estão na diagonal principal são todos distintos.

Agora considere as posśıveis fases de b. Para se obter θb, considere inicialmente

a fase θ̃b no intervalo (−π
2
,+π

2
] radianos, definida como:

θ̃b(v, w) = arctan




sin
(

2π
p
v
)

− sin
(

2π
p
w
)

cos
(

2π
p
v
)

− cos
(

2π
p
w
)





= arctan




2 cos

(
π
p
(v + w)

)

sin
(

π
p
(v − w)

)

−2 sin
(

π
p
(v + w)

)

sin
(

π
p
(v − w)

)





= arctan




−1

tan
[

π
p
(v + w)

]



 ∈ (−
π

2
,+

π

2
]. (B.2)
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Figura B.2: Conjunto de śımbolos de diferenças complexas das constelacões (a) 5-PSK

e (b) 7-PSK . Os pontos das diferenças complexas exp(j(2π/p)v)−exp(j(2π/p)w) estão

rotulados (internamente) por (v−w), e (externamente) por d, onde d ≡ v−w (mod p).

Note que θ̃b(v, w) depende unicamente de v + w (mod p). A verdadeira fase

de b, θb(v, w), é a própria θ̃b(v, w) ou θ̃b(v, w) + π, de acordo com os casos 1 e 2,

respectivamente, dados a seguir. Os módulos e as fases dos elementos diferença para

as constelações 5-PSK e 7-PSK podem ser vistos na Figura B.2.

Considere o conjunto de números complexos b, obtidos como anteriormente, com

módulo fixo 2 sin
(

π
p
k
)

∈ M, para algum k ∈ GF(p). De acordo com a Propriedade 1,

existem dois casos a serem considerados.

Caso 1: d = v − w ≡ k (mod p), onde

v ≡ k + i

w ≡ i, i = 0, 1, 2, . . . , p− 1.

Neste caso, os posśıveis valores de fase que θb pode assumir são obtidos através de

(B.2), onde

v + w = k + 2i, i = 0, 1, 2, . . . , p− 1. (B.3)

Caso 2: d = v − w ≡ p− k (mod p), onde

v ≡ p− k + i

w ≡ i, i = 0, 1, 2, . . . , p− 1.
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Aqui,

v + w = p− k + 2i, i = 0, 1, 2, . . . , p− 1. (B.4)

Note que se k é par(́ımpar), então k + 2i é par(́ımpar) e p− k + 2i é ı́mpar(par).

Com isso, podemos concluir que, para um dado módulo |b| ∈ M, os posśıveis

valores de fase que θb pode assumir são

π

p

(

i−
1

2

)

, para i = 1, 2, . . . , 2p,

(B.5)

e, portanto, temos a seguinte propriedade.

Propriedade 3 Sejam b e b′ dois números complexos obtidos como anteriormente

onde |b| = |b′| ∈ M. Então, temos que:

Se d ≡ d′ (mod p), então θb−θb′ = 2iπ
p
, para algum inteiro i ∈ {0, 1, 2, . . . , p−1}.

Se d ≡ p − d′ (mod p), então θb − θb′ = (2i + 1)π
p
, para algum inteiro i ∈

{0, 1, 2, . . . , p− 1}.

Para ilustrar esta propriedade, observe a Figura B.2. No circulo pontilhado,

isto é, na região contendo as diferenças complexas com o mesmo módulo, note que

os rótulos d alternam entre dois elementos de GF(p), um sendo p menos o outro. Se

dois pontos complexos em um ćırculo têm o mesmo rótulo, então o ângulo entre eles

(vistos como vetores no plano complexo) é um múltiplo par de π
p

radianos. Se dois

pontos complexos em um ćırculo têm rótulos diferentes, então o ângulo entre eles é um

múltiplo ı́mpar de π
p

radianos. Agora, apresentaremos uma prova matemática para a

Conjectura 1 quando apenas duas antenas transmissoras são usadas.

Comentário 22 Como L ≥ n, e uma matriz n× L é de posto completo se existirem

n colunas linearmente independentes, sem perda de generalidade focaremos a prova

apenas em matrizes quadradas.

Prova: Suponha que B(c, e) seja de posto incompleto sobre os complexos e,

por contradicão, suponha que D(v,w) seja de posto completo sobre GF(p). O fato de
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B(c, e) ser de posto incompleto implica que existem número complexos, digamos α1 e

α2, nem todos nulos, tal que

α1.[b1,1 b1,2] − α2.[b2,1 b2,2] = [0 0]. (B.6)

Podemos reescrever a equacão (B.6) como um conjunto de equacões:






|α1|.e
j(θα1

+θb1,1
) = |α2|.

|b2,1|

|b1,1|
.ej(θα2

+θb2,1
)

|α1|.e
j(θα1

+θb1,2
) = |α2|.

|b2,2|

|b1,2|
.ej(θα2

+θb2,2
).

(B.7)

Segue de (B.7) que

θα1
− θα2

= θb2,1 − θb1,1 = θb2,2 − θb1,2 ,

o que implica que

θb1,1 − θb1,2 = θb2,1 − θb2,2 . (B.8)

Agora, devemos distinguir entre dois casos, a saber, |α1| 6= |α2| e |α1| = |α2|. Se

|α1| 6= |α2| então, através de (B.7) e da Propriedade 2, podemos concluir que:

|b1,1| = |b1,2| e |b2,1| = |b2,2|. (B.9)

A Equacão (B.9) e a Propriedade 1 nos dirão que ou d1,1 ≡ d1,2 (mod p) ou d1,1 ≡

p − d1,2 (mod p) e, pelo mesmo racioćınio, ou d2,1 ≡ d2,2 (mod p) ou d2,1 ≡

p − d2,2 (mod p). Entretanto, da igualdade (B.8) e da Propriedade 3, se d1,1 ≡

d1,2 (mod p), então deveremos ter que d2,1 ≡ d2,2 (mod p), e se d1,1 ≡ p−d1,2 (mod p),

então deveremos ter que d2,1 ≡ p−d2,2 (mod p). Portanto, a matriz de inteiros D(v,w)

assume uma das duas formas:



d d

d′ d′



 ou




d p− d

d′ p− d′



 ,

onde d, d′ ∈ GF(p). Claramente, estas duas matrizes têm posto um. Então D(v,w)

não pode ser de posto completo. Por contradicão, para o caso de |α1| 6= |α2| provamos

que se B(c, e) não tem posto completo sobre os complexos, então D(v,w) não terá

posto completo sobre GF(p).

Agora, se |α1| = |α2|, então analisando (B.7) veremos que
|b2,1|

|b1,1|
e

|b2,2|

|b1,2|
são da

forma dos elementos da diagonal principal da matriz Q definida na Propriedade 2. Com

isso, teremos que:

|b1,1| = |b2,1| e |b1,2| = |b2,2|. (B.10)
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Note que para caso onde |α1| = |α2|, a equacão (B.9) em geral não é satisfeita, embora

(B.8) permaneça verdadeira. Através das equacões (B.10) e (B.8), e seguindo a mesma

linha de racioćınio do caso |α1| 6= |α2|, é posśıvel mostrar que se B(c, e) não possui

posto completo sobre os complexos, então as duas colunas de D(v,w) são linearmente

dependentes.

Com isso, provamos que se B(c, e) não possui posto completo sobre os comple-

xos, então D(v,w) não possui posto completo sobre GF(p). Pela negacão, provamos

que se D(v,w) tiver posto completo sobre GF(p), então B(c, e) terá posto completo

sobre os complexos, garantindo assim diversidade completa para STTCs apenas tes-

tando o posto de matrizes sobre GF(p). Para provar que a reciproca não é verdadeira

em geral, um contra-exemplo, como o mostrado a seguir, pode ser facilmente achado.

Exemplo 6 Observe neste exemplo que a matriz D(v,w) não tem posto completo

sobre GF(5) enquanto sua respectiva matriz B(c, e) possui posto completo sobre os

complexos, mostrando que a reciproca da Conjectura 1 não é verdadeira.

D(v,w) =




2 − 4 4 − 1

1 − 2 4 − 0



 ≡




3 3

4 4





︸ ︷︷ ︸

posto1

(mod 5),

B(c, e) =




−1.1180 + j1.5388 0 − j1.9021

1.1180 + j0.3633 −0.6910 − j0.9511





︸ ︷︷ ︸

posto2

.

�



Apêndice C

Propriedade Rumo à Prova da

Conjectura 1: Caso Geral

Neste apêndice apresentaremos uma propriedade e um exemplo que poderão ser úteis na

generalização da prova da Conjectura 1 para n ≥ 3. Aqui, tanto a propriedade quanto

o exemplo serão apresentados para o caso do sistema com n = 3 antenas transmissoras

e modulação 5-PSK.

O caminho que será usado para mostrar a relação existente entre os postos de

matrizes diferença nos complexos e em GF(p) está baseado no cálculo de seus determi-

nantes, portanto nos concentraremos apenas em matrizes quadradas (ver Comentário

22 no Apêndice B).

Em uma matriz qualquer, Q, de dimensão 3×3, pode-se calcular o determinante

da seguinte maneira:

det(Q) = (q1,1.q2,2.q3,3)
| {z }

a1

+ (q2,1.q3,2.q1,3)
| {z }

a2

+ (q1,2.q2,3.q3,1)
| {z }

a3

− (q3,1.q2,2.q1,3)
| {z }

a4

− (q3,2.q2,3.q1,1)
| {z }

a5

− (q2,1.q1,2.q3,3)
| {z }

a6

,

(C.1)

onde qi,j é o elemento da matriz referente à i-ésima linha e à j-ésima coluna, e as, para

s = 1, 2, . . . , 6, é a multiplicação de três números complexos pertencentes a matriz

B(c, e), definida no Caṕıtulo 2.

Com base nos elementos as, apresentaremos a seguinte propriedade:

Propriedade 4 Considere |as| e θs como sendo o módulo e a fase de as, respectiva-

82
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mente. Analisando a Figura B.2a podemos notar que, com relação ao módulo de as,

existem apenas 5 posśıveis valores, quais sejam:

|as| = |qi,j|.|qk,l|.|qt,s|

0 = 0

1, 6246 = 1, 17563

2, 6287 = 1, 17562 · 1, 9021

4, 2533 = 1, 90212 · 1, 1756

6, 8819 = 1, 90213,

(C.2)

onde 0; 1, 1756 e 1, 9021 são os posśıveis módulos de qi,j (ver Figura B.2).

Com relação à fase de as pode-se dizer que, devido ao fato de θs ser uma mul-

tiplicação de três elementos de B(c, e), seu valor será igual a uma das fases θb para

o caso de p = 5, que são obtidas a partir da seguinte equação (adaptada a partir de

(B.5)):

π

10
(2if − 1) , para if = 1, 2, . . . , 10.

(C.3)

Observe também que se θs resultar em um if ı́mpar(par), então pode-se dizer que esta

fase foi obtida pela soma de três θb’s cujos if ’s são par(́ımpar), par(́ımpar), par(́ımpar)

ou ı́mpar(par), ı́mpar(par), par(́ımpar), não importando a ordem da soma. Isto pode

ser visto da seguinte maneira:

θs =
π

10
(2if − 1)

= θb1 + θb2 + θb3

=
π

10
[(2i1 − 1) + (2i2 − 1) + (2i3 − 1)]

(C.4)

Assim,

2(i1 + i2 + i3) − 2 = 2if

que resulta na equação:

i1 + i2 + i3 = if + 1 (C.5)
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a partir da qual se chega ao resultado acima.

Agora apresentaremos um exemplo que indica o caminho que estamos tentando

seguir para completar a prova da Conjectura 1.

Exemplo 7 Considere as seguintes matrizes:

D(v,w) =








2 − 0 1 − 0 4 − 0

2 − 4 2 − 4 3 − 4

4 − 0 1 − 2 4 − 2








≡








2 1 4

3 3 4

4 4 2








mod 5

e

B(v,w) =








1, 9021ej162 1, 1756ej126 1, 1756ej234

1, 9021ej126 1, 9021ej126 1, 1756ej162

1, 1756ej234 1, 1756ej18 1, 9021ej306







,

onde bi,j = e(
j2π
5

vi,j) − e(
j2π
5

wi,j)

Suponha que o determinante de B seja igual a zero, ou seja, que B(v,w) tenha

posto incompleto.

det(B(v,w)) = 6, 8819ej234 + 2.6287ej18 + 1, 6246ej162 − 2, 6287ej234 − 2, 6287ej342 − 4, 2533ej198 = 0

(C.6)

De acordo com a Propriedade 4, podemos analisar o módulo e a fase de cada elemento

complexo da expressão (C.6) para chegarmos aos seus correspondentes elementos em

GF(5), e com isso verificar se o determinante em GF(5) também será igual a zero.

Neste exemplo mostraremos esta análise apenas para o número complexo 6, 8819ej234.

Note que esse número complexo foi obtido a partir do produto de três elementos di-

ferenças, todos com módulo 1, 9021. Observando a Figura B.2a, o correspondente

número em GF(5) do módulo 6, 8819 será ou 2 ou 3, dependendo da fase. Anali-

sando a fase 234, veremos que esta resulta em um if ı́mpar. Portanto, os três números

em GF(5) terão que corresponder a valores de fase onde os if ’s sejam par, par, par

ou ı́mpar, ı́mpar, par. Novamente observando a Figura B.2a, notaremos que o número

com módulo 1, 9021 e if ’s ı́mpar é o número 2 e com o if ’s par é o 3, portanto, mul-

tiplicando três números 3 e reduzindo o resultado módulo-5 teremos o número 2, e se
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multiplicarmos dois números 2 e um 3 e reduzirmos o resultado módulo-5, também te-

remos o número 2. Com isso, o elemento em GF(5) relacionado com o primeiro termo

será o número 2. O restante dos casos podem seguir o mesmo racioćınio. O resultado

final do determinante em GF(5)será:

det(D) = 2 + 3 + 1 − 3 − 2 − 1 = 0 (C.7)

Como no Apêndice B, pela negação pode-se dizer que se D(v,w) tiver posto

completo sobre GF(5), então B(c, e) terá posto completo sobre os complexos, garan-

tindo assim diversidade completa para STTCs sobre GF(5) apenas testando o posto de

matrizes sobre GF(5).
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[30] M. de Noronha-Neto e B. F. Uchôa-Filho, “Códigos convolucionais espaciotempo-

rais sobre GF(p) atingindo ganho de diversidade máximo para qualquer número
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