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Capitulo 1

Introducao

Os sistemas de comunicagao de dados atuais operam com taxas de transmissao cada
vez mais elevadas. Um grande desafio tem sido projetar esquemas codificados que su-
portem estas taxas respeitando algumas limitagoes praticas como faixa de freqiiéncias,
poténcia de transmissao e confiabilidade no enlace. Este desafio se torna ainda maior
quando a transmissao dos sinais é feita por ondas de radio, pois as adversidades encon-
tradas neste tipo de canal, tais como o desvanecimento por multipercursos e o efeito
Doppler, dificultam sobremaneira a comunicacao neste meio. Técnicas de diversidade,
que permitem ao receptor enxergar o sinal transmitido sob condigoes de canais diferen-
tes, tornam mais confiavel a transmissao de dados a altas taxas em sistemas sem fio.
Em particular, a diversidade espacial (multiplas antenas) vem sendo muito utilizada
pois fornece ganhos sem induzir perdas na eficiéncia do espectro. Adicionalmente, a
capacidade de canal de sistemas com multiplas antenas tem um aumento significativo

[1], [2] e [3].

Motivados por este resultado, Tarokh et al. [4] propuseram os chamados Cédigos
Espécio-Temporais (STCs, do inglés: Space-Time Codes ). Os STCs atingem uma alta
taxa de transmissao e um excelente desempenho, codificando os sinais a serem transmi-
tidos tanto no dominio do tempo quanto no do espago. Alguns tipos de STCs sao: os
c6digos espacio-temporais em trelica [4] (STTCs, do inglés:Space-Time Trellis Codes),
os c6digos espacio-temporais em bloco [5],[6] (STBCs, do inglés: Space-Time Block
Codes) e os ’Layered Space-Time (LST) codes’ [7]. Na literatura atual podem-se en-



contrar varias referéncias sobre STCs, nas versoes turbo, diferencial e/ou combinadas
com a modulacdo OFDM (OFDM, do inglés: Orthogonal Frequency Division Multiple-
zing) [8], [9], [10], [11]. Uma outra variacao de STCs é a combinagdo do STBC com
uma trelica, resultando nos codigos Espéacio-Temporais em Trelica super-ortogonais
(SOSTTCs, do inglés: Super Orthogonal STTC) [12]. Neste trabalho serdo abordados
apenas os STTCs. Os STTCs sao uma classe de cédigos em treliga para sistemas de
comunicagoes sem fio que utilizam multiplas antenas transmissoras e, opcionalmente,
multiplas antenas receptoras. Em [4], critérios de projeto foram propostos para se

construir STTCs para canais com desvanecimento.

Segundo [4], para o canal com desvanecimento Rayleigh plano e quase-estatico,
e com o conhecimento perfeito do canal no receptor, a probabilidade de erro minima
com relagdo ao par (do inglés: pairwise error probability) é obtida quando os STTCs
sao projetados de acordo com dois critérios, a saber, o critério do Posto e o do Deter-
minante, os quais serao detalhados mais adiante. O primeiro critério esta relacionado
com o ganho de diversidade, que representa a inclinagao da curva da probabilidade de
erro versus relagao sinal-ruido, enquanto o segundo estéd relacionado com o ganho de
codificacao, e determina o deslocamento horizontal da mesma curva. Para um canal
com desvanecimento plano, com n antenas transmissoras e m antenas receptoras, o
ganho de diversidade maximo (méxima inclina¢do da curva de probabilidade de erro)
¢ dado por mn. Trabalhos subsequentes [13], [14], [15], [16] mostraram que o projeto
de STTCs para canais com desvanecimento Rayleigh plano e quase-estatico nao de-
vem estar restritos apenas aos critérios anteriormente citados, mas incluir também um
novo critério, chamado de critério do Traco, o qual é baseado na distancia Euclidiana
quadrética (DE?). Estes trabalhos mostraram também que a escolha do critério de
projeto é dependente da ordem de diversidade do sistema, sendo os critérios do posto
e do determinante a melhor opcao para sistemas com ordem de diversidade menor
que quatro, e o critério baseado na DE? o mais adequado para sistemas com ordem
de diversidade maior ou igual a quatro. Outros critérios para o projeto de STTCs,

levando-se em consideracao a relagao sinal-ruido, foram propostos em [17].

A principal dificuldade para a obtengao de STTCs com bom desempenho é que,

como veremos, além dos critérios mencionados acima se aplicarem ao corpo complexo de



sinais de modulagoes em banda bésica, o nimero de possibilidades de codigos encontra-
dos em uma trelica é muito elevado. Os primeiros trabalhos relacionados a simplificagao
da busca por STTCs levaram em conta apenas os critérios do posto e do determinante,
e visavam obter cédigos com diversidade completa. A primeira técnica para simplificar
a busca de STTCs foi proposta por Tarokh et al. em [4], onde foram apresentadas duas
regras simples para garantir diversidade completa de STTCs com duas antenas trans-
missoras. Grimm et al. [18], através do conceito de “simetria de zeros,” generalizaram
as regras de Tarokh possibilitando o projeto de STTCs com diversidade completa para
mais de duas antenas transmissoras. Em [19], Baro et al. sistematizaram a busca por
STTCs para obterem codigos com ganho de codificagao méximo em sistemas com duas
antenas transmissoras e modulagdo 4-PSK. Em [20], [21], Hammons e El Gamal de-
senvolveram critérios de posto binario, em substituicao ao critério do posto baseado
nos complexos, que sao mais simples e garantem que os STTCs associados atinjam
diversidade completa para as modulagoes BPSK e 4-PSK. Eles também mostraram
que o STTC que decorre de um cédigo convolucional C' de taxa R = 1/n satisfaz o
critério do posto bindrio se, e somente se, a matriz funcao de transferéncia de C, como
uma matriz de coeficientes sobre o corpo bindrio, possuir posto completo n. Em [22],
foi desenvolvida uma teoria para garantir diversidade completa para STTCs utilizando
constelacoes 22*-QAM, onde k é um inteiro positivo. Esta teoria inclui, como um caso
particular, o critério do posto bindrio proposto em [20] para modulagoes BPSK. Em
(23], [24] Blum considerou cédigos convolucionais bindrios que servem como STTCs.
Condigoes suficientes e necessarias foram apresentadas para que STTCs tivessem ga-
nho de diversidade completo. Além disso, Blum desenvolveu métodos para calcular
um limitante para o ganho de codificagao. Em [25], Noronha-Neto et al. introduziram
um procedimento alternativo para se obter STTCs com diversidade completa sobre o
corpo de Galois, GF(p), (do inglés: Galois Field) onde p é um ntimero primo, utilizando
duas antenas na transmissdo. Em [25], os simbolos de informacao, os coeficientes do
codificador convolucional e os simbolos de saida do codificador sao todos elementos
de GF(p), levando a uma eficiéncia espectral de log,(p) b/s/Hz. Em [26], a estrutura
do codificador apresentada em [25] foi utilizada para realizar uma busca exaustiva por
STTCs sobre GF(p) com ganho de codificagdo méximo. Em [27] foi realizada uma

comparag¢ao do desempenho de STTCs com modulagoes BPSK, 3-PSK e 4-PSK, onde



o codigo com modulacao 3-PSK apresentou algumas vantagens em relacao a modulacao
4-PSK. Ja em [28], os mesmos autores de [26] realizaram uma busca exaustiva em uma
estrutura de um codificador convolucional de taxa R = 1/2, linear sobre o anel Zg
e com 16 estados, para obter STTCs com ganho de codificagao méaximo utilizando a
modulac¢do 16-PSK. Outro trabalho interessante é a referéncia [29], onde os autores
apresentam dois métodos 6timos para a busca de STTCs com modulagoes 4-PSK, 4-
QAM, 8-PSK e 16-QAM, utilizando uma estrutura com entradas binarias e simbolos

de saidas M-arios, onde M = 4,8 e 16.

1.1 Objetivos

Este trabalho tem como objetivo simplificar a busca por STTCs sobre GF(p) e Z,, onde
p é primo e k um inteiro positivo, em sistemas com um numero arbitrario de antenas
transmissoras e que utilizam modulacoes do tipo p*-PSK. Com isso, outro objetivo, que
é a apresentacao de uma gama variada de novos STTCs para a utilizacao em sistemas
de comunicacao sem fio, pode ser alcancado. Cabe ressaltar que a simplicidade e a

sistematicidade dos codificadores propostos sao também de grande interesse pratico.

1.2 Contribuicoes

Nesta tese apresentaremos seis resultados, sendo trés conjecturas e trés teoremas, que
servirdo para simplificar a busca de STTCs sobre GF(p) e Z,x gerados por uma estru-
tura contendo um codificador espacio-temporal sobre GF(p) e Z,:. Todas os resulta-
dos aqui apresentados sao validos para qualquer ntimero de antenas transmissoras e
modulacoes do tipo p*-PSK. As duas primeiras conjecturas sio aplicadas aos STTCs
com modulagoes p-PSK, sendo que a primeira estabelece a diversidade completa para
STTCs testando apenas o posto em matrizes-diferenca entre palavras-cédigo sobre
GF(p), ao invés de matrizes-diferenga no dominio dos complexos, e a segunda verifica
se um STTC tem diversidade completa apenas com um simples teste de posto em uma
matriz geradora escalar G' de um codificador linear sobre GF(p) [30] e [31]. Com a ter-

ceira conjectura, é possivel se obter STTCs sobre Z,» com diversidade completa para



qualquer niimero de antenas transmissoras garantindo-se apenas o posto completo de
uma unica matriz, G’, formada pelos coeficientes do codificador convolucional linear
reduzidos a médulo-p [32]. Para o caso de k = 1, a terceira e a segunda conjecturas
sao equivalentes. Estas trés conjecturas sao mais focadas aos STTCs projetados pelos
critérios do posto e do determinante, pois com elas pode-se descartar cédigos que nao
tém diversidade completa. O primeiro e o segundo teoremas sao adaptagoes de [29, Te-
oremas 1 e 2| para os codificadores utilizados neste trabalho, e servem para simplificar a
busca de STTCs sobre Z,» projetados tanto através do critério do determinante quanto
através do critério do trago. O terceiro teorema é valido apenas para a simplificacao da
busca de STTCs sobre Z,x projetados pelo critério do traco, e pode reduzir de forma
significativa o niimero de codigos a serem testados. Nos trés teoremas, a simplificacao
ocorre pelo fato de se descartar codigos equivalentes, ou seja, codigos que possuem os
mesmos valores de ganhos. A partir destes resultados, foi possivel obter uma gama
variada de STTCs sobre GF(p) e Z,. utilizando modulagoes p*-PSK, com um esforco

computacional relativamente pequeno.

1.3 Organizacao

No Capitulo 2, sera apresentado o modelo de um sistema espacio-temporal, e em se-
guida serd feita uma andlise para se chegar aos critérios de projeto para STTCs em ca-
nais com desvanecimento Rayleigh plano quase-estatico. Serd mostrado também neste
capitulo o procedimento de construcao de um STTC. No Capitulo 3 serao propostas
trés conjecturas e trés teoremas para a simplificacao da busca por STTCs sobre GF(p)
e Z,-. O Capitulo 4 apresentard alguns cédigos novos obtidos através das técnicas pro-
postas e algumas simulagoes. Finalmente, no Capitulo 5, faremos algumas conclusoes

sobre os resultados obtidos nesta tese.



Capitulo 2

Cdédigos Espacio-Temporais em

Trelica

De acordo com [1], [2] e [3] a capacidade de canal para sistemas de comunicagoes méveis
que empregam multiplas antenas transmissoras e receptoras é significativamente maior
do que a de sistemas que utilizam apenas uma antena transmissora e uma receptora.
Em sistemas com multiplas antenas (MIMO, do inglés: Multiple Input Multiple Output),
nas condicoes em que o canal é conhecido nos receptores e possui desvanecimento plano
e independente, a capacidade de canal cresce linearmente com o numero minimo de
antenas transmissoras ou receptoras. Uma maneira de se obter tal ganho na capacidade
em sistemas praticos é a utilizagdo dos cédigos espacio-temporais (STCs). Os STCs
exploram as multiplas antenas para proporcionar um excelente desempenho com boa
eficiéncia espectral, codificando os sinais transmitidos no dominio do tempo e do espago.

Como mencionado na se¢ao de introducao, esta tese focara apenas nos STCs em trelica.

Os STTCs, propostos por Tarokh et al. [4] em 1998, quando transmitidos através
de canais com desvanecimento Rayleigh plano quase-estatico, devem ser construidos
com base em critérios que variam de acordo com o grau de diversidade do sistema.
Veremos adiante quais serao esses critérios e que impacto cada um deles tem na curva de
desempenho dos STTCs. Esses critérios estao relacionados a parametros associados a
matrizes formadas pelas diferengas de possiveis pares de seqiiéncias transmitidas. Uma

das principais dificuldades em se obter esses cddigos vem do fato de que seus critérios de



projeto sao baseados na estrutura algébrica do dominio complexo de sinais em banda
base, e nao numa estrutura algébrica finita, o que torna dificil a sistematizacao da

busca computacional de bons codigos.

A Secao 2.1 apresentarda o modelo do sistema espacio-temporal com miltiplas
antenas. Em seguida, a Secao 2.2 mostrara a analise de desempenho dos STTCs em
canais com desvanecimento lento. Na Secao 2.3, apresentaremos os critério de projeto
dos STTCs e, finalmente, na Secao 2.4, mostraremos os procedimentos necessarios para

calcular os ganhos dos STTCs.

2.1 Modelo do Sistema

Considere um sistema de comunicagao moével com desvanecimento do tipo Rayleigh
plano quase-estatico empregando n antenas transmissoras e m antenas receptoras como
mostrado na Figura 2.1. No transmissor a seqiiéncia de informagao é codificada pelo
codificador de canal. Em seguida os dados codificados entram em um conversor se-
rial /paralelo e sao divididos em n subseqiiéncias. Essas subseqiiéncias sdo entao ma-
peadas em n seqiiéncias de simbolos de uma constelacao. Em cada instante de tempo
t, um simbolo de cada seqiiéncia é enviado por uma antena, resultando em n trans-
missoes simultaneas. No receptor, cada antena recebe em cada instante de tempo ¢
uma superposicao dos n sinais transmitidos no instante de tempo t. Desta maneira o

sinal d{ recebido pela j-ésima antena receptora no instante t é dado por:
d = hijc\/ B+l (2.1)
i=1

onde ¢! é o sinal transmitido pela i-ésima antena no instante ¢, E, é a energia média do
sinal transmitido, 77 é um ruido Gaussiano branco complexo de média zero e variancia
Ny/2 por dimensdo e h;; denota o desvanecimento presente no caminho da i-ésima
antena transmissora para a j-ésima antena receptora. Neste trabalho consideraremos
que os desvanecimentos sao amostras independentes de um processo aleatério Gaus-
siano complexo de média zero e variancia 0.5 por dimensao. Na pratica, para que
os desvanecimentos sejam independentes, as antenas tém que estar separadas de pelo

menos algumas unidades de comprimento de onda. Além disso, vamos supor que o
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de Canal
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Figura 2.1: Modelo do sistema espacio-temporal.

receptor conheca perfeitamente o canal e que o algoritmo de Viterbi com métrica Eu-
clideana seja usado no decodificador. Por outro lado, o transmissor nao tem qualquer

informacao sobre o estado do canal.

2.2 Analise de Desempenho dos STTCs em Canais

com Desvanecimento Rayleigh Plano Quase-Estatico

Nesta segdo mostraremos a analise feita em [4] e [34] para se chegar aos critérios de
projeto dos STTCs para canais com desvanecimento Rayleigh plano quase-estatico.
Os critérios de projeto para STTCs utilizados em sistemas de comunicac¢oes que sao
modelados pelo desvanecimento rapido, assim como os que sao modelados por uma
mistura dos desvanecimento lento e rapido, sao diferentes dos que serao apresentados
neste trabalho e podem ser encontrados em [4] e [34]. Antes de comegarmos a andlise de
desempenho, definiremos algumas notacoes e algumas propriedades de algebra linear, as
quais serdo utilizadas no decorrer desta se¢ao. Considere os vetores x = (z1, xa, . . ., Ty)

ey = (y1,%2, . .., yx) sobre os complexos C*. O produto interno entre x e y é dado por:

k
X-y= Z i (2.2)
i=1

onde 7; denota o complexo conjugado de y; . Se A = A*, onde A* denota o conjugado
transposto de A, entao A é uma matriz Hermitiana. Para qualquer vetor complexo

X1xn, @ matriz A serd definida nao negativa se xAx* > 0. Uma matriz V,,«, é unitaria



se VV* = I, onde I é a matriz identidade. Uma matriz B, «; é raiz quadrada de A
se BB* = A. A seguir mostraremos as propriedades de dlgebra utilizadas nesta se¢ao

[35].

e Um autovetor v de uma matriz A,, correspondente a um autovalor A é um
vetor 1 x n de comprimento unitdrio tal que vA = Av. O espaco vetorial criado
pelos autovetores de A correspondentes ao autovalor zero tem dimensao n — r,

onde r é o posto da matriz A.
e Qualquer matriz A com raiz quadrada B é definida nao negativa.

e Para qualquer matriz Hermitiana A definida nao negativa, existe uma matriz

triangular inferior quadrada B tal que BB* = A.

e Dada uma matriz Hermitiana A, os autovetores de A geram um espaco complexo
n-dimensional. Além disso, existe uma matriz unitaria V' e uma matriz diagonal
D tal que VAV* = D. As linhas de V formam uma base ortonormal de C", dada
pelos autovetores de A. Os elementos da diagonal de D sao os autovalores \; de

A incluindo os autovalores multiplos.

e Os autovalores de uma matriz Hermitiana definida nao negativa sao reais e nao

negativos.

No canal com desvanecimento quase-estatico, o ganho entre a i-ésima antena
transmissora e a j-ésima antena receptora permanece constante durante um frame,

isto é, durante [ transmissoes, e muda independentemente de um frame para o outro.

Para o sistema descrito na Secao 3.1, a probabilidade de erro com relagao ao
par, denotada por P(c — e), é definida como a probabilidade de um decodificador de

maxima verossimilhanca decidir-se erroneamente pela palavra

1.2 n_1 2 n 1.2 n
e_elel...ele2e2...e2...elel...el

quando a palavra cédigo transmitida foi

12 n 1.2 n 1.2 n
c_clclu.-clczcz.-.c2.-.Clcl-.-Cl’
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dado que os parametros do desvanecimento do canal, h; ;, sao conhecidos. Esta proba-

bilidade é limitada superiormente por:

Plc—elhi=1,2...n j=12.m)

(2.3)
< L exp(—d?(c,e) B, /4Ny)
onde Ny/2 é a variancia do ruido por dimensao e
m l n 2
Plee) =337 IS bl — ) (24)
j=1 t=1 |i=1

m n n

d*(c,e) = Z Z > highig Y (ch—e)(d —el) (2.5)

Definindo-se Q; = (hyj, haj, ..., hnj) € Ay q(c,e) = izl(ci’ —eD)(c] —e}), para 1 <

p,q < n, a Equagao (2.5) se torna:

d*(c,e) = Z Q;A(c,e)Q. (2.6)

Substituindo (2.6) em (2.3) obtemos a seguinte expressao para a probabilidade de erro

com relagao ao par:

P(c—elhii=1,2...,n j=12.m)

(2.7)
< sexp(—= 27 Q5 A(c, ) El/ANy).
Como A(c,e) é Hermitiana, e
ej—cl eb—ch - el =
e2—cl es—c2 - el —cf
B(c,e) 2 1 | 1 2' 2 i | i (2.8)
ef—c e —C g
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é a raiz quadrada de A(c,e), entao os autovalores de A(c, e) sdo nimeros reais e nao

negativos.

O préximo passo é expressar d?(c,e) em termos dos autovalores da matriz
A(c,e). Como ja mencionado, para cada matriz Hermitiana A(c,e) existe uma ma-
triz unitaria V' e uma matriz diagonal real D tal que VAV* = D. Se a matriz V for

unitaria, entao VV* = I e portanto

VA(c,e)V*=D =
A(c,e) =V'DV =

Q;A(c, @) = (V) D(VY).

Definindo (B, B2 - - - Bnj) = V", podemos chegar a seguinte expressao:
QjA(c,e) =Y N8, (2.9)
i=1
Com isso:
d(c,e) => Y N|Bi,l° (2.10)
j=1 i=1

Substituindo (2.10) no limitante superior de (2.3) teremos a seguinte expressao:

P(c—elhj,i=1,2,...,n, j=1,2,...,m)

. (2.11)
< gexp(— 2000 D0 i |Bigl” B /ANy).

Como h; ; sao modelados como amostras independentes de um processo aleatério
Gaussiano complexo de média zero e variancia 0.5 por dimensao, e V' é unitaria, entao
B;,; também serao varidveis aleatérias Gaussianas complexas com média zero e variancia
0.5 por dimensao. A seguir, serd calculado o valor esperado da Equacao (2.11) com

relagdo a [3; ; para duas situacoes de rm.
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2.2.1 Probabilidade de Erro com Relagao ao Par para Peque-

nos Valores de rm

Em [34] ficou estabelecido um limiar para os valores de rm sendo rm < 4, considerado
um pequeno valor para a ordem de diversidade e rm > 4 um valor elevado. Para
rm < 4, e para o caso de desvanecimento Rayleigh, a probabilidade média de erro com

relagdo ao par pode ser expressa por [4]:

n

1 m
P(c—e) < (H T Ai(Es/élNo))) . (2.12)

=1

Considerando valores altos para a relac¢ao sinal-ruido (SN R > 10), podemos aproximar

a expressao (2.12) para:

Plc—e) < (1} )\Z-) h ( Af\jo) o (2.13)

Com base na Equacao (2.13), podemos observar os ganhos de diversidade e de codi-

ficacao do sistema. O ganho de diversidade rm é o expoente da relagao sinal-ruido
Es/Ny e determina a inclinagdo na curva da probabilidade de erro versus Es/Ny. O
ganho de codificagao representa um deslocamento horizontal na curva da probabilidade
de erro versus E,/Ny e pode ser definido como sendo:

(AMda. . A)Y"
DE? '

G, = (2.14)

onde DE? é a distancia Euclideana quadratica do sistema nao codificado.

De acordo com a expressao (2.13), para minimizarmos a probabilidade de erro

1/r

é necessario maximizar tanto rm quanto (AjAs...\,.)"/". Com isso, pode-se chegar aos

seguintes critérios de projeto [4]:

e O Critério do Posto: Neste critério o parametro a ser maximizado é o posto
minimo r da matriz B(c, e) com relagdo a todos os pares distintos de palavras-
codigo ¢ e e. O ganho de diversidade é rm < nm, com igualdade se o posto for

completo, ou seja, r = n.
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e O Critério do Determinante: Para um dado ganho de diversidade rm, a meta
deste critério é maximizar a média geométrica minima dos autovalores nao nu-
los da matriz A(c,e), (A1Az...)\.)Y", com relacdo a todos os pares distintos de

palavras-cédigo c e e.

2.2.2 Probabilidade de Erro com Relacao ao Par para Valores

Grandes de

Quando o desvanecimento é Rayleigh e rm > 4, o limitante da probabilidade média de

erro com relagdo ao par pode ser escrita como [34]:

P(c—e) <

N[

2
1 FEs r 2 B r .
e (4 () mTL - Fm TN

Es r 1/2 OREDIPY
Q <4N0 (m Zi:l )\22) - ( T:l )\2)11/2

(2.15)

Novamente, considerando valores altos para a relacao sinal-ruido, podemos aproximar

a expressao (2.15) para:

1
P(c—e) < 7P <—m

Es Z i (2.16)

4N, 4 a '
=1

Pela expressao (2.16), devemos maximizar o somatério dos autovalores da matriz

A(c, e) para minimizarmos a probabilidade de erro. Note que para uma matriz qua-

drada o somatorio de todos os autovalores é igual ao somatério dos elementos de sua

diagonal principal, conhecido como o traco da matriz, ou seja,

n

tr(A(c,e)) = Z A=) A (2.17)

i=1

onde A** sdo os elementos da diagonal principal de A(c,e). Como

A =37 =€) (e — el (2.13)

podemos dizer que:

tr(A(c,e)) => Y ¢ —eil*. (2.19)



14

(a) (b)

Figura 2.2: Constelacoes 4-PSK (a) e 8-PSK (b).

A equacgao (2.19) mostra que o trago de A(c,e) é equivalente a distancia Euclideana

quadratica entre as palavras-codigo c e e.

Com base nas expressoes anteriores, pode-se chegar ao seguinte critério de pro-

jeto [34]:

e O Critério do Trago: Garantir posto r para todos os pares distintos de palavras-
codigo c e e, tal que rm > 4, e maximizar o trago minimo de A(c, e) com relac¢ao

a todos os pares distintos de palavras-codigo c e e.

2.3 Projeto dos STTCs para Canais com Desvane-

cimento Rayleigh Plano Quase-Estatico

Nesta segao apresentaremos dois exemplos de STTCs, retirados de [4], para mostrar
como se determinar os ganhos relacionados aos critérios do posto e determinante, e do

traco.

Considere a constelagao 4-PSK mostrada na Figura 2.2 (a). A trelica da Figura
2.3 descreve um STTC de 4 estados para a modulacao 4-PSK e com duas antenas
transmissoras. O ganho de diversidade é rm = 2m, e o ganhos proporcionados pelos
critérios do determinante e do trago sao, respectivamente, 2 e 4. A eficiéncia espectral
para este codigo é de log,(4) = 2 b/s/Hz. A trelica mostrada na Figura 2.4 refere-
se a um STTC que usa duas antenas transmissoras para transmitir simbolos de uma

constelagao 8-PSK, vista na Figura 2.2 (b), para um receptor equipado com m antenas.
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Figura 2.3: Cédigo espacio-temporal em trelica, 4-PSK, 2 bits/s/Hz.

Este cédigo proporciona um ganho de diversidade de 2m, minimo determinante igual
a 1,4 e minimo trago igual a 4, com uma eficiéncia espectral de 3 b/s/Hz. Nestas
trelicas cada par de simbolos no canto esquerdo representa, respectivamente, o sinal
transmitido pela primeira e segunda antenas. Ao lado esquerdo de cada estado, no
canto esquerdo da trelica, o nimero de pares de simbolos é igual ao niimero de ramos
saindo deste estado. O par de simbolos mais a esquerda rotula o ramo mais acima,
e corresponde ao simbolo de informacao 0, o par de simbolos seguinte rotula o ramo

imediatamente abaixo, e corresponde ao simbolo de informagao 1, e assim por diante.

Para se chegar aos ganhos de diversidade dos codigos citados anteriormente, foi
necessario verificar se todas as matrizes B(c, e), referentes aos possiveis pares distintos
de seqiiéncias que iniciam em estados iguais e terminam em estados iguais, tivessem
posto completo. Apés essa verificagao, foi preciso calcular a média geométrica dos au-
tovalores e o trago referente a cada matriz A(c, e), para finalmente escolher os menores
valores e fixar os ganhos referentes aos critério do determinante e do traco. Como
exemplo, mostraremos o calculo do posto, da média geométrica dos autovalores e do
trago de uma matriz A(c,e) referente ao par de seqiiéncias mostrados na treliga da
Figura 2.5, onde as seqiiéncias tém comprimento [ = 2. A Figura 2.5 mostra os cami-
nhos correspondentes a seqiiéncia correta, abd, e a seqiiéncia errada, acd. Essa trelica

ilustra um STTC com 4 estados.

Através da Equagao (2.8) e dos simbolos complexos da constelagao 4-PSK, ob-
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Figura 2.4: Cédigo espécio-temporal em treliga, 8-PSK, 3 bits/s/Hz.

temos a seguinte matriz:

0 j5—1
B(c,e) = . (2.20)
j—1 0
A partir de B podemos facilmente determinar a matriz A como sendo

2 0
A(c,e) = . (2.21)

0 2
A matriz A tem posto r = 2, autovalores Ay = Ay = 2, com uma média geométrica
igual a 2 e traco igual a 4. Note que a estrutura de codificagdo apresentada nesta tese

nao garante uniformidade geométrica para os c6digos [4], e por isso a busca é realizada

sobre todos os possiveis pares distintos de palavras-codigo na trelica.

Comentdrio 1 E importante observar também que para se obter grau mdximo de
diversidade, r = n, para um STTC, é necessario que | > n. Isto pode ser verificado

pelo fato de A(c,e) ter o mesmo posto de B(c,e), que tem dimensdo n X l.

Devemos chamar a atencao para o fato de que os cddigos apresentados nesta

se¢ao nao sao 6timos. Para se obter o cédigo 6timo seria necesséria uma busca exaustiva
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Figura 2.5: Par de seqiiéncias.

S:2M) c6digos, onde M é o ntimero de simbolos da constelaco e

num universo de M
S é o numero de estados da trelica. Por exemplo, para achar o cédigo étimo de uma
trelica com 4 estados que utiliza simbolos de uma constelacao 4-PSK, através de uma
busca ndo sistematica, terfamos que procurd-lo em um universo de 432 ~ 1, 844210
cddigos. Esta procura se torna impraticavel mesmo quando o ntmero de estados da

trelica e/ou o nimero de simbolos da constelagdo sdo modestos. Dai a relevancia do

estudo de métodos para sistematizar a busca por STTCs.



Capitulo 3

Técnicas para o Projeto de STTCs

sobre Corpos e Anéis Finitos

Neste capitulo serao apresentados alguns resultados através dos quais pode-se simplifi-
car o projeto de bons STTCs sobre GF(p) e Z,, onde GF(p) denota o corpo de Galois
e Z,= um anel de inteiros finitos, para qualquer niimero de antenas transmissoras e mo-
dulacdes p*-PSK. Na Secao 3.1 sera apresentada uma conjectura que simplifica o teste
de posto completo para STTCs sobre GF(p), transferindo-o do dominio dos complexos
para GF(p). A Secgao 3.2 apresentard a estrutura do codificador convolucional sobre
GF(p) e Z, utilizado nesta tese. A Secao 3.3 mostrara como a busca de STTCs com
diversidade completa pode ser simplificada — um unico teste de posto completo em
uma matriz escalar sobre GF(p) substitui uma infinidade de testes de posto completo
em matrizes complexas. Finalmente, na Secao 3.4, serao apresentados trés teoremas

que identificam STTCs que possuem o mesmo traco e/ou determinante.

Daqui por diante, para simplificar a notacao, em alguns casos GF(p) serd consi-
derado como sendo Zx, para k = 1. O leitor que desejar mais informagoes sobre dlgebra

aplicada a teoria da codificacao pode consultar o Apéndice A deste documento.

18
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3.1 O Critério do Posto p-ario: Conjectura 1

Considere a matriz D(v,w) de dimensao n x | como sendo uma matriz diferenca de

palavras-cdigo espécio-temporais sobre GF(p):

D(v,w) = v—w (mod p)

V1,1 — W11 V12 —Wi2 -+ U] — Wiy
Vg1 — W21 V22— W22 -+ Uy — Wy

= (mod p),
Un1 — W1 Up2 —Wp2 - Upj — Wy

onde v e w sdo as palavras-cdigo correta e erronea, respectivamente, sobre GF(p) e
cada elemento d; ; = v; j; —w; ; da matriz é reduzido médulo p para se tornar um inteiro

pertencente ao conjunto {0,1,2,...,p—1}.

Considerando a matriz D (v, w), apresentaremos uma conjectura através da qual
se torna possivel garantir diversidade completa para STTCs verificando apenas o posto
de matrizes diferenca sobre GF(p) e ndo mais de matrizes diferenga sobre os complexos.
Com isso, o critério do posto proposto por Tarokh et al., em [4], pode ser simplificado
quando se trata de STTCs sobre GF(p). Este critério simplificado também se aplica

tanto aos codigos lineares quanto aos nao lineares.

Congectura 1 Sejam n el inteiros positivos com | > n, e p um numero primo qual-
quer. Se a matriz D(v,w) de dimensdo n x | definida anteriormente for de posto

completo sobre GF(p), entio a matriz

o(BFvn) _ (BFuny)  (BFes)  (BFwie el L) (rwy
12 72 72 12 12 72
A i v21) | (R wan)  (HFv22)  (BFwa2) o (BFva) _ (HFwa)
B(c,e) = )
” 5 5 ” ” ,
e(%vn,l) _ e(%wn,l) e(%vn ) e(%wn 2) e(%vn,l) e(%wn l)

também serd de posto completo. O contrario geralmente nao € verdade.

Comentdrio 2 Note que a matriz B(c,e) em (3.1) é exatamente a matriz B(c,e)

em (2.8), onde Biy(c,e) = ei — ¢i = !5 i) — eGrwie),
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Comentdrio 3 No Anexo B uma prova € apresentada para a Conjectura 1 quando o
numero de antenas transmissoras ¢ n = 2, e no Anexo C sdo apresentadas algumas
propriedades que dao indicios de que a Conjectura 1 € verdadeira para qualquer niumero

de antenas transmissoras.

Comentdrio 4 A Conjectura 1 ndao tem um impacto significativo na simplificagao
da busca por STTCs, uma vez que ainda hd a necessidade de se verificar o posto das
matrizes diferenca associadas a todos os possiveis pares de palavras-codigo. Mas, como
veremos adiante, a Conjectura 1 servird como base para chegarmos a outro resultado

importante, que simplificard drasticamente tal busca.

3.2 O Codificador Convolucional sobre GF(p) e Z

Uma das contribuigoes desta tese é a proposicao da seguinte estrutura do codificador

para a geracao de STTCs para a modulacao p*-PSK.

Seja Zyrx o anel de inteiros mddulo p*, onde p é um ndmero primo e k é um
inteiro positivo. Seja Z, = GF(p) o corpo de inteiros médulo p para o caso k =
1. Seja também U(D) = ug + u1D + ugD? + -+ o polindmio de informagao sobre
Ly, representando uma seqiiencia de informacao. Esta seqiiéncia é codificada por um
codificador convolucional sobre Z,: de taxa R = 1/n, o qual é uma realizacao direta

de um vetor gerador polinomial:

produzindo o vetor codificado
V(D) =U(D)G(D) = [VY(D),V*(D),...,V*(D)],

onde V(D) = vi+viD+viD*+- - -+viD'+- - parai = 1,2...,n, sdo as n seqiiéncias
codificadas. Os geradores do cédigo sao Gi(D) = go; + 91D + g2.:D* -+ + gri DX,
para ¢ = 1,2...,n, onde K é a meméria do codificador. Um exemplo genérico de
um codificador convolucional sobre Z,. de taxa R = 1/n é apresentado na Figura 3.1,

onde as operacoes de soma e multiplicacdo sao realizadas médulo-p”, e os simbolos de



21

= e
@ @b\
il
@D ©®

Figura 3.1: Codificador convolucional genérico de taxa R = 1/n.

entrada, os coeficientes do codificador e os simbolos de saida sao elementos do anel Z
ou do corpo GF(p), dependendo do valor de k. Da teoria de cédigos convolucionais, [37],
o codigo gerado por esse codificador € linear sobre Z,x. O ntimero de estados da trelica
que representa o cédigo gerado pela estrutura da Figura 3.1 é dado por (p*)X. Por
exemplo, para um codificador sobre Z; e com K = 2 o cddigo gerado teria uma trelica

com 42 = 16 estados. Quando k > 1, gracas a estrutura do anel Z ., é possivel se obter

pk 5
cédigos com ntimero de estados intermedidrios entre poténcias de (p¥). Para que isso
ocorra basta acrescentar um multiplicador com valor p*~%, onde z = 1,2, ..., k—1, entre
a K-ésima e a (K — 1)-ésima memorias do codificador. As Figuras 3.2 e 3.3 mostram
dois exemplos destes codificadores. Na Figura 3.2 é considerado um codificador de
taxa 1/3 com ordem de memoéria K = 2. Para este caso, se fossem utilizadas, por
exemplo, as modulacoes 4, 9 e 25-PSK, possiveis valores de multiplicadores seriam
1 = 2,3,5, respectivamente, resultando em cédigos com (p*)¥ /4y estados, no caso, 8,
27 e 125 estados. A Figura 3.3 mostra um codificador de taxa 1/3 e ordem de memdria

K = 3. Tomando-se como exemplo outras modulagoes, por exemplo, 8 e 16-PSK, os

multiplicadores seriam ¢ = 4, 8, respectivamente, e os codigos teriam 128 e 512 estados

A seguir, baseando-nos na estrutura do codificador utilizado, definiremos duas
matrizes que serdo de grande importancia para o projeto de STTCs sobre GF(p) e Z,.

A primeira serd uma matriz geradora escalar G, de dimensao n x K + 1, formada pelos
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Figura 3.2: Codificador convolucional de taxa R = 1/3 e meméria K = 2.
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Figura 3.3: Codificador convolucional de taxa R = 1/3 e memoéria K = 3.

coeficientes do codificador da Figura 3.1:

gop 911 " 9K
G def 9(?,2 91.,2 g{(,z (3.2)
| gO,n gl,n T gK,n ]
onde ¢, ;, para x = 0,1,...,K e i = 1,2,...,n sao os coeficientes do codificador da

Figura 3.1. A segunda matriz, G’, sera definida como a matriz G reduzida moédulo-p:

901 Y11 9K
/ / . /
G/ dZQf G— (mod p) _ 9?72 9%72 ‘ gf.{,z (33)
| Yom G T 9K

onde g, ;, paraz =0,1,..., K ei=1,2,...,n sdo elementos de GF(p).

Comentdrio 5 Note que se o codificador utilizado for sobre GF(p), as duas matrizes
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serao idénticas.

3.3 Técnicas para o Projeto de STTCs sobre GF(p)

e Z,. com Diversidade Completa

Nesta secao serao apresentadas duas conjecturas muito uteis para a obtencao de STTCs

com diversidade completa.

3.3.1 Técnica para o Projeto de STTCs sobre GF(p) com Di-

versidade Completa: Conjectura 2

Para dizer que um STTC possui ganho de diversidade maximo, é necessario garantir
que o posto de todas as matrizes B(c,e) correspondentes ao cédigo seja completo.
Este teste, quando realizado individualmente em cada matriz, se torna muito complexo
devido ao elevado niimero de matrizes a serem verificadas. A seguir, apresentaremos
uma conjectura através da qual é possivel obter STTCs sobre GF(p) com diversidade

completa com apenas um unico teste de posto completo em uma matriz escalar sobre

GF(p).

Conjectura 2 Considere um codificador convolucional sobre GF(p) de taza R = 1/n,
como o mostrado na Figura 3.1, e a correspondente matriz geradora escalar G, definida
em (3.2). A matriz B(c, e) terd posto completo sobre os complexos, com relagdo a todos
0s possiveis pares distintos de palavras-codigo ¢ e e se, e somente se, a matriz G tiver
posto completo sobre GF(p). Portanto, o STTC associado a G atingird o mdzximo

ganho de diversidade.

Comentdrio 6 E importante ressaltar que messa conjectura uma infinidade de testes
de posto de matrizes complezxas é substituida por um unico teste de posto de uma matriz

de inteiros sobre GF(p).

Prova direta: Inicialmente, suponha que a Conjectura 1 seja verdadeira e depois

utilize o argumento a seguir (apresentado na prova do [20, Teorema 14]) para garantir
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que uma matriz G de posto completo sobre GF(p) sé ird gerar palavras-codigo também

de posto completo sobre GF(p).

Se uma matriz palavra-cédigo sobre GF(p) é de posto incompleto podemos afir-

mar que:
n

Y i) uage;= Z a;Gi(D)U(D) = 0, (3.4)

i=1
, ~ ~ . . - K , -

onde a; é uma solu¢do nao trivial para a expressao (3.4) e Y Ui—zGs; ¢ & €xpressao

para a i-ésima saida do codificador da Figura 3.1. A expressao (3.4) serd verdadeira

quando U(D) # 0 se, e somente se,

ou seja, se e somente se a matriz G for de posto incompleto.

Com isso, usaremos a propriedade de que em um codigo linear a diferenca entre
duas palavras-cédigo também é uma palavra-codigo. Portanto, pela Conjectura 1,
poderemos concluir que se a matriz geradora G for de posto completo sobre GF(p),
todas as matrizes diferenca de palavras-cédigo D(v,w) serdo de posto completo sobre

GF(p), resultando em um STTC com diversidade completa. O

A prova de que uma matriz geradora G de posto incompleto ird gerar um STTC
de diversidade incompleta (prova inversa) ainda nao foi conseguida, mas essa proprie-

dade se verificou em todos os casos simulados.

Para ilustrar este resultado, mostraremos o seguinte exemplo:

Exemplo 1 Considere um sistema espdacio-temporal com duas antenas transmissoras
utilizando a modulagao 7-PSK e o codificador convolucional sobre GF(7) de taza R =
1/2 mostrado na Figura 3.4. Segundo (3.2), a matriz G € dada por:

)
2 4

G —

Pode-se verificar facilmente que a matriz G possui posto completo sobre GF(7) e, por-
tanto, sequndo a Congectura 2, o codificador da Figura 3.4 ird gerar um STTC sobre

GF(7) para a modulagio 7-PSK com ganho de diversidade mdzimo.
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Figura 3.4: Codificador convolucional sobre GF(7), R = 1/2.

3.3.2 Técnica para o Projeto de STTCs sobre Z,. com Diver-

sidade Completa: Conjectura 3

Na Conjectura 2, foi estabelecido que é possivel garantir diversidade completa para
um STTC sobre GF(p) desde que os coeficientes de seu correspondente codificador
convolucional constituam uma matriz geradora escalar de posto completo sobre GF(p).
Na proxima conjectura, estenderemos esse resultado para codificadores convolucionais
sobre Z,. de taxa R = 1/n, com o intuito de utilizarmos modula¢oes usuais como, por

exemplo, 4-PSK e 8-PSK.

Conjectura 3 Considere um codificador convolucional sobre Z,. de taza R = 1/n
com uma matriz geradora escalar G. A matriz B(c,e) terd posto completo sobre os
complexos, com relagcdo a todos os possiveis pares distintos de palavras-codigo ¢ e e se, e
somente se, a matriz G reduzida modulo-p, denotada por G’, tiver posto completo sobre

GF(p). Portanto, o STTC associado a G atingird o mdzimo ganho de diversidade.

Comentdrio 7 Note que para k = 1 o resultado apresentado se torna um caso parti-

cular da Conjectura 2.

Para propor esta conjectura, fizemos uma analogia a um teorema apresentado
por Massey e Mittelholzer em [38] para cédigos convolucionais sobre o anel Z,r, que
diz: “Um polinoémio gerador G(D) sobre o anel Z,:, onde p é primo e k é um inteiro
positivo, é catastréfico se, e somente se, seus coeficientes polinomiais reduzidos médulo-
p resultarem em um polinémio gerador sobre GF(p) também catastréfico”. Apesar

de nao apresentarmos formalmente uma prova matemaética, que relacione diretamente
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Figura 3.5: Codificador convolucional sobre Zg, R = 1/2.

estes dois resultados, a Conjectura 3 foi verificada em todos os casos onde realizamos

buscas exaustivas nos coeficientes do codificador.

Para ilustrar a Conjectura 3, apresentaremos o seguinte exemplo:

Exemplo 2 Considere um sistema espdcio-temporal com duas antenas transmissoras
utilizando a modulagao 8-PSK e o codificador convolucional linear sobre Zs de taza

R =1/2 mostrado na Figura 3.5. Sequindo as defini¢oes de G e G’, tem-se:

71 .
G = e G' =
6 3 0 1
Pode-se verificar facilmente que a matriz G’ possui posto completo sobre GF(2) e,
portanto, sequndo a Conjectura 3, o codificador da Figura 3.5 ird gerar um STTC

sobre Zg para a modulacdo §-PSK com ganho de diversidade mdadximo.

Apesar de a Secao 3.3 ser focada nos STTCs com diversidade completa, esses
resultados também podem ser tuteis para o projeto de STTCs baseados no critério do
traco, pois antes de maximizar o trago minimo é necessario garantir que rm > 4. No
préximo capitulo usaremos as Conjecturas 2 e 3 para simplificar a busca de STTCs
com diversidade completa, e realizaremos algumas simulacoes para comprovar o bom

desempenho dos codigos obtidos.
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3.4 QOutras Técnicas para se Projetar STTCs sobre
GF(p) e y/m

Nesta secao serao apresentados trés teoremas que simplificam a busca de STTCs sobre
Z,. sem descartar os codigos 6timos. Os dois primeiros teoremas (Teoremas 1 e 2) sao
adaptagoes de [29, Teoremas 1 e 2| para os codificadores utilizados neste trabalho, e
servem tanto para os STTCs projetados através do critério do determinante quanto
para os projetados pelo critério do trago. O tltimo teorema (Teorema 3) é vélida

apenas para a simplificagao da busca de STTCs projetados pelo critério do traco.

3.4.1 Teorema 1

Em [29], os autores mostraram que é possivel reduzir a busca de STTCs sem descartar
cédigos 6timos. Isto é feito desconsiderando-se os conjuntos de coeficientes que geram
matrizes diferenca de palavras-codigo complexas conjugadas, evitando assim avaliar
cbédigos com os mesmos ganhos. No proximo teorema apresentaremos um resultado
similar ao obtido em [29, Se¢ao 3.2], porém desenvolvido para STTCs gerados por

codificadores convolucionais sobre Ly

Teorema 1 Considere um STTC sobre Z,. gerado por uma matriz geradora G com
coeficientes gy, para x = 0,1,..., K ei =1,2,...,n. As matrizes A(c,e), definidas
como B(c,e)B(c,e)*, geradas por este cddigo serao complexas conjugadas das matrizes
A(c, e) geradas por um cédigo cuja matriz geradora possui coeficientes p¥ — g,.;. Por-
tanto, para fins de projeto de STTCs, os dois codigos terao as mesmas caracteristicas

com relacdo ao posto, determinante e traco.

Prova: Considere que as saidas do codificador da Figura 3.1 sejam dadas por:

K
vl = Zut_mgx,i, (mod p"). (3.6)

z=0
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Tabela 3.1: Exemplos de STTCs Equivalentes - Teorema 1

p* — PSK | n Matriz G Matriz G = p* — G | Determinante | Traco

4 2003 13 01 ;3 1] 2 6
5 2030 01 20 ;0 4 2,23 5
16 20155 98| [111; 7 § 0,78 458

Alterando os coeficientes do codificador por p* — g, ; teremos as seguintes saidas:

K K
U= > wa(PF = o) (mod pF) = (w—op) = (—2gas) (mod p*)
=0 =0
K
= Z —Us_ 0 (mod p*) = —v! (mod p*)
=0

Agora vamos analisar o impacto desta alteracao na matriz diferenca de palavras-
codigo B(c,e). Cada elemento de B(c,e) é uma diferenga de niimeros complexos da

forma:

Com a alteracio dos coeficientes por p* — g, ; teremos:

, j2r(p* — ¢ j2n(p* —e)
bij = eXP(T) - eXP(T
—j2mc —j2me
= eXp( pk ) - eXp( pk )
= b, (3.8)

onde HJ denota o complexo conjugado.

Com isso, podemos concluir que alterar os coeficientes do codificador sobre Z,
por p* — g,; implica em obter uma matriz B(c,e) conjugada, e como A = BBH,

A= (BBH) = A. Segundo [4], A é Hermitiana e portanto A e A terdo o mesmo posto,

determinante e trago. 0J

A Tabela 3.1 mostra, como exemplo, alguns STCCs equivalentes para cons-

telacoes p*-PSK.
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Comentdrio 8 Note que através deste teorema € possivel reduzir aproximadamente
pela metade o nimero de STCCs a serem testados sem que 0s codigos com maior de-
terminante e trago sejam descartados. Esta redugao € obtida ignorando-se a verifica¢ao

de cddigos com coeficientes p* — g,.;.

3.4.2 Teorema 2

Com base em [29, Teorema 2], mostraremos um teorema a partir da qual é possivel
simplificar a busca de STTCs considerando que permutagoes nas linhas das matrizes

diferengas de palavras-cdédigo nao afetam caracteristicas como posto, determinante e

trago dos STTCs.

Teorema 2 Considere um STTC sobre Z,x gerado por uma matriz geradora G. Uma

permutacao das linhas de G nao afeta caracteristicas como posto, determinante e traco

do respectivo STTC.

Prova: Observando a estrutura do codificador da Figura 3.1 podemos facilmente notar
que uma permutac¢ao nas linhas de sua matriz geradora G implica em uma permutacao
nas linhas de B(c,e), pois cada saida v! depende apenas dos coeficientes da i-ésima
linha de G. Em [29], devido a estrutura do codificador utilizado, as permutagdes nas
linhas de B(c,e) sao ocasionadas por permutagoes das colunas da matriz geradora,
mas para analisar os efeitos que as permutagao nas linhas de B(c, e) causam na matriz
A(c, e), podemos utilizar a mesma prova apresentada em [29] para garantir que per-
mutagoes nas linhas de B(c,e) nao afetam caracteristicas como posto, determinante e

trago da matriz A(c, e) correspondente. Esta prova é baseada no fato de que:

det(A) = (—1)7 det(A), (3.9)

onde A é a matriz A permutada e ¢ é o nimero de permutacoes realizadas tanto em

linha como em coluna.

Sabemos que x permutacoes nas linhas de G implicam em x permutacoes nas
linhas de B. Ao se obter B, inevitavelmente sao feitas mais x permutacoes em B.

Com isso, A e A serdo diferentes em 2z permutacoes e, portanto:

det(A) = det(A). (3.10)
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Tabela 3.2: Exemplos de STTCs Equivalentes - Teorema 2

p* — PSK | n Matriz G ‘ Matriz G com Permutagoes nas Linhas | Determinante ‘ Trago H
4 2 03;13 13 ;0 3 2 6
7 3|1[164;332;25 6] B32;164;25 6 0.44 21
9 31776 ;6 28;1 4 4] 1 44;776;62 8 0.35 18

Com relacao ao traco de A, alterar quaisquer x linhas ou colunas de uma matriz

simplesmente altera a ordem do somatorio requerido para o calculo de seu traco. [

Na tabela 3.2, mostramos alguns exemplos de STTCs sobre Z,« para ilustrar o

Teorema 2.

Comentario 9 Note que com esse teorema € possivel se obter uma reducdo fatorial
na busca de STTCs. Por exemplo, um sistema com n = 3 antenas transmissoras teria

uma reducao do nimero de codigos verificados de 3! = 6 vezes.

Comentdrio 10 Uma maneira alternativa de se provar o Teorema 2 € através do
sequinte argumento. Note que uma permutacdo das linhas de G implicam numa cor-
respondente permutacao espacial das antenas transmissoras. Como supostamente o
canal definido a partir de cada antena transmissora tem o mesmo comportamento es-
tatistico, e como o critério de desempenho € baseado na probabilidade de erro média,

tal permutacao nao deveria alterar o desempenho médio do sistema.

3.4.3 Teorema 3

Para finalizar o capitulo, apresentaremos um teorema que reduz o esforco da busca
por STTCs projetados pelo critério do trago sem descartar os cddigos 6timos. Essa
reducao é baseada no fato de que alterar uma linha da matriz B(c, e) por seu complexo

conjugado nao altera o trago da matriz A(c,e) correspondente.

Teorema 3 Considere um STTC sobre Z,. gerado por uma matriz geradora G com
coeficientes g, para x =0,1,..., K ei=1,2,...,n. Alterar os coeficientes g,; de x
linhas de G por p¥ — g,;, onde 1 < x < n, ndo altera o trago da matriz A(c,e) para

qualquer par de palavras-codigo ¢ e e do STTC.
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Tabela 3.3: Exemplos de STTCs com Tragos Iguais - Teorema 3

p* — PSK | n Matriz G Matriz G com Algumas linhas p* — gx; | Traco
3 2 211;11 2 211;221] 18
8 31347 562;71 3 41 562;71 3 19,17
11 3/[3102 718;6 1 6 819 410 3;6 1 ¢] 16,42

Prova: Considere um codificador convolucional sobre GF(p) de taxa R = 1/n
com uma matriz geradora escalar G, definida na Sec¢ao 3.2. Como mostrado no Teorema
1, ao substituirmos os coeficientes g, ; de uma linha da matriz G por p* — g, ; estamos
conjugando a correspondente linha da matriz diferenca de palavras-cédigo B(c, e). Pelo
fato de A = BB* | o elemento da diagonal a;; da matriz A serd dado pelo somatério dos
médulos ao quadrado dos elementos da i-ésima linha da matriz B. Como |b; ;|* = [b; ;|2
e como o trago de uma matriz é dado pelo somatorio dos elementos de sua diagonal,

pode-se concluir que o Teorema 3 é verdadeiro. 0

A Tabela 3.3 apresenta alguns exemplos de STTCs para ilustrar este resultado.
Comentdrio 11 Note que esse resultado reduz a busca por um fator 2.

Comentdrio 12 Observe que quando todas as linhas sao modificadas, i.e., x = n,
esse teorema se torna o Teorema 1, e portanto se torna vdlida para simplificar também

a busca de STTCs projetados pelo critério do determinante.



Capitulo 4

Resultados: Aplicacoes das

Técnicas Propostas

O objetivo deste capitulo é apresentar alguns STTCs sobre GF(p) e Z,. obtidos a partir
das técnicas propostas neste trabalho. Inicialmente, na Secao 4.1, sera feita uma anélise
da reducao de complexidade da busca de STTCs devido a estrutura do codificador
utilizado e das técnicas propostas. A Secao 4.2 apresentard algumas tabelas contendo
STTCs sobre GF(p) e Z,, sendo alguns desses inéditos na literatura, e apresentara
também comentarios sobre as vantagens e desvantagens em se utilizar codificadores
sobre corpos e aneis. Por tltimo, na Secao 4.3, serao apresentados alguns resultados de
simulagoes para comprovar o bom desempenho desses codigos diante dos canais com

desvanecimento.

4.1 Simplificacao da Busca de STTCs

Nesta se¢cao mostraremos o quanto é possivel reduzir a busca de STTCs utilizando a
estrutura e as técnicas propostas nesta tese. Antes disso, para uma analise compara-
tiva, apresentaremos a estrutura de codificacao para STTCs usualmente utilizada na

literatura.

32
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4.1.1 Estrutura Padrao

Baro et al. [19] foram um dos pioneiros na sistematizagao da busca de STTCs. Eles
utilizaram o conceito de matriz geradora para descrever os codigos, e assim realiza-
ram as buscas variando os elementos desta matriz. Este processo tornou a busca por
STTCs um pouco mais simples. Porém, quando se trata de busca exaustiva, o esforco
computacional mesmo para os casos mais simples ainda é bastante elevado. A seguir,

descreveremos esta estrutura.

Seja Gp uma matriz geradora de dimensao (z+K) xn cujos elementos pertencem
ao anel Zy,, onde z = log,(M) e K é o ntiimero de registradores do codificador. Seja
Uy = (Ustg(s—1) -+ Ustp1 Uzt -.. Uy—g) O vetor contendo os bits de informagao. O

vetor codificado é obtido pela operagao
vi = (u - Gy) ( mod M),

seus elementos pertencem ao anel Z), e sao diretamente mapeados em valores de uma
constelacao M-PSK, para em seguida serem transmitidos pelas n antenas transmisso-

ras.

Com este esquema Baro et al. encontraram alguns STTCs com diversidade com-
pleta utilizando uma modulagao 4-PSK e duas antenas transmissoras. Para um codifi-
cador com 4 estados foi obtido um STTC com ganho de codificagao maximo a partir de
uma busca exaustiva sobre todos os possiveis codigos desta estrutura. Para termos uma
idéia da complexidade dessa busca, considere o codificador com 4 estados da Figura
4.1 cuja matriz Gy, é:
goir  9Joi2
go21  go22

9111 9112

| J121 G122 |
Como para esse exemplo foi utilizada uma modulagao 4-PSK, houve a necessidade de
analisar 4% = 65536 cédigos. Caso fosse utilizada uma modulacao 8-PSK, o ntmero
total de cédigos a serem analisados seria de 8'2 = 68719476736. Em [34], os autores
propoem um método sub-6timo para simplificar a busca nesta estrutura. Neste método,

os coeficientes da matriz geradora para n — 1 antenas e um determinado ntimero de
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Figura 4.1: Exemplo da estrutura de codificacdo padrao de taxa R = 1/2 e 4 estados

estados sao mantidos fixos e a busca ocorre apenas nos coeficientes extras que sao

adicionados devido a insercao da m-ésima antena transmissora.

Comentadrio 13 Note que nesse processo de busca todos os codigos sao analisados,

até mesmo 0s que nao possuem posto suficiente para garantir o bom desempenho do

codigo.

Comentdrio 14 Todos os cddigos apresentados por Baro et al. em [19] sdo ndo-

lineares sobre o anel Zx, visto que vy € um vetor bindrio e os elementos de Gy, estdo

sobre o anel.

A estrutura da Figura 4.1 é utilizada em [34], onde pode-se encontrar algumas

tabelas contendo uma grande variedade de STTCs para as modulagoes 4 e 8-PSK.
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Tabela 4.1: Comparacao das Estruturas para Buscas Exaustivas

pF — PSK | n | N. de estados | N. total de cédigos (Estrutura padrdo) | N. total de cédigos (Estrutura sobre o anel)
4 2 4 48 44
o 8 410 49
3 16 418 49
8 2 8 812 8!
2* 16 814 89
3 64 827 89
9 2 9 98 94
3 81 918 99
16 2 16 1610 16
3 256 1636 16°

4.1.2 Estrutura Utilizada

Como visto na Secao 4.2, a estrutura de codificacao proposta nesta tese para gerar os
STTCs é diferente da apresentada na Secao 5.1.1, uma vez que nesta tese os simbolos
de entrada estdo sobre GF(p) ou Z,» e nao apenas no corpo bindrio. Pelo fato de
esta estrutura possuir um nimero menor de coeficientes, a busca exustiva neste caso
é proporcionalmente reduzida. A seguir, na Tabela 5.1, faremos algumas comparacoes
para quantificar esta redugao. Note pela Tabela 5.1 que enquanto o niimero de codigos

kn(K+1)

a serem analisados pela estrutura do anel (proposta nesta tese) é de p , com a

E2n(K+1

estrutura padrao sera de p ), onde n é o ntiimero de antenas transmissoras e K ¢é

a ordem de memoria do codificador sobre o anel.

Nao podemos deixar de mencionar que em consequécia da redugao do ntimero
total de codigos a serem analisados no caso da estrutura sobre o anel, o c6digo com o
melhor ganho podera ser descartado em alguns casos. Comentaremos melhor este fato

na segao seguinte.

4.1.3 Técnicas Propostas

No capitulo anterior foram apresentadas seis técnicas que simplificam a busca por
STTCs sobre GF(p) e Z,.. A seguir, mostraremos alguns exemplos numéricos para

ilustrar estas simplificagoes.
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Tabela 4.2: Busca exaustiva para STTCs com modulagoes p-PSK

p | n| K | N. total de cdédigos | Div. completa | Div. incompleta
211 81 48 33
3132 19683 11232 8451
5121 625 480 145
7121 2401 2016 385

No primeiro exemplo, faremos referéncia a Tabela 4.2, a qual compara o niimero
de cédigos que sao analisados em uma busca exaustiva para o caso de STTCs sobre
GF(p) considerando ou nao a Conjectura 2. Quando a Conjectura 2 é utilizada, os
c6édigos com diversidade incompleta sao descartados e o cédlculo do determinante e
do trago sao realizados apenas nos cédigos com diversidade completa. Como menci-
onado anteriormente, essa conjectura é mais eficaz para o caso de STTCs projetados
pelo critério do determinante, uma vez que esses codigos exigem diversidade completa.
Quando o critério de projeto é o do traco, esta conjectura pode ser utilizada para

garantir um posto minimo r, tal que rm > 4.

Comentdrio 15 Nas buscas da Tabela 5.2, todos os possiveis codigos foram anali-
sados de acordo com o critério do posto e em sequida classificados como sendo de di-
versidade completa ou ndo. Neste procedimento pode-se verificar que todos os STTCs
com diversidade completa possuiam matrizes G com posto completo sobre GF(p), en-
quanto os STTCs com diversidade incompleta nao tinham esta mesma caracteristica.
Através destes resultados, pode-se verificar também que a Conjectura 2 é uma condi¢ao

necessdria e suficiente para se obter STTCs com ganho de diversidade mdzimo.

A Tabela 4.3 ilustra, de maneira similar ao exemplo anterior, a reducao da busca
exaustiva para STTCs sobre Z,» proporcionada pela Conjectura 3. Os comentdrios

anteriores feitos para a Tabela 4.2 também sao validos para a Tabela 4.3.

A reducgao proporcionada pelos Teoremas 1, 2 e 3 foram mencionadas no capitulo

anterior e podem ser combinadas entre si para trazer uma reducao significante na busca.

A seguir, mostraremos um exemplo para ilustrar a redugao que pode ser obtida
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Tabela 4.3: Busca exaustiva para STTCs com modulacoes p*-PSK

p¥ | n | K | N. total de cédigos | Div. completa | Div. incompleta
4 121 256 96 160
8121 4096 1536 2560
9121 6561 3888 2673

combinando os resultados propostos nesta secao.

Exzemplo 3 Considere um sistema com 3 antenas transmissoras e um codificador con-
volucional sobre Z4 de taza R =1/3 e K = 2. Para esta configura¢ao, o numero total
de possiveis cddigos é de 47 = 262144. Se o critério de projeto for o do determinante,
nés poderiamos utilizar o Teorema 1 e reduzir a busca para 4°/2 = 131072 cédigos.
Combinando este resultado com o Teorema 2, o numero de codigo pode ser reduzido
a (49/2)/3! = 21845 cédigos. Destes 21845 cddigos, ainda podemos utilizar a Conjec-
tura 3 para testar apenas os codigos com diversidade completa e reduzir ainda mais a
busca. Caso o critério de busca seja o do traco, ainda hd a possibilidade de utilizar o
Teorema 3 para reduzir o nimero de cédigos para ((4°/2)/3!)/2% = 2731. Destes 2731
ainda poderiamos utilizar a Conjectura 3 para testar apenas os codigos cujo posto T

mantenham a relacao rm > 4.

Podemos comparar o exemplo anterior com as redugoes obtidas por [34] e [29].
Em [34], utilizando um método sub-étimo e a estrutura padrdo, torna-se necessario
testar 45+4% = 65792 cédigos. J4 em [29], através das técnicas comentadas no Capitulo
3, consegue-se reduzir a busca para (4'%/2)/3! = 1398101 c6digos. Apesar da redugao
obtida em [29] ser menor, o método aplicado nao descarta os cédigos com os melhores

ganhos.

Comentdrio 16 Note que os métodos apresentados nesta tese para simplificar a busca
exaustiva nao descartam os codigos otimos para as estruturas sobre corpos e aneis
mas, como veremos na se¢ao sequinte, existem casos em que o codigo otimo obtido

pela estrutura utilizada nesta tese tem ganho menor que o codigo otimo obtido pela
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estrutura padrao, considerando ambos os codigos equivalentes em niumero de antenas

transmaissoras e estados.

4.2 Resultados das Buscas de Cddigos

Nesta secao, serao apresentados os resultados das buscas de cédigos realizadas com o
auxilio das técnicas propostas nesta tese. Na Subsecao 4.2.1, serao apresentados os
resultados de busca para STTCs com modulacoes p*-PSK projetados pelo critério do
determinante. Na Subsecao 4.2.2 serao apresentados os STTCs projetados pelo critério

do traco e serao feitos também alguns comentarios sobre os resultados obtidos.

4.2.1 STTCs para Modulacéoes p*-PSK Projetados pelo Critério

do Posto e do Determinante

Para STTCs com duas e trés antenas transmissoras e uma receptora, a ordem de
diversidade do sistema sempre serd menor do que quatro e, portanto, os critérios de
projeto mais apropriados para esta situagao sao o do posto e do determinante. Nesta
subsecdo, apresentaremos varias tabelas (4.4 a 4.11) com STTCs para modulagoes
pF-PSK, utilizando duas, trés e quatro antenas transmissoras. A ordem de meméria
dos codificadores varia de K = 1 até K = 3. Nestas tabelas serao indicados os
seguintes dados: nimero de antenas transmissoras (n), nimero de estados (n. de est),
os coeficientes da matriz geradora (G), o posto do STTC (posto) e a média geométrica
minima dos autovalores de A(c, €) (14et), indicando o ganho do STTC através do critério
do determinante e o traco da matriz A(c,e) (n;.). A eficiéncia espectral dos c6digos

apresentados nesta subsecao siao de log, p* b/s/Hz.

Comentario 17 Em todas as tabelas desta subsecdo, os codigos que estiverem marca-
dos com * sdao codigos obtidos através de uma busca exaustiva, ou seja, sao 0s codigos
que possuem 0s maiores parametros (posto, nge) com relagao a estrutura proposta nesta
tese, ao numero de antenas transmissoras, ao numero de estados e a modulagao utili-

zada, enquanto que os que estao sem * foram obtidos por uma busca parcial. Os codigos
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com a notagao t sao inéditos na literatura com relacao a modulagao, ao nimero de es-

tados e/ou ao nimero de antenas transmissoras.

Tabela 4.4: STTCs para a modulagao 3-PSK com n = 2,3 e 4 antenas transmissoras

baseados nos critérios do posto e do determinante

n | n. de est. G posto | Nager | Mer
2 3* 01;10] 2 3 6
2 9* 011;212] 2 5,19 | 15
2 27* [1102;1011] 2 7,35 | 18
3 9f* 001;010;100] 3 3 9
3 271 2202;2100;2211] 3 4,76 | 27
4 27T 0020;0110;2202;1220] 4 3 |27

Tabela 4.5: STTCs para a modulagao 4-PSK com n = 2,3 e 4 antenas transmissoras

baseados nos critérios do posto e do determinante

n | n. de est. G posto | Nger | Mer
2 4* 03;13] 2 2 6
2 8* 101;211] 2 4 8
2 16* 011;102] 2 4 10
2 64* 1012;0211] 2 6,63 | 16
3 16* 100;001;010] 3 2 6
3 64 0302;1020;200 3] 3 4 12
4 64 0302;3312;3133;3323] 4 2 |34
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Tabela 4.6: STTCs para a modulagao 5-PSK com n = 2,3 e 4 antenas transmissoras

baseados nos critérios do posto e do determinante

n | n. de est. G posto | Nget Ner
2 o* 30;01] 2 2,23 5
2 25* 102;021] 2 3,96 | 10
2 1257 3424;0411] 2 4,28 | 14,14
3 257* 043;131;211] 3 1,94 | 17,76
3 1257 3401;0200;41 23] 3 2,67 20
4 1257 1320;4100;4212;4400] 4 1,75 | 24,14

Tabela 4.7: STTCs para a modulagao 7-PSK com n = 2,3 antenas transmissoras

baseados nos critérios do posto e do determinante

n | n. de est. G posto | Nget Ner

2 T [53;45] 2 1,79 | 6,39
2 491 012;46 0] 2 3,21 | 7,75
3 497 600;564;041] 3 1,93 | 12,30

Tabela 4.8: STTCs para a modulacao 8-PSK com n = 2,3 antenas transmissoras

baseados nos critérios do posto e do determinante

n | n. de est. G posto | Nger | Mer
2 8* [41;54] 2 2 4
2 16* [450;741] 2 2 4
2 641 545;11 4] 2 2,83 8
3 641 074;340;401] 3 2 6
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Tabela 4.9: STTCs para a modulagao 9-PSK com n = 2,3 antenas transmissoras

baseados nos critérios do posto e do determinante

n | n. de est. G posto | Nget Ner
2 9 64 ;23] 2 1,06 | 6
2 277 [086;56 8] 2 1,791 6
2 81T [483;1005] 2 2,47 17,24
3 81t 055;700;080] 3 1,44 | 6,46

Tabela 4.10: STTCs para a modulacao 11-PSK com n = 2,3 antenas transmissoras

baseados nos critérios do posto e do determinante

n | n. de est. G pOosto | 7Mger Ner

2| 11h (106 ;6 1] 2 10,86 2,97
3| 121t |[293:740:200]| 3 |1,07]6,60

Tabela 4.11: STTCs para a modulacao 13, 16 e 17-PSK com n = 2 antenas transmis-

soras baseados nos critérios do posto e do determinante

p* — PSK | n | n. de est. G posto | Nger Nir
13 2 131 01;50] 2 0,89 | 2,62
16 2 16* [155; 9 §] 2 0,78 | 4,58
17 2 17t [10 16 ; 6 4] 2 0,80 | 5,53
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4.2.2 STTCs para Modulacoes p*-PSK Projetados pelo Critério
do Traco

Quando o sistema possuir uma configuracao de antenas na qual seja possivel se obter
uma ordem de diversidade maior ou igual a quatro, o STTC utilizado tera um melhor
desempenho se for projetado de acordo com o critério do trago. As tabelas a seguir
(4.12 a 4.21) mostram STTCs obtidos pelo critério do trago em sistemas com duas, trés
e quatro antenas transmissoras utilizando modulacdes p*-PSK. Para que o STTC tenha
o melhor desempenho, é necessario que se tenha pelo menos duas antenas receptoras
para o caso de n = 2,3 e uma para o caso de n = 4. A eficiéncia espectral dos codigos

apresentados nesta subsecao sao de log, p* b/s/Hz.

Comentadrio 18 Novamente, em todas as tabelas desta subse¢do, os codigos que es-
tiverem marcados com * sao codigos obtidos através de uma busca exaustiva, ou seja,
$ao 0s cddigos que possuem os maiores parametros (posto, Nge) com relagao a estru-
tura proposta nesta tese, ao numero de antenas, ao numero de estados e a modula¢ao
utilizada, enquanto que os que estao sem * foram obtidos por uma busca parcial. Os
codigos com a notagao T sao inéditos na literatura com relagao a modulagdo, ao numero

de estados e/ou ao nimero de antenas transmissoras.
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Tabela 4.12: STTCs para a modulacao 3-PSK com n = 2,3 e 4 antenas transmissoras

baseados no critério do trago

n | n. de est. G posto | Ny | Ndet
2 3* [11;12] 2 |12 3
2 9 211;112] 2 |18 |4,24
2 27* 1011;1112] 2 | 21/6,70
3 37 11;12;21] 2 18] —
3 9t 111;112;121] 3 |27 3
3 27t [1012;1111;1121] 3 |33|4,32
4 3t 11;11;11;12] 2 | 24| —
4 9t 021;111;121;221] 3 133 —
4 27" [2122;2021;1122;2221]| 4 |45]| 3

Tabela 4.13: STTCs para a modulacao 4-PSK com n = 2,3 e 4 antenas transmissoras

baseados no critério do trago

n | n. de est. G pPOsto | Ny | Net
2 4* 11;12] 2 10| 2
2 8* 110;211] 2 12 | 3,46
2 16* 112;213] 2 16 | 3,46
2 64* 1012;1121] 2 18 | 5,29
3 4* 11;11;12] 2 14| —
3 8* 330;101;131] 2 18| —
3 16* 111;122;21 3] 2 24 | —
4 4* 11;11;12;12] 2 20| —
4 8* 101;110;111;131] 2 26 | —
4 16* 111;112;122;21 3] 3 32| —
4 64 1323;1211;2212;3310] 4 40 | 2




44

Tabela 4.14: STTCs para a modulacao 5-PSK com n = 2,3 e 4 antenas transmissoras

baseados no critério do trago

n | n. de est. G posto Ner Ndet
2 5* 11;23] 2 10 | 1,38
2 25* 213;124] 2 15 | 3,16
2 1257 [1343;2401] 2 16,38 | 4,66
3 51 11;12;22] 2 15 —
3 257* 111;132;231] 3 21,38 | 1
3 1257 [4222;1211;2424] 3 30 | 1,66
4 51 12;12;21;21] 2 20 —
4 257 111;112;213;223] 3 30 —
4 1257 1011;2234;3230;404 3] 4 31,011 0,85

Tabela 4.15: STTCs para a modulacao 7-PSK com n = 2,3 e 4 antenas transmissoras

baseados no critério do trago

n | n. de est. G posto Ner Ndet
2 T 11;23] 2 7,75 | 0,75
2 49* 112;24 4] 2 12,30 | 1,36
3 7T [24;35;61] 2 14 —
3 497 [164;332;256] 3 0,44
4 7T 11;12;23;33] 2 17,19 | —
4 497 456;241;121;444] 3 24,95 | —




45

Tabela 4.16: STTCs para a modulacao 8-PSK com n = 2,3 e 4 antenas transmissoras

baseados no critério do trago

n | n. de est. G posto Ner Ndet
2 8* [12;43] 2 7,17 | 1,41
2 16* 210;301] 2 8 2
2 64 b16;11 3] 2 10,58 | 1,17
3 8" 11;22;34] 2 12 —
3 16 (10;361;150] 2 12,58 | —
3 64 347:;562;713] 3 19,17 1 0,32
4 8* 11;12;23;34] 2 16,58 | —
4 16 221;160;570;551]| 12 20 —

Tabela 4.17: STTCs para a modulacao 9-PSK com n = 2,3 e 4 antenas transmissoras

baseados no critério do trago

n | n. de est. G posto Ner Ndet
2 9 (61 ;7 4] 2 | 6,77 10,51
2 27t [161;771] 2 | 8,58 |0,65
2 81T 867 ;76 1] 2 10,24 | 1,04
3 9 [13:64;72] 2 12 —

3 27t (776:628;144]| 3 18 10,35
4 9f [16:48;24:62]| 2 18 —

Tabela 4.18: STTCs para a modulacao 11-PSK com n = 2,3 e 4 antenas transmissoras

baseados no critério do trago

n | n. de est. G posto Ner Ndet
2 117+ [12;46] 2 6,69 | 0,46
3 117 13;21;57] 2 11,31 —
4 117 94;55;88;10 10 2 15,79 | —
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Tabela 4.19: STTCs para a modulacao 13-PSK com n = 2,3 e 4 antenas transmissoras

baseados no critério do trago

n | n. de est. G posto | Ndet
2 13t [15;911] 2 | 5,96 | 0,44
3 131 [36;95;111] 2 11,27 —
4 137 53;812;47;12] 2 15,62 | —

Tabela 4.20: STTCs para a modulacao 16-PSK com n = 2,3 e 4 antenas transmissoras

baseados no critério do trago

n | n. de est. G posto Ner Ndet
2 16* [512; 13 5] 2 5,75 10,28
3 16f 51:;67;213] 2 11,35 | —
4 167 B14;51;27;6 10 2 16 —

Tabela 4.21: STTCs para a modulacao 17-PSK com n = 2,3 e 4 antenas transmissoras

baseados no critério do trago

n | n. de est. G posto | g Ndet
2 17t [13;513] 2 5,54 |0.24
3 17t 151 ;511 ;4 §] 2 10,75 | —
4 17t [1213;910;1511;316] | 2 17 | -
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Comentdrio 19 Os STTCs listados anteriormente (Tabelas 4.4 a 4.21) nao levam em
consideracao o espectro de cada codigo, ou seja, € possivel que codigos com parametros

1dénticos aos apresentados aqui tenham um desempenho melhor.

Como pode-se observar nas tabelas desta secao, é apresentada uma grande varie-
dade de STTCs para modulacoes p*-PSK, onde boa parte dos cédigos nao é encontrada
na literatura. A seguir, apresentaremos as Tabelas 4.22 e 4.23 que comparam alguns
STTCs de [34], com modulagoes 4 e 8-PSK, com alguns cédigos encontrados nesta tese,
sendo esta comparacao feita sempre para codigos com mesma eficéncia espectral. Ja
para os cédigos com modulacao p-PSK, a tunica estrutura que existe na literatura é
a estrutura utilizada nesta tese e, portanto, nao apresetaremos uma tabela compara-
tiva tendo em vista que os STTCs apresentados aqui tém os mesmos ganhos quando

comparados com os poucos STTCs sobre GF(p) encontrados na literatura [26].

Tabela 4.22: Comparagao entre STTCs - Critérios do posto e do determinante

pE-PSK | n | n. de est. | nger [34] | mer [34] | Nger | Mer
4-PSK | 2 4 2,82 — 2 6
2 8 4 — 4 8
2| 64 6,92 — |6,63] 16
3 64 4,57 18 4 12
4 64 2,82 26 2 34
8-PSK | 2 8 2 4 2 4
2 16 2 4 2 4

Pela Tabela 4.22 pode-se observar que os STTCs apresentados nesta tese que
utilizam modulagoes 4 e 8-PSK e que sao projetados pelo critério do posto e do de-
terminante, nao conseguem obter, na maioria dos casos, o mesmo determinante que
os STTCs equivalentes obtidos pela estrutura padrao. Para a modulacao 8-PSK com
n = 3,4 antenas transmissoras bem como para a 16-PSK (n = 2,3,4 antenas trans-
missoras), nao foram encontradas referéncias que apresentassem STTCs gerados pela

estrutura padrao.
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Através da Tabela 4.23, nota-se que quando o critério de projeto é o do trago
os codigos propostos neste trabalho obtiveram, na maioria das vezes, o mesmo ganho

que os codigos obtidos através da estrutura padrao.

Uma outra fonte de tabelas de STTCs é a referéncia [29], onde os resultados
apresentam cédigos com 4 e 32 estados para n = 5,6 antenas transmissoras e mo-
dulacdo 4-PSK. Apesar de o método de busca utilizado em [29] ser 6timo, o esforgo
computacional para casos mais complexos torna a busca proibitiva, uma vez que eles
utilizam a estrutura padrao para obtencao dos codigos. Com relagao aos ganhos dos
STTCs encontrados em [29], nao sao feitas comparagoes uma vez que a configuracao
de n = 5,6 antenas transmissoras nao ¢ considerada em nenhum dos trabalhos citados

nesta tese.

Segundo os resultados de busca obtidos nesta secao, podemos dizer que a estru-
tura que utilizamos nesta tese ¢ uma boa op¢ao para realizar buscas exaustivas mais
complexas de STTCs projetados pelo critério do traco, porém quando os critérios de
projetos sao os do posto e do determinante, e quando as modulagoes sao 4 e 8-PSK,

esta estrutura nao apresenta resultados muitos satisfatorios.

Comentdrio 20 Devido ao fato de o método utilizado em [34] nao ser dtimo, casos
onde o traco obtido pela estrutura padrao ¢ menor que o obtido pela estrutura sobre o
anel se tornam possiveis (veja a linha da Tabela 4.23 marcada com *). Por outro lado,
a estrutura padrao fornece um universo maior para a busca e por iSso o caso contrdrio

pode acontecer (veja as linhas da Tabela 4.23 marcadas com **).



Tabela 4.23: Comparagao entre STTCs - Critério do trago
pF-PSK | n | n. deest. | my [34] | Naer [34] | %er | et
4-PSK | 2 4 10 2 10 2
2 8 12 2,82 12 3,46
p 16 16 2,82 16 | 3,46
2 64 18 4 18 | 5,29
3 4 16 - 14 -
3 8 20 — 18 —
3 16 24 — 24 —
4 4 20 — 20 —
4 8 26 — 26 —
4 16 32 — 32 —
4* 64 38 — 40 2
8-PSK | 2 8 7,17 1,41 7,17 | 1,41
2 16 8 0,82 8 2
3 8 12 — 12 —
4 8 16,58 — 16,58 | —

49
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4.3 Resultados de Simulacgoes

Nesta secao, serao apresentadas simulacoes de alguns dos STTCs obtidos e tabelados
anteriormente. Através destes resultados, serd possivel comprovar o bom desempenho
desses codigos diante do canal com desvanecimento, e ainda observar os impactos de
seus parametros nas curvas de desempenho. Para estas simulagoes, serda considerado

que cada frame tem comprimento de 130 simbolos.

Os primeiros resultados apresentados (Figuras 4.2 a 4.7) mostram o desempe-
nho, em termos de FER (FER, do inglés: Frame Error Rate) versus SNR = nEs/No,
de STTCs sobre GF(p) e Z,» projetados pelos critérios do posto e do determinante.
Em cada figura é feita uma comparacao entre cédigos com mesma eficiéncia espectral
e numeros de estados diferentes, o que possibilita observar o aumento do ganho de
codificagao (deslocamento horizontal da curva para a esquerda) de acordo com o au-
mento do numero de estados. Os codigos simulados neste conjunto de figuras utilizam
n = 2,3 antenas transmissoras, m = 1 antena receptora e atingem grau de diversidade
de nm. Este conjunto de figuras tem o objetivo apenas de apresentar o desempenho

de alguns STTCs obtidos nesta tese.

—<—3-estados ]
—o—9-estados [
-| — 27-estadosH

FER

10 1

-3 i i i i i i i i i i

14 16 18 20 22

10
10 12
SNR(dB)

Figura 4.2: Comparacao do desempenho de STTCs com modulacao 3-PSK baseados
nos critérios do posto e do determinante, projetados para sistemas com n = 2 antenas

transmissoras e m = 1 receptora.
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Figura 4.3: Comparacao do desempenho de STTCs com modulacao 3-PSK baseados
nos critérios do posto e do determinante, projetados para sistemas com n = 3 antenas

transmissoras e m = 1 receptora.
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Figura 4.4: Comparacao do desempenho de STTCs com modulagao 4-PSK baseados
nos critérios do posto e do determinante, projetados para sistemas com n = 2 antenas

transmissoras e m = 1 receptora.
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Figura 4.5: Comparacao do desempenho de STTCs com modulacao 5-PSK baseados

nos critérios do posto e do determinante, projetados para sistemas com n = 2 antenas

transmissoras e m = 1 receptora.
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Figura 4.6: Comparacao do desempenho de STTCs com modulagao 7-PSK baseados

nos critérios do posto e do determinante, projetados para sistemas com n = 2 antenas

transmissoras e m = 1 receptora.
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Figura 4.7: Comparacao do desempenho de STTCs com modulacao 8-PSK baseados

nos critérios do posto e do determinante, projetados para sistemas com n = 2 antenas

transmissoras e m = 1 receptora.
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Comentdrio 21 Devemos notar que em alguns casos, ex. Figura 5.4, aumentar o
numero de estados nao € tao compensador. Entretanto, para o caso apresentado na
Figura 5.7, por exemplo, aumentar de 16 para 64 estados leva a um ganho de apro-
rimadamente 5 dB, que € bastante expressivo. FEssa mesma observacao se aplica aos

demais casos , analisados a sequir.

O conjunto das Figuras 4.8 a 4.22 mostram o desempenho de STTCs sobre GF(p) e
Z, projetados pelo critério do traco. Novamente é possivel observar o aumento do
ganho de codificacao, neste caso mensurado pelo traco, proporcionado pelo aumento
do nimero de estados. Para estas simulacoes foram utilizadas n = 2,3,4 antenas
transmissoras e m = 2 antenas receptoras, o que proporciona um grau de diversidade
de mm > 4. Novamente, o objetivo deste conjunto de curvas é apenas apresentar o

desempenho de alguns STTCs obtidos nesta tese.

T T T I
—v—3-estados [1

—o—9-estados []
—— 27-estadosH

FER

14

SNR(dB)

Figura 4.8: Comparacao do desempenho de STTCs com modulagao 3-PSK baseados no
critério do trago, projetados para sistemas com n = 2 antenas transmissoras e m = 2

receptoras.
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Figura 4.9: Comparacao do desempenho de STTCs com modulagao 3-PSK baseados no

critério do trago, projetados para sistemas com n = 3 antenas transmissoras e m = 2

receptoras.
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Figura 4.10: Comparacao do desempenho de STTCs com modulagao 3-PSK baseados

no critério do trago, projetados para sistemas com n = 4 antenas transmissoras e m = 2

receptoras.
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Figura 4.11: Comparacao do desempenho de STTCs com modula¢ao 4-PSK baseados

no critério do trago, projetados para sistemas com n = 2 antenas transmissoras e m = 2

receptoras.
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Figura 4.12: Comparacao do desempenho de STTCs com modulagao 4-PSK baseados

no critério do trago, projetados para sistemas com n = 3 antenas transmissoras e m = 2

receptoras.
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Figura 4.13: Comparacao do desempenho de STTCs com modula¢ao 4-PSK baseados

no critério do trago, projetados para sistemas com n = 4 antenas transmissoras e m = 2

receptoras.
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Figura 4.14: Comparacao do desempenho de STTCs com modulagao 5-PSK baseados

no critério do trago, projetados para sistemas com n = 2 antenas transmissoras e m = 2

receptoras.
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Figura 4.15: Comparacao do desempenho de STTCs com modula¢ao 5-PSK baseados

no critério do trago, projetados para sistemas com n = 3 antenas transmissoras e m = 2

receptoras.
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Figura 4.16: Comparacao do desempenho de STTCs com modulagao 5-PSK baseados

no critério do trago, projetados para sistemas com n = 4 antenas transmissoras e m = 2

receptoras.
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Figura 4.17: Comparacao do desempenho de STTCs com modulagao 7-PSK baseados
no critério do trago, projetados para sistemas com n = 2 antenas transmissoras e m = 2

receptoras.
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Figura 4.18: Comparacao do desempenho de STTCs com modulagao 7-PSK baseados
no critério do trago, projetados para sistemas com n = 3 antenas transmissoras e m = 2

receptoras.
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Figura 4.19: Comparacao do desempenho de STTCs com modulagao 7-PSK baseados

no critério do trago, projetados para sistemas com n = 4 antenas transmissoras e m = 2

receptoras.
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Figura 4.20: Comparacao do desempenho de STTCs com modulagao 8-PSK baseados

no critério do trago, projetados para sistemas com n = 2 antenas transmissoras e m = 2

receptoras.
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Figura 4.21: Comparacao do desempenho de STTCs com modulagao 8-PSK baseados

no critério do trago, projetados para sistemas com n = 3 antenas transmissoras e m = 2

receptoras.
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Figura 4.22: Comparacao do desempenho de STTCs com modulagao 8-PSK baseados
no critério do trago, projetados para sistemas com n = 4 antenas transmissoras e m = 2

receptoras.
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Nas Figuras 4.23 a 4.26 é possivel observar os efeitos do nimero de antenas
transmissoras e receptoras no desempenho dos STTCs. As Figuras 4.23, 4.24 e 4.25,
apresentam STTCs para as constelagoes 4, 5 e 8-PSK com n = 2, 3,4 antenas trans-
missoras e m = 1,2 antenas receptoras. Nestas figuras pode-se observar ao mesmo
tempo os efeitos da diversidade de transmissao e recepcao. O ganho de diversidade de
transmissao s6 € atingido quando o posto do cédigo aumenta junto com o numero de
antenas transmissoras e quando rm < 4. Um caso em que o aumento do nimero de
antenas transmissoras nao implica num aumento da diversidade pode ser observado na
Figura 4.25. Isso acontece porque os codigos com n = 2,3 e 4 tém o mesmo posto, no
caso, posto 2. Observe também que quando rm < 4 (n = 2,3 e m = 1), os c6digos
tém um desempenho semelhante e sao dominados pelos critérios do posto e do deter-
minante, e quando rm > 4 o desempenho passa a ser descrito pelo critério do traco, e
com isso os cddigos com maiores tracos possuem um melhor desempenho. Na Figura
4.26 fica bem evidente o efeito da diversidade de transmissao, pois nesse caso o posto
do codigo aumentou junto com o nimero de antenas transmissoras. No caso da di-
versidade de recep¢ao, um aumento do nimero de antenas receptoras implica em um
aumento direto na ordem de diversidade do sistema sem depender do posto do codigo.

Esta caracteristica pode ser observada nas Figuras 4.23 a 4.25.

A seguir, as Figuras 4.27 a 4.29 mostram uma comparagao entre o desempenho e
a eficiéncia espectral de STTCs sobre GF(p) e Z,» para varias modulagoes PSK. Nestas

figuras todos os STTCs tém o mesmo grau de diversidade.

Na Figura 4.30 ¢é feita uma comparagao entre cédigos obtidos por diferentes
critérios de projeto. Neste caso, os dois STTCs utilizam n = 2 antenas transmissoras
em = 1,2 e 4 antenas receptoras. O STTC1, apresentado na Tabela 4.3, tem 74, = 2.
O STTC2 foi apresentado em [34] e tem 74t = 2,81 (um dos cdédigos com o maior
ganho de codificagdo encontrado na literatura). Ambos os cédigos utilizam mesma
modulacao (4-PSK) e possuem 4 estados. Note que para m = 1 os cddigos tém quase
o mesmo desempenho. Mas a medida que m aumenta o STTC1 comeca a ter um
desempenho melhor. Isto pode ser explicado devido ao fato de a distancia Euclidiana
quadratica minima do STTCI1 ser igual a 8, enquanto que a do STTC2 é igual a 6.

Como esperado, pode-se comprovar o resultado da literatura de que quando o produto
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Figura 4.23: Comparacao do desempenho de STTCs com modulagao 4-PSK baseados
no critério do trago e projetados para sistemas com n = 2, 3,4 antenas transmissoras e

m = 1,2 antenas receptoras.

rm > 4, o desempenho do cddigo passa a ser dominado pela distancia Euclidiana

quadratica, e nao mais pelos critérios do posto e do determinante.
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Figura 4.24: Comparacao do desempenho de STTCs com modula¢ao 5-PSK baseados
no critério do trago e projetados para sistemas com n = 2, 3,4 antenas transmissoras e

m = 1,2 antenas receptoras.
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Figura 4.25: Comparacao do desempenho de STTCs com modulagao 8-PSK baseados
no critério do trago e projetados para sistemas com n = 2, 3,4 antenas transmissoras e

m = 1,2 antenas receptoras.
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Figura 4.26: Comparacao do desempenho de STTCs com modulagao 7-PSK baseados
nos critérios do posto e do determinante e projetados para sistemas com n = 2,3

antenas transmissoras e m = 1 antena receptora.

10 1 T T T

-1

10 "¢

FER
P i

10"

——GF(11), m=2 ‘ ‘ ‘ ‘
8 9 10 11 12

14 15 16 17 18

10

13
SNR(dB)

Figura 4.27: Comparacao do desempenho de STTCs com modulagoes 3, 5, 7 e 11-PSK
baseados nos critérios do posto e do determinante e projetados para sistemas com n = 3

antenas transmissoras e m = 1,2 antenas receptoras.
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Figura 4.28: Comparacao do desempenho de STTCs com modulagao 9, 11, 13, 16 e

17-PSK baseados nos critérios do posto e do determinante e projetados para sistemas

com n = 2 antenas transmissoras e m = 1 antena receptora.
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Figura 4.29: Comparacao do desempenho de STTCs com modulagao 9, 11, 13, 16 e

17-PSK baseados no critério do traco e projetados para sistemas com n = 2 antenas

transmissoras e m = 2 antenas receptoras.
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Figura 4.30: Comparagao do desempenho de STTCs com modulagao 4-PSK projetados

por diferentes critérios.



Capitulo 5

Conclusao e Trabalhos Futuros

Nesta tese consideramos cédigos espacio-temporais de trelica sobre GF(p) = Z, e Zy,
onde p é primo e k é um inteiro positivo, para o canal com desvanecimento Rayleigh
plano quase-estatico. Os cédigos foram projetados para proporcionar o melhor desem-
penho de acordo com os critérios do posto, determinante e também através do critério
do trago. Com relagao ao critério de projeto a escolher podemos observar que este é
muito dependente da ordem de diversidade do sistema, sendo o critério do posto e do
determinante adotado quando rm < 4 e o critério traco adotado quando rm > 4. Com
isso pode-se concluir que quando a diversidade total do sistema é elevada, aumentar
a ordem de diversidade nao implica em uma melhora significativa no desempenho do

sistema.

Como contribuigao deste trabalho, foram apresentadas seis técnicas através das
quais pode-se simplificar o projeto de STTCs para qualquer niimero de antenas trans-
missoras. A primeira delas, a Conjectura 1, mostrou que é possivel garantir diversidade
completa para STTCs testando apenas o posto em matrizes diferenga entre palavras-
codigo sobre GF(p), ao invés de matrizes diferenca no dominio dos complexos. Nesse
caso o STTC pode ser linear ou nao-linear. As Conjecturas 2 e 3, mostraram que
pode-se garantir diversidade completa para STTCs com modulacdes p*-PSK através
de um tnico teste de posto completo em uma matriz sobre GF(p). Nos Teoremas 1,
2 e 3, foi visto que € possivel simplificar a busca de STTCs sobre Z,, sem descartar

os codigos otimos, sendo que os Teoremas 1 e 2 sao validas para os STTCs projetados
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pelos critérios do posto, determinante e do traco, e o Teorema 3 ¢ valida somente para
STTCs projetados através do critério do trago. Foi apresentado também uma andlise
comparativa entre a estrutura utilizada nesta tese e a estrutura padrao. Através desta
comparacao pode-se concluir que quando se utiliza uma modulacao p*-PSK, com k > 1,
a estrutura apresentada aqui é uma boa opg¢ao para STTCs projetados pelo critério do
trago, pois reduz significativamente o nimero de codigos a serem testados sem descar-
tar, na maioria das vezes, os c6digos com maiores tracos. Ja para o caso dos STTCs
projetados pelo critério do posto e do determinante, e para as modulagoes 4 e 8-PSK,
a estrutura padrao consegue, na maioria das vezes, obter codigos com determinantes
maiores. No caso dos STTCs que utilizam modulagoes p-PSK, a estrutura utilizada

nesta tese é a Unica opcao.

Utilizando a estrutura sobre Z,x e as técnicas propostas aqui, pode-se encontrar
uma grande variedade de STTCs utilizando modulagoes 3-PSK, 4-PSK, 5-PSK, 7-PSK,
8-PSK, 9-PSK, 11-PSK, 13-PSK, 16-PSK e 17-PSK para n = 2,3 e 4 antenas trans-
missoras, atingindo eficiéncias espectrais de 1,58; 2; 2,23; 2,81; 3; 3,17; 3,46; 3,7; 4 e
4,08 b/s/Hz, respectivamente. As eficiéncias espectrais fraciondrias apresentadas aqui
podem servir para uma variada gama de diferentes aplicagoes em sistemas de comu-
nicagdes moveis, fornecendo ao projetista uma larga opgao em termos de desempenho
e taxa de transmissao. Com o intuito de validar as técnicas propostas nesta tese e
também de analisar os efeitos dos ganhos obtidos, foram realizadas varias simulacoes

com os STTCs apresentados neste trabalho.

Para os casos onde o ntimero de simbolos da constelacao nao é uma poténcia de
2, poderia existir um problema se a fonte de informacao fosse intrinsicamente binaria.
Uma solugao simples para este problema foi proposta pelo autor em [25], onde uma
palavra de n, simbolos p-drios é associada a cada palavra de ny bits de informacao,
onde p"™ > 2"2. Kste mapeamento ocasionarda uma perda desprezivel na eficiéncia

espectral se a escolha de n, e ny for apropriada [25].

Algumas sugestoes para trabalhos futuros:

e Apresentagao de provas formais da Conjectura 1 para n > 2 e da Conjectura 3.

e A utilizagao de uma estrutura de codificagdo recursiva, observando como as con-
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jecturas e os teoremas propostos nesta tese seriam aproveitados.

e A utilizacdo da estrutura proposta nesta tese para se obter STTCs sobre corpos

e anéis finitos projetados para o canal com desvanecimento rapido.

e O impacto do uso de algoritmos de otimizagao na reducao da busca por STTCs.



Apeéendice A

Algebra Aplicada a Teoria da
Codificacao

Este apéndice tem como objetivo apresentar alguns conceitos de algebra, tais como
operadores bindrios, grupos, corpos e anéis, da maneira como eles se aplicam a teoria

da codificacao.

A.1 Operadores Binarios

Seja S um conjunto de elementos. Um operador bindrio * definido sobre S tem a fungao
de mapear qualquer par de elementos (a,b) € S em um terceiro elemento ¢ = a * b
também pertencente a S. Quando existir um operador binario * definido sobre S
dizemos que S é fechado com relagao a este operador. Segundo [36], podemos definir

um operador binario da seguinte maneira.

Definicao 1 Um operador bindrio x definido sobre um conjunto S é uma funcdao que
mapeia S X S em S. Para cada (a,b) € S xS, denotaremos o elemento *((a,b)) de S

por a * b.

Por exemplo, as operagoes usuais de adi¢ao: +, e de multiplicagao: -, sao dife-
rentes operadores binarios definidos sobre o conjunto dos inteiros Z, pois quaisquer dois

inteiros somados ou multiplicados produzirao também um ntmero inteiro. Por outro
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lado, a operagao de adigdo no conjunto Z* (inteiros nao nulos) ndo é um operador
bindrio porque a operagao 2 + (—2), onde 2 € Z* e —2 € Z*, produz o elemento 0, e
0 ¢ Z*. Desta maneira, o conjunto Z* nao é fechado com rela¢ao ao operador bindrio

+.

A.2 Grupos

Um grupo é um conjunto de elementos que pode ser definido da seguinte maneira.

Definicao 2 Seja G um conjunto de elementos. Seja *x um operador bindrio definido
sobre G. Entao, o conjunto G fechado sobre o operador * serd um grupo (G, x) se

satisfizer as sequintes condigoes:

e O operador bindrio * tem que ser associativo, ou seja, para a,b,c € G, teremos

(axb)xc=ax(bx*c).

o Ezxiste um elemento e em G tal que, para todo x € G,
exTr =Txe=ux.
Este elemento é chamado de elemento identidade de G.
e Correspondente a cada a € G, existe um elemento a’ em G tal que
axd =d xa=e.

FEste elemento ¢ chamado de inverso de a.

Um grupo é dito comutativo se seus operadores binarios também satisfizerem a
seguinte condigao:

axb=>bxa,
para quaisquer a,b € G.

O conjunto de todos os inteiros é um grupo comutativo com relagao a adicao

real, onde o inteiro 0 é o elemento identidade e o inteiro —a é o elemento inverso de
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Tabela A.1: Adicao mdédulo-3

0|12
011012
171120
2121011

a. O conjunto Z* (inteiros nao negativos) tem como elemento identidade o nimero 0,

mas nao ¢ um grupo com relagao a adigao, porque nao contém, por exemplo, o inverso

de 3.

Os exemplos de grupos mostrados até aqui possuem um numero infinito de
elementos. Grupos com um numero finito de elementos também existem, como mos-

traremos nos dois exemplos a seguir.

Exemplo 4 Considere um grupo G = {0,1,2,...,m — 1}, onde m € um inteiro posi-
tivo. Considere também a adicdo real + e um operador bindrio ® definido sobre G de

modo que, para quaisquer inteiro i e j pertencentes a G,
1P j=r,

onder € o resto da divisao de (i+j) por m. O restor é portanto um inteiro e estd entre
0 em —1, logo pertence a G. Com isso concluimos que G ¢ fechado sobre a operac¢ao
@, a qual € chamada de adicao moédulo-m. A Tabela A.1 mostra para todos os possiveis
pares de elementos de G o resultado da operagao de adi¢cao modulo-3. Pode-se verificar

facilmente que < G, & > € um grupo comutativo.

Exemplo 5 Agora vamos considerar - como sendo a opera¢ao real de multiplicacdo.
Seja G* = {1,2,3,...,p — 1}, onde p € um nimero primo. Considere ® como sendo
o operador bindrio definido sobre G* da sequinte maneira: para quaisquer elementos
1,7 €G,

1O g =,
onde r € o resto da divisao de (i-7) por p. Como p € primo, e € maior do que i e maior
do que 7, entdo i-7 nao € divisivel por p, logo o resto r ficard no intervalo 0 < r < p, e

portanto pertence a G*. Com isso, o conjunto G € fechado sobre a operacao bindria ®.
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Tabela A.2: Multiplicagao moédulo-5

(111234
1411234
201214113
3131142
401413121

Este tipo de operagao € conhecida como multiplicacao modulo-p. A Tabela A.2 mostra,
para todos os possiveis pares de elementos de {1,2,3,4}, o resultado da operag¢io ©.

Pode-se verificar facilmente que < G*,© > € um grupo comutativo.

No exemplo anterior, é importante notar que se p nao for primo, alguns elementos
de G* nao terao o inverso, fazendo com que G* nao seja fechado com relagao ao operador
® . Por exemplo, para p = 4, o elemento 2 nao possui inversa multiplicativa, pois
201=2,202=0¢{1,2,3}, 203 = 2. Ou seja, nao existe a € {1,2,3} tal que
a®2=20a=1.

A.3 Corpos e Anéis

Baseados na definicao de grupos, apresentaremos agora duas estruturas algébricas

muito importantes para a teoria da codificagao, chamadas corpo (ou campo) e anel.

Um corpo é um conjunto onde se pode realizar as operacoes de adicao, sub-
tragao, multiplicacao e divisao sem resultar num elemento fora do conjunto. A adigcao
e a multiplicacao devem satisfazer as leis da comutacao, distribuicao e associacao.

Formalmente, um corpo pode ser definido da seguinte maneira.

Definicao 3 Seja F um conjunto de elementos. Seja + e - os operadores bindrios de
adi¢ao e multiplicagdo. O conjunto F serd um corpo (F,+,-) se satisfizer as sequintes

condigoes:

o (F +) é um grupo comutativo cujo elemento identidade é denotado por 0.

o (F.-) é um grupo comutativo cujo elemento identidade é denotado por 1.
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e Para qualquer tripla a, b e ¢ pertencentes a IF,

a-(b+c)=(a-b)+ (a-c)

(a+b)-c=(a-¢c)+(b-c)

Um anel tem quase as mesmas propriedades de um corpo a nao ser a de que
alguns elementos nao possuem inverso multiplicativo (os zeros do anel) nem identidade

multiplicativa. A definicao de um anel pode ser formalizada da seguinte maneira.

Definicao 4 Seja R um conjunto de elementos. Seja + e - os operadores bindrios de
adi¢ao e multiplicagdo. O conjunto R serd um anel (R, +,-) se satisfizer as sequintes

condicoes:

o (R +) é um grupo comutativo cujo elemento identidade € denotado por 0.

e A multiplicacao € associativa.

e Para qualquer tripla a, b e ¢ pertencentes a R,

a-(b+c)=(a-b)+(a-c)

(a+b)-c=(a-c)+(b-c)



Apeéendice B

Prova da Conjectura 1 para o caso

de 2 Antenas Transmissoras

Antes de mostrarmos a prova da Conjectura 1 para o caso de duas antenas trans-
missoras, apresentaremos algumas propriedades da matriz B(c, e) que serdo utilizadas

durante a prova.

Considere cada elemento diferenca em B(c, e) na forma polar:

)2 )2
b=e—c=exp <] ;w> — exp (] ;w) = |b| exp(jby).

As duas préximas propriedades sao relacionadas ao médulo de b, enquanto a Proprie-

dade 3 é relacionada a fase de b.

Propriedade 1 O mddulo de b, denotado por |b|, € dado por:

(T
|b| = 2sin <5\v - w|p) :

onde o subscrito p denota modulo-p. Isto significa que o modulo de b nao depende
especificamente dos valores de v e w, mas do valor absoluto da diferenca maodulo-p.
Além disso, existem apenas p—gl modulos diferentes de zero distintos, 0s quais Sao
indicados na Figura B.1, e se |b| = |V/|, entao ou |[v —w|, = [v/ —w'|, ou |[v — w]|, =

p— v — w/|p'
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|b
2| ee
[ [ ]
—t —t > v-w|p
. P=1 p+1 ... p-
0O 1 2 5 5 p-1
Figura B.1: Mdédulos de b.
Prova:
|b|? bb*
_ 9o [j27r(v — w)] exp |:]27T(’U — w)}
p p
= 2—2cos (QW(U w)>
= 4sin® <I v —w >
p( )
[b] = 2sin (z|v - w|p> . (B.1)
p
O resto da prova segue das propriedades da fungao seno. O]

Propriedade 2 Seja M o conjunto de todos os possiveis modulos de b diferentes de
zero. Defina a matriz () de dimensao p—gl por p_;l como seque. O (i, j)-ésimo elemento
de Q) € dado por q; j = m;/m;, onde m; = 2sin (%z) eM, parai,je{l,2,..., 7%1}

Entao, os elementos de QQ que nao estdo na diagonal principal sao todos distintos.

Agora considere as possiveis fases de b. Para se obter 6, considere inicialmente

s

7] radianos, definida como:

a fase 0, no intervalo (=5, +

0,(v,w) = arctan ::; Ezp:z; :Zns iizg
o [ 2cos (%(v + w)) sin (%(v — w))
| —2sin (%(v + w)) sin (%(v — w))
= arctan b [5;}: w)}] € (—g, —l—g] (B.2)
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Figura B.2: Conjunto de simbolos de diferengas complexas das constelacdes (a) 5-PSK
e (b) 7-PSK . Os pontos das diferencas complexas exp(j(27/p)v) —exp(j(27/p)w) estao

rotulados (internamente) por (v —w), e (externamente) por d, onde d = v —w (mod p).

Note que 6,(v,w) depende unicamente de v + w (mod p). A verdadeira fase
de b, By(v,w), é a prépria G,(v,w) ou By(v,w) + 7, de acordo com os casos 1 e 2,
respectivamente, dados a seguir. Os modulos e as fases dos elementos diferenca para

as constelagoes 5-PSK e 7-PSK podem ser vistos na Figura B.2.

Considere o conjunto de niimeros complexos b, obtidos como anteriormente, com
moédulo fixo 2 sin (%k) € M, para algum k € GF(p). De acordo com a Propriedade 1,
existem dois casos a serem considerados.

Caso 1: d=v—w =k (mod p), onde

v = k414

w =i, i=0,12...,p—1.

Neste caso, os possiveis valores de fase que 6, pode assumir sao obtidos através de

(B.2), onde
vtw = k+2, i=012... p—1 (B.3)

Caso2: d=v—w=p—k (mod p), onde

v = p—k+1

w =14, +=0,1,2,...,p—1.
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Aqui,
v+w = p—k+2i, 1=0,1,2,....,p—1 (B.4)
Note que se k é par(impar), entdo k + 2i é par(impar) e p — k + 2i é impar(par).
Com isso, podemos concluir que, para um dado médulo |b] € M, os possiveis
valores de fase que 6, pode assumir sao

m (. 1 :
—<z——), parat=1,2,...,2p,
P 2

e, portanto, temos a seguinte propriedade.

Propriedade 3 Sejam b e V' dois nimeros complexos obtidos como anteriormente

onde |b| = |b'| € M. Entdo, temos que:
Se d = d' (modp), entao O,—0y = 2i%, para algum inteiro i € {0,1,2,...,p—1}.

Se d = p—d (mod p), entao 0, — Oy = (2i + 1)%, para algum inteiro i €
(0,1,2,...,p—1}.

Para ilustrar esta propriedade, observe a Figura B.2. No circulo pontilhado,
isto é, na regiao contendo as diferencas complexas com o mesmo modulo, note que
os rétulos d alternam entre dois elementos de GF(p), um sendo p menos o outro. Se
dois pontos complexos em um circulo tém o mesmo rétulo, entao o angulo entre eles
(vistos como vetores no plano complexo) é um multiplo par de % radianos. Se dois
pontos complexos em um circulo tém rétulos diferentes, entao o angulo entre eles é um
multiplo impar de % radianos. Agora, apresentaremos uma prova matematica para a

Conjectura 1 quando apenas duas antenas transmissoras sao usadas.

Comentdrio 22 Como L > n, e uma matrizn X L € de posto completo se existirem
n colunas linearmente independentes, sem perda de generalidade focaremos a prova

apenas em matrizes quadradas.

Prova: Suponha que B(c,e) seja de posto incompleto sobre os complexos e,

por contradicao, suponha que D(v, w) seja de posto completo sobre GF(p). O fato de
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B(c, e) ser de posto incompleto implica que existem numero complexos, digamos oy e

as, nem todos nulos, tal que
a1~[b1,1 6172] — Oé2.[bg71 6272] = [0 0] (B6)

Podemos reescrever a equacao (B.6) como um conjunto de equacdes:

|O{1|.€j(0a1+6b171) — |042| ba 1 .6]'(9,12-{-02)2’1)
' o (B.7)
‘O{1|.€J(9a1+0b1’2) — |OK2‘ Zj,z ,6](€a2+9b2,2).

Segue de (B.7) que

9011 - 9012 = 91)2,1 - 91)1,1 = 9172,2 - 91)1,29

o que implica que

961,1 - 061,2 = 9b2,1 - 962,2‘ <B8>

Agora, devemos distinguir entre dois casos, a saber, |a;| # |as| e |ai| = |aa]. Se

|a| # |ae| entdo, através de (B.7) e da Propriedade 2, podemos concluir que:
|b171| = |b172| € |bg71| = |bg72|. (Bg)

A Equacao (B.9) e a Propriedade 1 nos dirao que ou dy1; = dy» (mod p) ou dy; =
p — dia (mod p) e, pelo mesmo raciocinio, ou dyy = doy (mod p) ou dyy =
p — da (mod p). Entretanto, da igualdade (B.8) e da Propriedade 3, se di; =
di2 (mod p), entao deveremos ter que do; = doo (mod p), esedy; =p—dy2 (mod p),
entao deveremos ter que dy; = p—da2 (mod p). Portanto, a matriz de inteiros D (v, w)
assume uma das duas formas:

d d d p—d

d d d p—d
onde d,d € GF(p). Claramente, estas duas matrizes tém posto um. Entao D(v,w)
nao pode ser de posto completo. Por contradicao, para o caso de |a;| # |az| provamos
que se B(c,e) nao tem posto completo sobre os complexos, entdao D(v,w) nao terd
posto completo sobre GF(p).

|b2,1] |b2,2]
[b1,1] € [b1,2]

forma dos elementos da diagonal principal da matriz () definida na Propriedade 2. Com

sao da

Agora, se |a;| = |ag|, entdo analisando (B.7) veremos que

isso, teremos que:

br1] = [b21] e |bia] = [b22l. (B.10)
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Note que para caso onde |a1| = |as], a equacao (B.9) em geral ndo é satisfeita, embora
(B.8) permaneca verdadeira. Através das equacoes (B.10) e (B.8), e seguindo a mesma
linha de raciocinio do caso |ay| # |ag|, é possivel mostrar que se B(c,e) nao possui
posto completo sobre os complexos, entao as duas colunas de D(v, w) sdo linearmente

dependentes.

Com isso, provamos que se B(c, e) ndo possui posto completo sobre os comple-
xo0s, entao D(v,w) nao possui posto completo sobre GF(p). Pela negacao, provamos
que se D(v,w) tiver posto completo sobre GF(p), entao B(c,e) terd posto completo
sobre os complexos, garantindo assim diversidade completa para STTCs apenas tes-
tando o posto de matrizes sobre GF(p). Para provar que a reciproca nao é verdadeira

em geral, um contra-exemplo, como o mostrado a seguir, pode ser facilmente achado.

Exemplo 6 Observe neste exemplo que a matriz D(v,w) ndo tem posto completo
sobre GF(5) enquanto sua respectiva matriz B(c,e) possui posto completo sobre os

complexos, mostrando que a reciproca da Conjectura 1 ndo é verdadeira.

2—4 4-1 3 3

D(v,w) = = (mod 5),
1-2 4-0 4 4
postol

—1.1180 + 71.5388 0—71.9021
1.1180 + 50.3633  —0.6910 — 50.9511

-~

posto2




Apeéendice C

Propriedade Rumo a Prova da

Conjectura 1: Caso Geral

Neste apéndice apresentaremos uma propriedade e um exemplo que poderao ser uteis na
generalizagao da prova da Conjectura 1 para n > 3. Aqui, tanto a propriedade quanto
o exemplo serao apresentados para o caso do sistema com n = 3 antenas transmissoras

e modulacao 5-PSK.

O caminho que serd usado para mostrar a relacao existente entre os postos de
matrizes diferenga nos complexos e em GF(p) estd baseado no célculo de seus determi-
nantes, portanto nos concentraremos apenas em matrizes quadradas (ver Comentario

22 no Apéndice B).

Em uma matriz qualquer, Q, de dimensao 3 x 3, pode-se calcular o determinante

da seguinte maneira:

dﬁ’t(Q) = (q1,1.92,2-93,3) T+ (92,1.3,2.q1,3) + (q1,2.42,3-3,1) — (g3,1-q2,2.q1,3) — (¢3,2-92,3-q1,1) — (q2,1.q1,2.43,3),

ai az as a4 as ae

(C.1)
onde g; ; ¢ o elemento da matriz referente a i-ésima linha e a j-ésima coluna, e a,, para
s = 1,2,...,6, ¢ a multiplicacao de trés ntimeros complexos pertencentes a matriz

B(c,e), definida no Capitulo 2.

Com base nos elementos a,, apresentaremos a seguinte propriedade:

Propriedade 4 Considere |as| e 05 como sendo o mddulo e a fase de ag, respectiva-
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mente. Analisando a Figura B.2a podemos notar que, com relacdo ao modulo de ag,

existem apenas 5 possiveis valores, quais sejam.:

las] =g ]-1gx.l-1g.s]
0 =0
1,6246 = 1,1756°
2,6287 = 1,1756%-1,9021
4,2533 = 1,9021%-1,1756
6,8819 = 1,90213,
(C.2)

onde 0; 1,1756 e 1,9021 sdo os possiveis modulos de g; ; (ver Figura B.2).

Com relagao a fase de ag pode-se dizer que, devido ao fato de 0, ser uma mul-
tiplicagao de trés elementos de B(c,e), seu valor serd igual a uma das fases 0, para
0 caso de p = 5, que sao obtidas a partir da sequinte equa¢do (adaptada a partir de
(B.5)):

™

10 (2iy —1), parair=1,2,...,10.

(C.3)

Observe também que se 0, resultar em um iy impar(par), entdo pode-se dizer que esta
fase foi obtida pela soma de trés 0y,’s cujos is’s sao par(impar), par(impar), par(impar)
ou impar(par), impar(par), par(impar), nao importando a ordem da soma. Isto pode

ser visto da sequinte maneira:

T
93 = E (2Zf — 1)

= Op + 62 + O3

- % (261 — 1) + (205 — 1) + (2i5 — 1)]

Assim,
2(iy + ia +1i3) — 2 = 2iy

que resulta na equagao:

i1 +ip+ig=1ir+1 (C.5)
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a partir da qual se chega ao resultado acima.

Agora apresentaremos um exemplo que indica o caminho que estamos tentando

seguir para completar a prova da Conjectura 1.

Exzemplo 7 Considere as sequintes matrizes:

2-0 1-0 4-0 21 4

Dv,w)=| 2-4 2-4 34
4-0 1-2 4-2 4 4 2

3 3 4 mod 5

1,9021e/162 1, 1756e/126 1, 175667234
B(v,w) = 1,9021e7'?6 1,9021e/'%6 1 1756€/162 |,
1,1756e/234  1,1756€71®  1,9021¢7306

onde b; j = e75 vis) — (55 wig)

Suponha que o determinante de B seja igual a zero, ou seja, que B(v,w) tenha

posto incompleto.
det(B(v,w)) = 6,8819¢723% 1 2.6287¢/® + 1, 6246712 — 2, 62877231 — 2, 62877312 — 4,2533¢7198 = 0
(C.6)
De acordo com a Propriedade 4, podemos analisar o médulo e a fase de cada elemento
complexo da expressao (C.6) para chegarmos aos seus correspondentes elementos em
GF(5), e com isso verificar se o determinante em GF(5) também serd igual a zero.
Neste exzemplo mostraremos esta andlise apenas para o nimero complezo 6, 88197234,
Note que esse numero complexo foi obtido a partir do produto de trés elementos di-
ferencas, todos com maodulo 1,9021. Observando a Figura B.2a, o correspondente
numero em GF(5) do mddulo 6,8819 serd ou 2 ou 3, dependendo da fase. Anali-
sando a fase 234, veremos que esta resulta em um iy impar. Portanto, os trés nimeros
em GF(5) terdo que corresponder a valores de fase onde os is’s sejam par, par, par
ou impar, impar, par. Novamente observando a Figura B.2a, notaremos que o niumero
com modulo 1,9021 e if’s impar é o nimero 2 e com o iy’s par é o 3, portanto, mul-

tiplicando trés numeros 3 e reduzindo o resultado modulo-5 teremos o niumero 2, e se
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multiplicarmos dois numeros 2 e um 3 e reduzirmos o resultado modulo-5, também te-
remos o numero 2. Com isso, o elemento em GF(5) relacionado com o primeiro termo
serd o numero 2. O restante dos casos podem sequir o mesmo raciocinio. O resultado

final do determinante em GF(5)serd:

det(D)=2+3+1-3-2-1=0 (C.7)

Como no Apéndice B, pela nega¢ao pode-se dizer que se D(v,w) tiver posto
completo sobre GF(5), entio B(c,e) terd posto completo sobre os complezxos, garan-
tindo assim diversidade completa para STTCs sobre GF(5) apenas testando o posto de
matrizes sobre GF(5).
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