

Indice

g o= To=To Jr= o I F= AV 2= TS Yo] o) (O 3
I 1 01 o T [Tot= T L P 3
2. Inserir JavaScript numa pagina da Webcoooiiiiiiiiiiii 3

2.1 O elemento <SCHI P = .ottt ettt 3
3. Comentarios € blocos de COAIgO.uniiiiii i 4
10 2 I 0o 1= o = 1T = 4
B v~ =1 o o 0 230 [2 o7 0 o | T [0 1S 5
Y - AV =Y 1 6
O QUE SA0 AS VA AVEIS? ..ttt ittt ettt ettt aa e e eaae e aaannes 6
4.1 DeclaraGlo de VAlAVEISconiii et as 6
4.2 OS valores das VariaQVeiScuueiii et et aaaeeeaneean 7
4.3 CONVErSOES e ValOIES ...uuiiiiit ittt e aeeens 7
5. EXPreSSOES LITEIalS ...uuet i 8
5.1 Representacdo de ValOresS . ..o 8
5.2 NUMEIOS INTEIT0S ..ttt e eaes 8
5.3 NUmeros com virgula flutuante......... ..o 9
5.4 Valores 16gicos (DOO0IEAN0S)....ciiii i e 9
5.5 EXPreSSOES 0 1OXE0. . u .ttt ettt et e ettt et e e e e 9
5.6 Caracteres e S a e - ettt 10
6. Cadeias de VariAVEIS (AITAY) ...uiieiii ettt et e eaae e eaaannens 11
7] o 1= 1= T [/== 12
7.1 Operadores de atribuiC8o de valor. e 12
7.2 Operadores de COMPArAGAD. .. .uuuutt ettt a e et a e e e aaneeaaaneenn 13
7.3 Operadores aritMETtiCOSt 13
A 3 @] o 1] = To [o] =TT (oo | o o =00 14
S T] o] 1= o o 1= 15
8.1 Exemplos praticos COM ODJECTOSuuiniiii it eaeeas 15
L B = T 1T g ¥ o = U o o= T T 17
10. As instrucdes condicionais if...el1Se......cii it e 18
11. Executar cOdigo repetidamentecoooiiiiiii i 19
0I5 0 T T 1= 0 19
11.2 Ciclos WHIle. ... e aee e 20

2 N\ Lo =TT 11 T N 20

Iniciacao ao JavaScript

1. Introducao

O JavaScript € uma linguagem de programacado simples criada para dar mais interactividade
e maior funcionalidade as paginas da Web. Tendo sido inicialmente desenvolvida pela
Netscape, a linguagem JavaScript acabou por dar origem a especificacao técnica ECMAScript,
que é um padrao oficial reconhecido pela indUstria. Apesar de esta linguagem ser mais
conhecida pelo nome de JavaScript, e de a versao produzida pela Microsoft ter recebido o
nome de JScript, a verdade é que se tratam de implementac¢des que sendo fiéis & norma
ECMAScript Ihe acrescentaram novas funcionalidades Uteis, mas respeitando sempre as
especificacdes oficiais.

O cddigo escrito em JavaScript destina-se a ser executado pelo web browser quando a
pagina HTML que o contém é visualizada. Ele é uma parte integrante da pagina e permite
que o browser seja capaz de tomar decisfes quanto ao modo como o contetdo é
apresentado ao utilizador e como pode ser manipulado.

2. Inserir JavaScript numa pagina da Web

2.1 O elemento <script>

Os browsers capazes de executar cédigo escrito em JavaScript reconhecem o elemento
<script>. E dentro desse elemento que se coloca todo o cédigo, como ilustra o exemplo
seguinte:

<html>
<head>
<title>A Minha Pagina com JavaScript</title>

<script type="text/javascript'>
alert(*"Seja bem vindo(a) a minha paginal!™);
</script>
</head>
<body>
Aqui colocamos o conteldo da pagina em HTML
</body>
</html>

Repare que no final da linha de cddigo colocamos o caracter ; o qual da ao interpretador de
JavaScript a indicacdo de que a instrucdo termina nesse local. O JavaScript ndo nos obriga a
terminar as instrucdes deste modo, bastando que mudemos de linha para que ele perceba
que a instrucdo chegou ao fim. No entanto isso torna mais dificil a localizagdo dos erros e
pode também contribuir para gerar mais erros. E conveniente que os principiantes terminem
todas as instru¢g8es com o caracter ; e, se preferirem, s6 deixem de o fazer quando se
sentirem completamente & vontade com a linguagem.

Gragas ao JavaScript podemos fazer com que os objectos gréaficos apresentados na pagina
(como por exemplo uma imagem, um botdo ou uma ligagdo de hipertexto) respondam
dinamicamente as acg¢des do utilizador. Para que isso aconteca basta adicionar um novo
atributo ao elemento responsavel pela apresentacdo desse objecto e escrever o cédigo que
ao ser executado dara origem ao comportamento pretendido. O exemplo seguinte faz
aparecer uma caixa de didlogo com um agradecimento sempre que o link for clicado:

<html>
<body>
<a href="http://www.artifice.web.pt/" target="_blank"
onclick="alert("Obrigado por visitar o Artifice da Web!")">
visite o Artifice da Web

</body>

</html>

Certamente ja conhece bem o atributo href=""___", que serve para especificar o URL da
pagina a que a ligagédo de hipertexto conduz, mas note que o atributo onclick=""___." é bem

diferente porque o seu contelido é constituido por codigo JavaScript, que neste caso faz
aparecer a caixa de dialogo com a mensagem de agradecimento. (Se ndo conseguir
compreender o modo como o texto contido no atributo onclick consegue fazer isto ndo se
preocupe, esta técnica, entre outras, serdo explicadas neste e nos restantes tutoriais desta
coleccédo.)

3. Comentarios e blocos de codigo

3.1 Comentarios

Os comentérios permitem-nos descrever o codigo JavaScript que produzimos tornando-o
mais legivel e mais facil de manter. Se comentar adequadamente o cédigo que produz,
quando mais tarde precisar de o melhorar ou fazer alteracdes sera mais facil e rapido
perceber o que fez antes. Se produz cddigo para partilhar com outras pessoas entdo os
comentarios sao ainda mais importantes para que os outros percebam aquilo que escreveu.

Em JavaScript podemos usar comentarios com uma Unica linha e comentarios com varias
linhas. Os comentarios com uma Unica linha comecam com os caracteres //. Isto da ao
interpretador de JavaScript a indicacdo de que o resto da linha € um comentario, pelo que
este ignora o resto da linha, continuando a interpretar o cédigo na linha seguinte.

Um comentario que se estende por varias linhas comecga com a sequéncia de caracteres /* e
continua até ser econtrada a sequéncia de caracteres */, que marcam o fim do comentario.
Ao encontrar a sequéncia /* o interpretador de JavaScript procura imediatamente a
sequéncia de fecho */, continuando ai a interpretacao do cédigo e ignorando o que esta no
meio.

Aqui ficam alguns exemplos de comentarios em JavaScript.

// Este é um comentario com uma Gnica linha
/* Este comentario ocupa uma s6 linha mas podia ocupar mais */

/*
Este comentario ocupa varias linhas. Tudo o que for
escrito aqui dentro seréa ignorado pelo interpretador
de JavaScript

*/

3.2 Blocos de cdodigo

Quando temos de executar funcionalidades nao triviais é quase sempre preciso executar
sequéncias de instrugbes compostas por varias linhas. Se essas sequéncias tiverem de ser
executadas condicionalmente (veja por exemplo a descrigdo da instrucdo if mais a frente),
ou se formarem uma funcdo, entdo elas constituem um bloco e tém de ser agrupadas. Isso
consegue-se colocando-as entre chavetas ({ }.)

{ // isto é um bloco de cédigo
var i = 0;
var j =1 * 3;

4. Variaveis

O que séo as Variaveis?

As variaveis sao objectos que servem para guardar informacao. Elas permitem-nos dar
nomes a cada um dos fragmentos de informag&o com que temos de lidar. Se esses nomes
forem bem escolhidos fica facil saber onde é que se deve guardar um determinado pedaco de
informacgao e onde é que se pode ir buscar a informacgédo que se guardou antes. Para evitar
erros e aumentar a produtividade é importante escolher nomes que descrevam aquilo que
que cada variavel guarda. Assim, se escrevermos um programa que divide dois numeros é
acertado chamar dividendo, divisor e quociente aos numeros envolvidos na operagéo.
Escolhas como por exemplo nl, n2 e n3, apesar de funcionarem, provocam confuséo e déao
origem a erros dificeis de detectar porque tornam o cédigo mais dificil de ler.

E importante que saibamos quais as regras que temos de respeitar quando escolhemos um
nome para uma variavel:

e Todos os nomes tém de comecar com uma letra ou com o caracter _.

e Os restantes caracteres que compoem o0 nome podem igualmente conter
numeros. Nunca se esquecga que para o JavaScript letra grande e letra
pequena sdo coisas diferentes e que, por exemplo, as variaveis variavell,
Variavell e vaRiavell séo trés objectos distintos.

4.1 Declaracao de Variaveis

Ao acto de criar uma variavel da-se o nome de declaragédo. As variaveis que sédo declaradas
fora de qualquer funcdo (mais a frente iremos ver exemplos de declara¢gdes de variaveis e o
que sdo fungdes) sdo designadas por variaveis globais. Aqui o termo global significa que a
variavel em causa pode ser utilizada em qualquer parte do script; ela esta permanentemente
acessivel. Quando uma variavel é declarada dentro de uma funcéo ela sera uma variavel
local porque s6 pode ser utilizada dentro dessa funcao.

Se tentarmos aceder a uma variavel local fora da fungdo em que ela foi declarada sera
gerado um erro porque a variavel so existe no universo da funcdo em que foi declarada; ela
néo faz parte do mundo exterior a essa funcdo e como tal ndo pode ser ai utilizada.

A seguir temos alguns exemplos de declaracao de variaveis:

dividendo = 12;
divisor = 3;
sabor = "Doce"';
pi = 3.14159;

Nestes exemplos todas as variaveis declaradas serdo variaveis globais. Se quisermos
declarar variaveis cuja existéncia se limite a uma pequena secc¢do do cédigo teremos de usar
a declaracao var, assim: var dividendo = 12;

Se usarmos esta declaracéo fora de qualquer funcdo entdo, porque a variavel é declarada na
base da estrutura de cddigo, ela sera global.

Temos assim que a declaragcdo var serve para limitar o contexto em que a variavel existe e
que:

e As variaveis declaradas sem a declaracdo var sdo variaveis globais;
e As variaveis declaradas usando a declaragédo var existem apenas no contexto
em que foram definidas.

Antes de comecar a escrever codigo em JavaScript é importante planear o modo como este
sera organizado. Deve-se comecar por identificar os dados que véo ser utilizados. A seguir
escolhem-se 0os nomes das variaveis que vao guardar esses dados e sé depois € que se
comeca a escrever o cédigo propriamente dito.

4.2 Os valores das Variaveis
A linguagem JavaScript é capaz de reconhecer trés tipos de dados:

e Numeros, como por exemplo 12 ou 3.14159

e Texto (variaveis de tipo String), como por exemplo: ""Seja Bem Vindo(a)!"

e Valores logicos (true ou false)

e null, que é uma palavra especial que significa que a variavel em causa ndo guarda
qualquer valor, esta vazia.

Como iremos ter oportunidade de aprender neste e nos tutoriais seguintes, usando apenas
estes tipos de dados podemos executar muitas ac¢des Uteis nas nossas paginas da Web.

4.3 Conversoes de Valores

A linguagem JavaScript exige muito pouco trabalho ao programador para definir o tipo de
dados que uma variavel deve guardar. E o proprio interpretador de JavaScript que em funcéo
dos dados que recebe decide se estes representam um numero, texto (string), um valor
I6gico, ou nada (null). Assim, se escrever:

var resposta = 42;

o interpretador decidird guardar internamente a variavel resposta como um ndmero inteiro,
mas se escrevermos:

var resposta = 42;
resposta = "0 JavaScript aprende-se muito depressa.";

ao chegar a segunda linha de coédigo o interpretador mudara de ideias e a variavel resposta
deixara de ser guardada internamente como um ndmero inteiro para passar a ser guardada
como uma String (texto). Esta conversao no tipo da variavel acontece de forma automatica e
o programador ndo precisa de fazer nada para que ela aconteca.

Esta liberdade que nos é dada pelo JavaScript destina-se apenas a simplificar a escrita do
codigo. Quando é mal utilizada ela pode dar origem a cddigo dificil de ler e a erros. As regras
de boa programacao dizem que ao definir uma variavel o programador deve decidir qual o
tipo de dados (numero, texto ou valor légico) que esta ird conter e ndo devera escrever
codigo que provoque uma conversdo no tipo de dados que a variavel guarda. Sempre que
uma tal conversao for necessaria devera ser definida uma nova variavel para guardar o
resultado da conversdo, mantendo inalterados os tipos das variaveis antigas. Na pratica esta
recomendacgado raramente é seguida.

5. Expressoes Literais

5.1 Representacao de valores

As expressoes literais representam valores fixos. Elas sdo escritas directamente pelo
programador ao produzir o script. Exemplos de expressoes literais podem ser: 123 ou "Isto
é uma expressao literal™.

As expressoes literais podem ser usadas de diversas maneiras, como ilustra o excerto de
codigo apresentado a seguir (0o exemplo seguinte usa as instrucdes if/else que s6 séo
estudadas mais a frente):

var nome = "'visitante';
var hora 11;

if(hora < 12)
document.write("'Bom dia. Seja bem vindo senhor
else
{ if(Chora >= 13)
document.write(''Boa tarde. Seja bem vindo senhor
else
document.write('Seja bem vindo! Almoca connosco?");

+ nome);

+ nome);

}

Na primeira linha usdmos a expresséo literal ""visitante" para dar um valor inicial a
variavel nome. Na segunda linha usamos uma expressao literal numérica para dar um valor a
variavel hora. O resto do cédigo usa as expressdes literais 12 e 13 para determinar a parte
do dia (manha, tarde ou hora de almog¢o) e cumprimentar usando o texto (expressao literal)
mais adequado.

5.2 Numeros inteiros

Os numeros inteiros podem ser expressos na forma decimal (base 10), hexadecimal (base
16) ou octal (base 8). Um numero decimal consiste numa sequéncia de digitos que nunca
deve comecar por O (zero). Se escrevermos um nUmero com um zero no inicio isso significa
que se trata de um numero escrito na forma octal. Por outro lado, se no inicio escrevermos
os caracteres 0x (ou 0X) isso significa que o nUmero esta escrito na forma hexadecimal. Os
nuameros escritos na forma decimal podem conter os digitos (0-9), a forma octal aceita
apenas digitos de (0-7) e a forma hexadecimal aceita os digitos (0-9) mais as letras a-f e A-F.

Exemplos de niumeros inteiros sdo: 42, 052, 0X2A, que representam todos o valor decimal
42. No exemplo seguinte as variaveis i, j, k possuem todas o mesmo valor, apesar de
serem usadas bases diferentes para as inicializar:

var 1 = 42; // decimal
var j = 052; // octal
var k = 0X2A; // hexadecimal

// quando executar este cOdigo repare que as variaveis
// tém todas o mesmo valor

document.write(™i = " + 1);
document.write('
");
document.write(’'j = " + J);

document.write('
");
document.write("k =" + k);

5.3 Numeros com virgula flutuante

Uma expressao literal com virgula flutuante representa um ndimero que nao € inteiro mas
que contém uma parte inteira e uma parte fraccionaria. Os nimeros 21.37 e -0.0764 sao
exemplos disto. A representacdo que a maquina constréi para estes numeros baseia-se na
notacéo cientifica. Por exemplo, o numero -7645.4532 é igual a -7.64532 a multiplicar por
10 elevado a 3, e escreve-se como -7.6454532E3, em que E3 representa 10 elevado a 3. Um
outro exemplo é o nimero 0.00045431, que é representado na forma 4.5431E-4, ou seja
4.5431 a multiplicar por 10 elevado a -4. Esta representacao é construida automaticamente
pela maquina, o programador pode escrever o niumero na forma que gostar mais.

5.4 Valores l6gicos (booleanos)

Estas expressfes podem assumir apenas dois valores: true (verdadeiro) e false (falso.)

5.5 Expressdes de texto

Uma expressao de texto € composta zero ou mais caracteres colocados entre aspas ("),
como por exemplo "esta é uma expressao de texto", ou entre plicas ('), como por
exemplo "esta é outra expressdo de texto". Se comegarmos a expressao com aspas
temos forgosamente de usar aspas para a terminar, e se a inciarmos com uma plica temos
de usar outra plica para a terminar.

Para além dos caracteres normais, as expressodes de texto podem conter os caracteres
especiais apresentados na lista seguinte:

Carécter Significado

\b backspace

\f form feed

\n new line

\r carriage return
\t tab

\\ backslash

Cada um destes caracteres produz o mesmo resultado que se obtém carregando na tecla
indicada na segunda coluna. Assim o caracter \b equivale a carregar na tecla backspace
(apagar o caracter a esquerda). O caracter \n provoca uma mudanca de linha tal como a
tecla "enter". O caracter \ é usado como prefixo dos outros caracteres especiais, o que faz
também dele um caracter especial. Por isso, para obtermos este caracter temos de temos
escrevé-lo duas vezes (\\). Se 0 escrevermos uma Unica vez em lugar de o obtermos
estaremos a tentar introduzir um outro caracter especial e o resultado sera diferente do que
pretendemos.

5.6 Caracteres de escape

Se o caracter que vem a seguir a \ nao pertencer a lista anterior o seu efeito sera nulo, mas
h& duas excepgodes: as aspas (") e a plica (*). Se pretendermos escrever aspas dentro de
uma expressao de texto temos de colocar o caracter \ antes delas, como mostra o exemplo
seguinte:

var texto = "Ele leu o \"Auto da Barca do Inferno\" de Gil Vicente.";
document.write(texto);

O resultado sera:
Ele leu o "Auto da Barca do Inferno" de Gil Vicente.
Se em vez de aspas usarmos apenas plicas teremos:

var texto = "Ele leu o \"Auto da Barca do Inferno\" de Gil Vicente.";
document.write(texto);

O resultado sera:
Ele leu o 'Auto da Barca do Inferno' de Gil Vicente.

Porém, a melhor solugéo para este problema ndo é nenhuma das anteriores. Se usarmos
plicas como caracteres delimitadores de uma string entdo passamos a poder usar as aspas
como parte do conteddo sem qualquer problema, como se mostra a seguir:

var texto = "Ele leu o "Auto da Barca do Inferno™ de Gil Vicente.";
document.write(texto);

Mas se quisermos colocar plicas no conteddo a melhor forma de evitarmos os problemas
consiste em usar aspas como caracterres delimitadores da string, como se mostra a segulir:

var texto = "Ele leu o "Auto da Barca do Inferno® de Gil Vicente.";
document.write(texto);

6. Cadeias de variaveis (Array)

Uma cadeia de variaveis (objecto Array) é um objecto capaz de guardar muitos valores,
tantos quanto a memoria disponivel na maquina permitir. Cada uma das variaveis que
compoem o array possui um indice. llustremos isto com um exemplo:

var frutas_tropicais = new Array(‘'Goiaba', "Manga', ''‘Maracuja');
var frutas_nacionais = new Array(3);

frutas_nacionais[0] = "Maca";
frutas_nacionais[1l] = "Cereja';
frutas_nacionais[2] = "Laranja";

Ao declararmos a variavel frutas_tropicais ndés declaramos o Array e atribuimos-lhe os
valores numa Unica operacdo. Ja no segundo caso primeiro declardmos o Array e s6 depois
definimos os valores que ele deve conter. Neste caso temos que a variavel frutas_tropicais[3]
possui o valor ""Maracuja' e a variavel frutas_nacionais[0] possui o valor ""Maca™.

Em JavaScript as variaveis ndo tém um tipo definido, por isso um array pode conter valores
de tipos diferentes que podemos alterar sempre que necessario, como se mostra a seguir:

var sortido = new Array(8975, "Livro"”, false, -27.765, "Bolachas'™);

document.write('sortido = " + sortido);
sortido[0] = 0.0004763;

sortido[2] = true;

sortido[6] = ""Caderno™;

document.write('
");
document.write("'sortido = " + sortido);

Faca clique aqui para editar e executar este exemplo.

Se atribuirmos um valor a um elemento do array com um indice mais alto do que o seu
comprimento, o sistema JavaScript resolve o problema aumentando o tamanho do array até
chegar ao indice pretendido. E isso que acontece no exemplo anterior quando se chega a
linha que tem sortido[6] = "Caderno'; Os arrays sao objectos, e entre as suas
propriedades conta-se a propriedade length, que nos da o niumero de elementos (variaveis)
que ele contém num determinado momento. Assim, se ao exemplo anterior juntarmos uma
linha com o seguinte cédigo:

var numeroDeElementos = sortido.length;

a variavel numeroDeElementos ficara com o valor 7 (repare que inserimos um elemento
adicional com o indice 6, o que fez crescer o array). De forma anédloga se usarmos
frutas_nacionais. length iremos obter 3.

7. Operadores

A linguagem JavaScript possui muitos operadores de diversos tipos. Aqui iremos apenas
abordar os aspectos mais basicos dos operadores disponiveis.

7.1 Operadores de atribuicao de valor

Uma das coisas que os operadores podem fazer é fornecer um valor aquilo que estivar a sua
esquerda. Se o0 que esta a esquerda for uma variavel entdo o valor dela passara a ser aquilo
que o operador forneceu, se for outro operador o valor fornecido sera usado como operando.

Os operadores mais conhecidos sdo as quatro operagdes aritméticas basicas (adicdo
subtracgdo, multiplicacdo e divisdo.) Para estes a linguagem JavaScript define as seguintes
versdes curtas:

Versao curta Significado

X+=y X=X+y
X-=y X=X-y
X*=y X=X*y
xX/=y X=x/y

Repare que aqui o sinal = ndo representa a igualdade matematica. Ele serve apenas para
indicar que a variavel que esta a sua esquerda deve passar a ter um valor igual ao valor da
expressao que esta a sua direita. Se tivermos x=5 e y=7 a expressao Xx=x+y nao representa
uma igualdade matematica mas sim a indicagdo que o valor de x deve passar a ser igual a
soma do valor que tem actualmente com o valor de y. Neste caso x passaria a valer 12.

7.2 Operadores de comparacao

Um operador de comparag¢do compara os valores que lhe séo fornecidos (que designamos
por operandos) e retorna um valor lé6gico que indica se o resultado da comparacgédo é
verdadeiro ou falso. Os valores que recebe para analisar podem ser nimeros ou variaveis de
texto (string). Quando actuam sobre variaveis de texto, as comparagdes baseiam-se na
forma como os caracteres estao ordenados sequencialmente. Esta ordenacgao baseia-se na

ordem alfabética. A lista seguinte apresenta estes operadores.

Operador
Igualdade (==)

Desigualdade

=)

Maior do que (=)

Maior ou igual

=)

Menor do que (<)

Menor ou igual

(==

Descricao

Verifica se os dois operandos sao iguais

Verifica se os operandos sao desiguais

Verifica se o operando da esquerda € maior
do que o da direita

Verifica se o operando da esquerda é maior
ou igual ao da direita

Verifica se o operando da esquerda é menor
do que o da direita

verifica se o operando da esquerda é menor
ou igual ao da direita

7.3 Operadores aritmeéticos

Exemplo
Xx==y da true se x igualar y

x1=y d& true se x nao for
igual ay

x>y d& true se x for maior
do que y

x>=y da true se x for maior
ouigual ay

X<y da true se x for menor
do que y

X<=y da true se x for menor
ouigual ay

Um operador aritmético recebe valores numéricos (tanto variaveis como expressoes literais)
e produz um valor numérico como resultado. Os operadores numéricos mais importantes sao
a adicédo (+), a subtracc¢ao (-), a multiplicagdo (*), a divisao (/) e o resto da divisao (%). O
funcionamento destes operadores em JavaScript respeita todas as regras da algebra.

Porque é muitas vezes necessario adicionar ou subtrair uma unidade a uma variavel, a
linguagem JavaScript define dois operadores especiais com esta finalidade. Assim, para
adicionarmos uma unidade a variavel variavell podemos escrever variavell++, e para
subtrairmos uma unidade a variavel2 escrevemos variavel2--. Por accao destes
operadores no final do exemplo seguinte a variavel variavell tera o valor 4 e a variavel
variavel?2 tera o valor 6.

var variavell
variavell++;
var variavel2
variavel2--;

3;

7;

7.4 Operadores logicos

Os operadores légicos aceitam os valores logicos true e false (verdadeiro e falso) como
operandos e retornam valores l6gicos como resultado. Os operadores ldgicos base
encontram-se listados a seguir (os restantes definem-se com base nestes trés.)

Operador Utilizacdo Descricao

e (&&) b &&c D& true se b for true e c for true.
ou (1D bllc D4 false se b for false e c for false. Da true nos casos restantes.
negacao (1) b Da true se b for false e da false se b for true.

Os casos mais Uteis e interessantes de uso destes operadores utilizam dois ou os trés
operadores ao mesmo tempo, como se mostra a seguir:

Se tivermos x = 4 ey = 7 a operacio
((x +y +2) ==13) && (((X + y) /7 2) == 2)
da false.
Se tivermos x = 4 ey = 7 a operacio
Wy -x+9)=12) || (X *y) = 2)
da true.
Se tivermos x = 4 ey = 7 a operacio
I((X/2 +y) == 9) || (™ (Y/2)) == 2)

da false.

8. Objectos

O objectivo da colecgdo de documentos de estudo (tutoriais) de que este faz parte é ensinar
as tecnologias padréo definidas para criar paginas e aplicacdes para a Web. A utilizacao dos
objectos da linguagem JavaScript é aqui tratada de forma rapida. O estudo aprofundado
deste topico sera feito no tutorial Programacdo em JavaScript e no Tutorial de HTML
Dinamico.

Objectos definidos no padrao ECMAScript

A linguagem JavaScript € uma implementacéo do padrao ECMAScript. Esse padrdo define as
regras de sintaxe que temos estado a estudar e um conjunto minimo de objectos que fazem
do ECMAScript uma verdadeira linguagem de programacdo, mas néo define os objectos que
permitem manipular e interagir tanto com o browser como com as paginas da Web. Para ser
verdadeiramente util o JavaScrit tem de complementar o ECMAScript com objectos adicionais.

Document Object Model (DOM)

O W3C (World Wide Web Consortium) definiu o padrdo DOM para padronizar a forma como
os browsers e as aplicagdes da Web manipulam e interagem com as paginas da Web. Todos
os browsers modernos implementam estes padrdes. Apesar de essas implementacdes serem
geralmente incompletas, elas s&o suficientes para que possamos programar quase tudo
numa forma que funciona em todos os browsers dominantes (MSIE 5 e superior,
Mozilla/Netscape 7 e Opera 7.)

Outros objectos uteis

Quando a linguagem JavaScript surgiu, os seus criadores definiram aqueles objectos que lhe
pareceram importantes. De entre eles alguns foram incorporados pelo padrdo ECMAScript,
outros foram de alguma forma incorporados pelo DOM (geralmente com modificacdes), e
outros ndo estdo presentes em qualquer padrdo oficial mas sdo suportados universalmente,
0 que faz deles padrbes de facto. Com estes objectos podemos formar um grupo que
podemos usar nas nossas aplicacdes com toda a confianga. O Tutorial de HTML Dinamico ir4
tratar este assunto em profundidade.

8.1 Exemplos praticos com objectos

Dois dos objectos que ficam imediatamente disponiveis quando carrega um documento no
browser sdo o objecto document, que nos permite mainpular e interagir com a pagina da
Web, e o objecto window, que nos permite controlar a janela do browser que contém a
pagina.

O objecto window possui varios métodos. Entre eles temos os métodos close(), alert(),
confirm() e prompt(), com os quais podemos fechar a janela do browser, apresentar avisos
ao utilizador e pedir-lhe para nos dar uma resposta ou escrever alguma coisa. O cddigo:

window.alert("'Esta é uma janela com um aviso™);

faz aparecer uma janela com um aviso para o utilizador. A notagao por pontos significa que
estamos a chamar o método alert() pertencente ao objecto window. Neste caso podiamos
ter escrito apenas alert(mensagem) e omitido a parte window. (o browser ja sabe que o
método alert pertence ao objecto window)

O objecto document contém uma representagdo da pagina HTML. Cada um dos elementos
que compoem a pagina (formularios, paragrafos, imagens, links, etc) podem ser lidos e
manipulados utilizando este objecto. Depois de uma pagina estar carregada, o codigo
seguinte:

alert("A segunda imagem desta pagina foi carregada a partir de: "+
document. images[1]-src);

mostra a origem (src) de uma imagem. Repare que com o objecto document temos de usar
sempre a notagdo por pontos, ndo sao aceites abreviagoes.

9. Definir uma Funcao

As funcOes permitem-nos agrupar varias linhas de codigo que realizam um determinado
trabalho, dar-lhe um nome e p6é-las a trabalhar chamando-as por esse nome.

O exemplo seguinte define uma funcgéo:

function dataActual ()

{
/*
Cria um objecto com a data e hora actuais e mostra
o seu valor na janela recorrendo ao método
toLocaleString() do objecto Date
*/
var d = new Date();
document.write("’A data e hora sao: " + d.toLocaleString());
3

dataActual(); // esta linha faz executar a funcgéo

(nunca esquec¢a que em JavaScript as letras mailsculas ndo sdo equivalentes as letras
mindsculas, por isso tenha sempre muita atencdo ao facto de que o nome que usa para
chamar uma funcéo tem de ser rigorosamente igual ao nome que lhe deu ao defini-la.)

No exemplo anterior usamos os caracteres { e } para delimitar um bloco de cédigo. Tudo o
que esta dentro destes delimitadores faz parte da fungdo e serd executado sempre que esta
for invocada escrevendo dataActual () no seu codigo. Como resultado sera escrita na pagina
a data e hora do momento em que a funcéo foi chamada.

Também podemos passar argumentos para a fun¢cdo, como se mostra a seguir:

function cumprimentar(nome)
{
var d = new Date();
document.write('Ola

+ nome + "
A data e hora actuais séo:
+ d.toLocaleString());
b

cumprimentar(“Zézinho"); // esta linha faz executar a funcgéo

como teremos oportunidade de ver quando aprofundarmos o nosso estudo, as fun¢des tém
uma importancia fundamental na programacéo de scripts complexos

10. As instrucdes condicionais if...else

Uma instrucdo if permite-nos executar uma porgéo de codigo apenas se for verdadeira uma
determinada condi¢cdo. Se essa condi¢cdo nédo for verdadeira essa porcao de coédigo ndo sera
executada, podendo ser ou nao executado outro codigo alternativo, que seréa especificado
através da palavra else.

A ideia principal que esta na base das instrucdes if/else pode ser resumida numa frase:
"Se chegarmos antes da hora de almogo vamos dar um passeio e no caso contrario vamos
para a mesa". O exemplo seguinte ilustra esta ideia:

var hora = 10;

if(hora < 12)

document.write(*'Vamos passear'™);
else

document.write(''Vamos para a mesa');

Neste exemplo a hora é de antes do almogo e serd apresentada uma janela que tem escrito
Vamos passear. Se a hora fosse 12 ou mais seria mostrado o texto Vamos para a mesa.

Uma instrucéo if ndo precisa de ter associada a si uma instrucdo else. Quando isso
acontece se a condicdo nédo se verificar ndo sera executado qualquer codigo alternativo

11. Executar codigo repetidamente

Um dos recursos mais poderosos no arsenal de qualquer linguagem de programacao é a
capacidade para repetir a realizacdo de tarefas de uma forma simples. Para isso definem-se
ciclos de repeticdo dentro dos quais se coloca o cédigo que se pretende executar
repetidamente.

11.1 Ciclos for

Um ciclo for consiste num conjunto de trés expressdes contidas entre paréntesis, separadas
pelo caracter ; (ponto e virgula) e pelo codigo a executar em cada um dos ciclos.
Normalmente esse codigo estara contido entre chavetas para formar um bloco, mas se
consistir numa Unica linha ndo é preciso usar chavetas.

A primeira das expressoes do ciclo for declara a variavel a usar como indice (funciona
apenas como contador) e inicializa-a. A segunda expresséo declara uma condicdo que deve
ser testada sempre que se inicia um novo ciclo. Se essa condi¢do der false como resultado
0 ciclo para e o codigo definido abaixo néo voltara a ser executado. A terceira expresséo
serve para actualizar o valor do indice no final de cada ciclo.

llustremos isto com um exemplo simples:

soma = O;
for(var 1 = 0; 1 < 3; i++)
{ soma += 1;

document.write('0 valor do indice é agora de " + 1 + "
");

}

Este pedaco de cédigo comeca por definir uma variavel (global) chamada soma atribuindo-lhe
o valor zero. O ciclo for define uma variavel de indice (var i = 0) e verifica se a condicao i
< 3 é cumprida. Se o resultado da verificacdo for true sera executado o cddigo que se
encontra entre chavetas mais abaixo, o qual adiciona i a variavel soma e apresenta uma
mensagem informando sobre o valor actual da variavel i. Depois é executada a terceira
instrugéo do ciclo (i++), a qual soma uma unidade ao valor do indice i e da-se inicio a um
novo ciclo. Este comecga por testar de novo o respeito pela condicdo 1 < 3. Se o resultado
for true volta a executar o cédigo que esta entre chavetas com o valor actualizado de i. Isto
repete-se até que i < 3 dé false, o que termina a execugédo do ciclo for.

O exemplo seguinte é mais elaborado e executa um ciclo que percorre todos os elementos de
um array de nomes e destaca aqueles que come¢am com a letra H.

var nomes = new Array(‘'Manuel’, "Rita", "Joana', "Francisco', "Luis",
"Bernardo', "Helder', "Patricia’™, "Hugo', "Anténio", "Nuno™);

for(var i=0; i1 < nomes.length;i++)

{

var nome = nomes[i]
if(nome.charAt(0) == "H")
alert(’0 nome

+ nome + " comega com a letra H");

}

Neste exemplo usamos o método charAt() do objecto String para verificar se o caracter
inicial do nome (aquele esta na posicdo zero) é igual a letra H.

11.2 Ciclos while

O ciclo while é muito parecido com o ciclo for. De facto tudo o que um faz pode ser feito
com o outro, embora por questdes de legibilidade (e de elegancia do cddigo) cada um deles
possa ter areas de aplicacdo que para as quais € mais indicado do que o outro.

O ciclo while avalia uma condicéo e se ela der true executa o bloco de cédigo que vem
imediatamente a seguir. Se der false salta para a frente do bloco de cddigo que vem a
seguir sem o executar.

Este exemplo usa um ciclo while para produzir o mesmo efeito que o exemplo que esta
antes daquele que acabamos de ver:

soma = 0;

i =0;
while(i < 3)
{

soma += 1i;
document.write('0 valor da variavel i é agora de " + i + "
");
i++;

12. Notas finais

Esta introducédo informal serviu para oferecer algumas nog¢des basicas sobre a linguagem
JavaScript e preparar o leitor para comecgar a usa-la para dar funcionalidades avancadas as
suas paginas da Web.

