INSTITUTO FEDERAL DE SANTA CATARINA ,

DEPARTAMENTO DE ELETRONICA

Programacao C para
Arduino

Prof. Charles Borges de Lima.

Maio/2013 1

SUMARIO

> Introducéo » Trabalho com Bits
> O Arduino Uno » Produzindo um Cadigo

e A—-mega328 Eficiente
» Gravacao do Firmware

» Programacao

- Assembly » Conclusoes

» Referéncias
Bibliograficas

- Linguagem C
- IDE do Arduino

» Registradores do
ATmega328

INTRODUCAO

Arduino é uma plataforma eletronica de
prototipagem baseada em hardware livre e
software, faceis de usar e flexiveis.

Possui um IDE que permite a programacao de
forma facil de um microcontrolador AVR. Todavia,
nao é eficiente e nado permite o desenvolvimento
profissional de projetos.

Para um projeto profissional & necessario 0 uso
de ferramentas adequadas de programacao e do
conhecimento técnico do microcontrolador
empregado.

A IDE do Arduino néo é destinada ao desenvolvimento profissional.

LD XX UL LR

O ARDUINO UNO ‘ o

Como é estruturado o Hardware:

0-5 (azul) - pinos de entradas analdgicas.
Entradas para o ADC, podem ser usados como I/O
digital.

0-13 (verde) - pinos de I/O digitais . Pinos 0 e 1 ¢
também séo utilizados para a comunicacao serial. _.°. S1 £0321098 76543210
€& 1111 . < x
AREF(laranja) - referéncia analégica do ADC. 13 gz Digital = §
S1 (azul) - botdo de inicializacao. R -
% E Arduino =
ICSP (ciano) - conector de gravacéao In-Circuit.
USB (amarelo) - usado para gravar o Arduino ou o e
energiza-lo. CE I |<] I o= {
X1 (rosa) - fonte de alimentacao externa e
(9-12VDC, ap0s diodo estara também em Vin). AN\ N POWER Ana.og,n
ﬂ | | 3.3V5v Gnd Vin 01 345

. /v 80:°8 000088
20 Pinos de 1/0O

Existem variacdes no layout da placa conforme o modelo.

O ATmega328

(PCINT14/RESET) PC6 [
(PCINT16/RXD) PDO [
(PCINT17/TXD) PD1 [
(PCINT18/INTO) PD2 [J

(PCINT19/0C2B/INT1) PD3 [

(PCINT20/XCK/T0) PD4 [
vee O

GND [
(PCINT6/XTAL1/TOSC1) PB6 [
(PCINT7/XTAL2/TOSC2) PB7 [
(PCINT21/0OCOB/T1) PD5 [
(PCINT22/0OCOA/AINO) PD6 []
(PCINT23/AIN1) PD7
(PCINTO/CLKO/ICP1) PBO

o NO OV, WO =

—t ek ok =k -k (O
A WO N = O

28
27
26
25
24
23
22
21
20
19
18
17
16
15

] PC5 (ADC5/SCL/PCINT13)
] PC4 (ADC4/SDA/PCINT12)
] PC3 (ADC3/PCINT11)
] PC2 (ADC2/PCINT10)

1 PC1 (ADC1/PCINTO)

1 PCO (ADCO/PCINTS)

1 GND

] AREF

] AVCC

] PB5 (SCK/PCINTS5)

1 PB4 (MISO/PCINT4)

] PB3 (MOSI/OC2A/PCINT3)

SS/OC1B/PCINT2)
OC1A/PCINT1)

1 PB2
|1 PB1

— —

O microcontrolador do Arduino Uno é o ATmega328 (AVR).

Correlacao entre os pinos do Arduino e do ATmega328.

Arduino | ATmega328 Arduino | ATmega328 Arduino | Atmega328
Analog In PORTC PORTD PORTB
A0 PCO 0 PDO 8 PBO
A1 PC1 1 PD1 9 PB1
A2 PC2 2 PD2 10 PB2
A3 PC3 3 PD3 1 PB3
Ad PC4 4 PD4 12 PB4
A5 PC5 5 PD5 13 PB5
6 PD6
7 PD7

Informacdes fundamentais para a programacao.

PROGRAMACAO ASSEMBLY /

Assembly

Todo microcontrolador possui um conjunto proprio de instrucdes
representadas por mnemonicos (assembly) que apds o
desenvolvimento do programa sao convertidos nos zeros e uns
l0gicos interpretaveis pelo microprocessador.

O assembly é uma linguagem de baixo nivel e permite obter o
maximo desempenho de um microcontrolador, gerando o menor
numero de bytes de programa combinados a uma maior velocidade
de processamento.

Todavia, 0 assembly sO sera eficiente se o programa estiver bem
estruturado e empregar algoritmos adequados.

Programar em assembly exige muito esforco de programacéao.

Assembly é a linguagem da CPU do microcontrolador.

PISCA
LED

Inicializagoes

Liga LED

:

< Atraso >
l

Desliga LED

l
% Atraso >

EXEMPLO

R19=16
NAO
@ R17=R17-1
SIM
NAO«— R18=R18-1
SIM
Li @ R19=R19-1
SIM

» Retorno

EXEMPLO

.equ LED = PBS //LED é o substituto de PBS5 na programacao
.ORG ©x0eeeo //endere¢o de inicio de escrita do cédigo
INICIO:
LDI R16,0xFF //carrega R16 com o valor OxFF
OUT DDRB,R16 //configura todos os pinos do PORTB como saida
PRINCIPAL:
SBI PORTB, LED //coloca o pino PBS em 5V
RCALL ATRASO //chama a sub-rotina de atraso
CBI PORTB, LED //coloca o pino PBS em @V
RCALL ATRASO //chama a sub-rotina de atraso
RIMP PRINCIPAL //volta para PRINCIPAL
ATRASO: //atraso de aprox. 20ems (16 MHz)
LDI R19,16
volta:
DEC R17 //decrementa R17, comeca com ©x00
BRNE volta //enquanto R17 > @ fica decrementando R17
DEC R18 //decrementa R18, comeca com Ox00
BRNE volta //enquanto R18 > @ volta decrementar R18
DEC R19 //decrementa R19
BRNE volta //enquanto R19 > @ vai para volta 30 Bytes
RET 15 instrucdes

Piscando um LED ligado ao pino PB5 (pino 13 no Arduino).

PROGRAMACAO C E/

Linguagem C

Com a evolucao tecnoldgica (compiladores), o
assembly foi quase que totalmente substituido pela
linguagem C.

As vantagens do uso do C s&o numerosas:

» Reducao do tempo de desenvolvimento.
» O reuso do codigo é facilitado.

» Facilidade de manutencao.

» Portabilidade.

Os compiladores convertem o C para o Assembly antes da geracéo do codigo de maquina.

PROGRAMACAO C E/

O problema de desenvolver o codigo em C é que o
mesmo pode consumir muita memoria e reduzir a
velocidade de processamento. Os compiladores tentam
traduzir da melhor forma o codigo para o assembly
(antes de se tornarem codigo de maquina), mas esse
processo nao consegue o mesmo desempenho de um
codigo escrito exclusivamente em assembly.

Como os compiladores C sao eficientes para a
arquitetura do AVR, a programacao dos
microcontroladores ATmega ¢ feita em C. SO existe a
necessidade de se programar puramente em assembly
em casos criticos.

EXEMPLO

#define F_CPU 16000000UL //define a frequéncia do microcontrolador 16MHz
#include <avr/io.h> //defini¢les do componente especificado
#include <util/delay.h> //biblioteca para o uso das rotinas de delay

//Definicdes de macros

#define set_bit(Y,bit_x) (Y|=(1<<bit_x)) //ativa o bit x da variadvel Y

#define clr_bit(Y,bit_x) (Y&=~(1<<bit_x)) //limpa o bit x da variavel Y

#define tst_bit(Y,bit_x) (Y&(1<<bit_x)) //testa o bit x da variavel Y

#define cpl_bit(Y,bit_x) (Y*=(1<<bit_x)) //troca o estado do bit x da varidvel Y

#define LED PBS //LED é o substituto de PBS5 na programacao
f = m - ———
int main()
{
DDRB = OxFF; //configura todos os pinos do PORTB como saidas
while(1) //lago infinito
{
set_bit(PORTB,LED); //liga LED
_delay ms(200); //atraso de 200 ms
clr_bit(PORTB,LED); //desliga LED
_delay ms(200); //atraso de 200 ms 216 Bytes
} Otimizacao -Os

Usando cpl_bit(PORTB,LED) resultam 202 bytes.

IDE DO ARDUINO (Wiring) /

int led = 13;

// the setup routine runs once when you press reset:
vold setup() {
// 1nitialize the digital pin as an output.
pinMode(led, OUTPUT):

" the loop routine runs over and over again forever:
vold loop() {

digitalWrite(led, HIGH): // turn the LED on (HIGH is the wvoltage lewvel)
delay(200) ; // wait for a second
digitalWrite(led, LOW):; // turn the LED off by making the wvoltage LOW
delay(200); // walt for a second

30 bytes Assembly
216 bytes C
1084 bytes IDE Arduino

Linguagem propria baseada em C e C++,

REGISTRADORES DO ATmega328

=]

Os registradores de /0O sao o painel de controle do
microcontrolador, pois todas as configuracoes de trabalho,

M - AN Ve
Incluindo acesso as entradas e saidas, se encontram
.

nessa parte da memaria.
End. Nome Bit7 Bit 6 Bit 5 Bit4 Bit 3 Bit 2 Bit 1 Bit0
0x23 PINB PINB7 PINB6 PINBS PINB4 PINB3 PINB2 PINB1 PINBO
0x24 DDRB DDB7 DDB6 DDBS DDB4 DDB3 DDB2 DDB1 DDBO
0x25 PORTB PORTB7 PORTB6 PORTBS PORTB4 PORTB3 PORTB2 PORTB1 PORTBO
0x26 PINC PINCS PINCS PINC4 PINC3 PINC2 PINC1 PINCO
0x27 DDRC DDCé6 DDCs DDC4 DDC3 DDC2 DDC1 DDCO
0x28 PORTC - PORTCS PORTCS PORTC4 PORTC3 PORTC2 PORTC1 PORTCO
0x29 PIND PIND7 PINDS PINDS PIND4 PIND3 PIND2 PIND1 PINDO
0x2A DDRD DDD7 DDDé6 DDD5 DDD4 DDD3 DDD2 DDD1 DDDO
0x2B PORTD PORTD7 PORTDé& PORTDS PORTD4 PORTD3 PORTD2 PORTD1 PORTDO

i _ | | | | :

0xC4 UBRROL Registrador da taxa de transmissdo da USART, byte menor
oxC5s UBRROH Registrador da taxa de transmiss3o da USART, byte maior
0xCé UDRO Registrador I/O de dados da USART

Total de 87 Registradores

Painel de Controle.

14

REGISTRADORES DOS PORTSs /

Os registradores responsaveis pelos pinos de I/O séao:

= PORTX: registrador de dados, usado para escrever nos pinos

do PORTx.

» DDRZX: registrador de direcao, usado para definir se os pinos
do PORTx sao entrada ou saida.

= PINx: registrador de entrada, usado para ler o contetido dos

pinos do PORTx.

Bits de controle dos pinos dos PORTs.

DDXn" | PORTXn I/0 Pull- Comentario
up
0 0 Entrada Nao Alta impedancia (Hi-Z).
PXn ira fornecer corrente se
0 1 Entrada Sim externamente for colocado

em nivel logico 0.

Saida em zero (drena

1 0 Saida Nao corrente).

Saida em nivel alto (fornece
corrente).

1 1 Saida Nao

Exemplo

DDRD = 0b00000100;
DDRD | = 1<< PC2;

PORTD =0b11111011;

PUR SEL

set_bit(PORTD, 2):
clr_bit(PORTD, 2);

tst_bit(PIND, 7);

UCSROB = 0x00; /ldesablilita RXD e TXD

TRABALHO COM BITS <=/

O trabalho com bits é fundamental para a programacao de um
microcontrolador. Assim, compreender como podem ser
realizadas operacoes com bits €& primordial para uma
programacao eficiente.

| OU légico bit a bit (usado para ativar bits , colocar em 1)
& E logico bit a bit (usado para limpar bits, colocar em 0)

A OU EXCLUSIVO bit a bit (usado para trocar o estado dos bits)

~ complemento de 1 (1 vira O, O vira 1)

Nr >> x O numero é deslocado x bits para a direita
Nr << x O numero é deslocado x bits para a esquerda
Exemplo: ASSR |= 1<<AS2;

TCCR2B = (1<<CS22)|(1<<Cs20);

Ativa Bit

= Ativacao de bit, colocar em 1:

#tdefine set bit(Y,bit x) (Y|=(1<<bit x))

onde Y |= (1<<bit_x) ou Y =Y | (1«<bit x)

Exemplo:

set_bit(PORTD,5S)

PORTD = PORTD | (1<<5) ,

ObXXXXXXXX (PORTD, x pode ser O ou 1)
| ObO0100000 (1<<5 é a mascara)
PORTD = ObXX1XXXXX (o bit S com certeza sera 1)

Limpa Bit

» Limpeza de bit, colocar em O:

#tdefine clr bit(Y,bit x) (Y&=~(1<<bit x))

onde Y &= ~(1<<bit_x) ou Y =Y & (~ (1<<bit_x))

Exemplo:

clr_bit(PORTB,2)

PORTB = PORTB & (~ (1<<2)) ,

ObXXXXXXXX (PORTB, x pode ser O ou 1)
& 0b11111011 (~(1<<2) é a mascara)
PORTB = Obxxxxx0xx (0 bit 2 com certeza sera 0)

Complementa Bit E]

= Troca o estado 16gico de um bit, O para 1 ou 1 para O:

#tdefine cpl bit(Y,bit x) (Y~=(1<<bit x))
onde ¥ & = (1€<bit x) ou Y =Y~ (1<bit_x)

Exemplo:
cpl bit(PORTC,3)

PORTC = PORTC ~ (1<<3) ,

ObXXXX 1XXX (PORTC, x pode ser O ou 1)
A 0b00001000 (1<<3 é a mascara)
PORTC = ObxxXXX0XXX (o bit 3 sera O se o bit a ser

complementado for 1 e 1 se ele for 0)

Testa Bit

= Leitura de um bit:

#tdefine tst bit(Y,bit x) (Y&(1<<bit x))

Exemplo:

tst_bit(PIND,4)

PIND & (1<<4) ,
ObxxXTXXXX (PIND, x pode ser O ou 1)
& 0b00010000 (1<<4 é a mascara)
resultado = 0b000T0000 (o bit 4 tera o valor T, que sera O ou 1)

Exemplo

#define F_CPU 16000000UL
#include <avr/io.h>
#include <util/delay.h>

#define set_bit(Y,bit_x)(Y|=(1<<bit_x))
#define clr bit(Y,bit_x)(Y&=~(1<<bit_x))
#define cpl_bit(Y,bit_x)(Y*=(1<<bit_x))
#define tst_bit(Y,bit_x)(Y&(1<<bit_x))

#define LED PD2
#define BOTAO PD7

int main()

{
DDRD = ©0boe0e0100; //configura o PORTD, PD2 saida, os demais pinos entradas

PORTD= ©b11111111; //habilita o pull-up para o botao e apaga o LED

UCSROB = 0x00; //habilita os pinos PDO® e PD1 como I/0 para uso no Arduino
while(1) //laco infinito
{
if(!tst_bit(PIND,BOTAQ)) //se o botdo for pressionado executa o if
{
while(!tst bit(PIND,BOTAQ)); //fica preso até soltar o botdo
_delay ms(10); //atraso de 10 ms para eliminar o ruido do botao
cpl_bit(PORTD,LED); //troca o estado do LED

}//if do botdo pressionado

}Y//laco infinito

'

= Compile com a maxima otimizacao.

= Use variaveis locais sempre que possivel.
= Use o0 menor tipo de dado possivel (8 bits), unsigned se aplicavel.
= Use do{} while(expressdo) se aplicavel.

= Use lagos com contadores decrescentes e pré-decrementados, se
possivel.

= Use macros ao inves de funcdes para tarefas menores que 2-3 linhas
de codigo em assembly.

» Evite chamar funcdes dentro de interrupcoes.

= Se possivel junte varias funcdes em um modulo (biblioteca), para
aumentar o reuso do codigo.

= Todas as constantes e literais devem ser colocados na memoria flash.

Alterar — compilar, alterar — compilar, comparatr.

Exemplo — sem ponto flutuante /

LM35 =10 mV/°C e Vv X 1024
45°C =0,45 V Veer temp = ADC X A
0,45 - 450 VREF =1,1 V

450 — 0,45 X 1024 A —> 450 0,45 x 1024 y 1100
B 1,1 B 1,1 1024

1100 . 19

A 1024 256

(ADC x 19) . | |
— gned int (16 bits)
temp = ADC + 2tE

Evitar o uso de Ponto Flutuante.

=]

rnf avrdude-GUI [yuki-lab.jp Version 1.0.5] l =1 w
avrdude.exe File G ravador
andude exe ~JI| usBtiny/USBasp
Programmer] Display Window ou dlretamente
[USBtiny simple USB programmer (usbtiny) z pe|0 Ardu | No
Port Device Command line Option (CO nversor
usB v [ATmega328P (m328p) <) serial/lUSB com
Fuse Flash um pcontrolador
hFuse h C:\Users\Carcara\Desktop\Programacao_C_Arduino\Pisca_ E] com Bootloader)_
IFuse h | Read ’ ‘ Wirite 1
eFuse h | Verify ’ | Erase - Write - Verify]
Lock Bit EEPROM Q
Read
2 | Read J { Write]
‘ Chip Erase ’ ‘ Terminal ’ ‘ Exit ’
4

avrdude.exe - GUI 25

|

r ™
@ AVRS Burn-O-Mat v2 =S

File Settings Help

AVR type | ATmega328P v (Fuses)

Flash

]
”C:'\Users'LCarcara'\Desktop\Programacao_C_Arduino'LPisca_LED_C\Pis&'F" (File) | auto &

(Write)(Read)(Verify)

l B| (l> | auto v
(wie)(reasd)(verty)

avrdude.exe: input hile C:iUsersiCarcaralDeskiopiProgramacao_C_Arduino\Pisca_LED_Ci\Pisca_LED_Ci\DebugiPisca | A
avrdude.exe: input file C:\UsersiCarcara\Desktop\Programacao_C_ArduinoiPisca_LED_C\Pisca_LED_C\DebugiPisca_j
avrdude.exe: reading on-chip flash data:

Reading | #¥#X XXX X R ERERRHERERERERBRERERERRHRRERERRRFRERERER | 100% 0,315

avrdude.exe: verifying ...
avrdude.exe: 216 bytes of flash verified

avrdude.exe done. Thank you.

| <

<C D) 22
A oL

avrdude.exe — AVRS8 Burn-O-Mat 26

CONCLUSAO

O Arduino e seus Shields permitem um prototipacao rapida, dado
o conjunto de funcBes e bibliotecas disponiveis. E facil de
programar.

Todavia, a IDE do Arduino é muito limitada e inadequada ao
desenvolvimento profissional. O codigo ndo € otimizado e néao
existem ferramentas de depuracao.

O desenvolvimento profissional exige o conhecimento do
microcontrolador e da programacao C.

Codigos eficientes sao resultantes de bons algoritmos,
produzindo maior densidade de codigo (funcionalidade/bytes). E
fundamental conhecer a arquitetura interna do microcontrolador
para desenvolver os melhores programas.

REFERENCIAS BIBLIOGRAFICAS /]

LIMA, C. B.; VILLACA, M.V. M. AVR e Arduino: Tecnicas de Projeto
22. ed. Edicao dos Autores, Florianopolis, 2012.

GANSSLE, Jack. The Firmware Handbook. 12 ed. Elsevier, United
Kingdom, 2004.

ATmega48/88/168/328/A/PA/P: Microcontroladores AVR (Manual do
fabricante).

Atmel AVR4027: Tips and Tricks to Optimize Your C Code for 8-bit
AVR Microcontrollers (Application Note).

http://atmel.com/
http://www.avrfreaks.net/
http://arduino.cc/
http://fritzing.org/

http://borgescorporation.blogspot.com.br/

“Avida é dura pra quem é mole! 28

MUITO OBRIGADO
PELA ATENCAO

borgescorp@gmail.com

