
1TM 1

Programação C para
Arduino

INSTITUTO FEDERAL DE SANTA CATARINA
DEPARTAMENTO DE ELETRÔNICA

Prof. Charles Borges de Lima.

Maio/2013

2TM 2

SUMÁRIO

� Introdução

� O Arduino Uno

- O ATmega328

� Programação

- Assembly

- Linguagem C

- IDE do Arduino

� Registradores do
ATmega328

� Trabalho com Bits

� Produzindo um Código
Eficiente

� Gravação do Firmware

� Conclusões

� Referências
Bibliográficas

3TM 3

INTRODUÇÃO

A IDE do Arduino não é destinada ao desenvolvimento profissional.

Arduino é uma plataforma eletrônica de
prototipagem baseada em hardware livre e
software, fáceis de usar e flexíveis.

Possui um IDE que permite a programação de
forma fácil de um microcontrolador AVR. Todavia,
não é eficiente e não permite o desenvolvimento
profissional de projetos.

Para um projeto profissional é necessário o uso
de ferramentas adequadas de programação e do
conhecimento técnico do microcontrolador
empregado.

4TM 4

O ARDUINO UNO

Como é estruturado o Hardware:

0-5 (azul) - pinos de entradas analógicas.
Entradas para o ADC, podem ser usados como I/O
digital.

0-13 (verde) - pinos de I/O digitais . Pinos 0 e 1
também são utilizados para a comunicação serial.

AREF(laranja) - referência analógica do ADC.

S1 (azul) - botão de inicialização.

ICSP (ciano) - conector de gravação In-Circuit.

USB (amarelo) - usado para gravar o Arduino ou
energizá-lo.

X1 (rosa) - fonte de alimentação externa
(9-12VDC, após diodo estará também em Vin).

Existem variações no layout da placa conforme o modelo.

20 Pinos de I/O

5TM 5

O ATmega328

O microcontrolador do Arduino Uno é o ATmega328 (AVR).

6TM 6

PINOS DO ATmega328 NO ARDUINO

Informações fundamentais para a programação.

7TM 7

PROGRAMAÇÃO ASSEMBLY

Assembly é a linguagem da CPU do microcontrolador.

Todo microcontrolador possui um conjunto próprio de instruções
representadas por mnemônicos (assembly) que após o
desenvolvimento do programa são convertidos nos zeros e uns
lógicos interpretáveis pelo microprocessador.

O assembly é uma linguagem de baixo nível e permite obter o
máximo desempenho de um microcontrolador, gerando o menor
número de bytes de programa combinados a uma maior velocidade
de processamento.

Todavia, o assembly só será eficiente se o programa estiver bem
estruturado e empregar algoritmos adequados.

Programar em assembly exige muito esforço de programação.

Assembly

8TM 8

EXEMPLO

9TM 9

EXEMPLO

Piscando um LED ligado ao pino PB5 (pino 13 no Arduino).

30 Bytes
15 instruções

10TM 10

PROGRAMAÇÃO C

Os compiladores convertem o C para o Assembly antes da geração do código de máquina.

Com a evolução tecnológica (compiladores), o
assembly foi quase que totalmente substituído pela
linguagem C.

As vantagens do uso do C são numerosas:

� Redução do tempo de desenvolvimento.
� O reuso do código é facilitado.
� Facilidade de manutenção.
� Portabilidade.

Linguagem C

11TM 11

O problema de desenvolver o código em C é que o
mesmo pode consumir muita memória e reduzir a
velocidade de processamento. Os compiladores tentam
traduzir da melhor forma o código para o assembly
(antes de se tornarem código de máquina), mas esse
processo não consegue o mesmo desempenho de um
código escrito exclusivamente em assembly.

Como os compiladores C são eficientes para a
arquitetura do AVR, a programação dos
microcontroladores ATmega é feita em C. Só existe a
necessidade de se programar puramente em assembly
em casos críticos.

PROGRAMAÇÃO C

12TM 12

EXEMPLO

216 Bytes
Otimização -Os

Usando cpl_bit(PORTB,LED) resultam 202 bytes.

13TM 13

IDE DO ARDUINO (Wiring)

Linguagem própria baseada em C e C++.

30 bytes Assembly
216 bytes C

1084 bytes IDE Arduino

14TM 14

REGISTRADORES DO ATmega328

Os registradores de I/O são o painel de controle do
microcontrolador, pois todas as configurações de trabalho,
incluindo acesso às entradas e saídas, se encontram
nessa parte da memória.

Total de 87 Registradores

Painel de Controle.

15TM 15

REGISTRADORES DOS PORTs

16TM 16

Exemplo

DDRD = 0b00000100;

DDRD | = 1<< PC2;

PORTD = 0b11111011;

set_bit(PORTD, 2);
clr_bit(PORTD, 2);

tst_bit(PIND, 7);

UCSR0B = 0x00; //desabilita RXD e TXD

17TM 17

TRABALHO COM BITS

O trabalho com bits é fundamental para a programação de um
microcontrolador. Assim, compreender como podem ser
realizadas operações com bits é primordial para uma
programação eficiente.

Exemplo:

18TM 18

Ativa Bit

Exemplo:

19TM 19

Limpa Bit

Exemplo:

20TM 20

Complementa Bit

Exemplo:

21TM 21

Testa Bit

Exemplo:

22TM 22

Exemplo

23TM 23

PRODUZINDO UM CÓDIGO EFICIENTE

� Compile com a máxima otimização.

� Use variáveis locais sempre que possível.

� Use o menor tipo de dado possível (8 bits), unsigned se aplicável.

� Use do{ } while(expressão) se aplicável.

� Use laços com contadores decrescentes e pré-decrementados, se
possível.

� Use macros ao invés de funções para tarefas menores que 2-3 linhas
de código em assembly.

� Evite chamar funções dentro de interrupções.

� Se possível junte várias funções em um módulo (biblioteca), para
aumentar o reuso do código.

� Todas as constantes e literais devem ser colocados na memória flash.

Alterar – compilar, alterar – compilar, comparar.

24TM 24Evitar o uso de Ponto Flutuante.

Exemplo – sem ponto flutuante

unsigned int (16 bits)

25TM 25

GRAVAÇÃO DO FIRMWARE

avrdude.exe - GUI

Gravador
USBtiny/USBasp
ou diretamente
pelo Arduino
(conversor
serial/USB com
um µcontrolador
com Bootloader).

26TM 26

GRAVAÇÃO DO FIRMWARE

avrdude.exe – AVR8 Burn-O-Mat

27TM 27

CONCLUSÃO

O Arduino e seus Shields permitem um prototipação rápida, dado
o conjunto de funções e bibliotecas disponíveis. É fácil de
programar.

Todavia, a IDE do Arduino é muito limitada e inadequada ao
desenvolvimento profissional. O código não é otimizado e não
existem ferramentas de depuração.

O desenvolvimento profissional exige o conhecimento do
microcontrolador e da programação C.

Códigos eficientes são resultantes de bons algoritmos,
produzindo maior densidade de código (funcionalidade/bytes). É
fundamental conhecer a arquitetura interna do microcontrolador
para desenvolver os melhores programas.

28TM 28

LIMA, C. B.; VILLAÇA, M.V. M. AVR e Arduino: Técnicas de Projeto .
2ª. ed. Edição dos Autores, Florianópolis, 2012.

GANSSLE, Jack. The Firmware Handbook. 1ª ed. Elsevier, United
Kingdom, 2004.

ATmega48/88/168/328/A/PA/P: Microcontroladores AVR (Manual do
fabricante).

Atmel AVR4027: Tips and Tricks to Optimize Your C Code for 8-bit
AVR Microcontrollers (Application Note).

http://atmel.com/

http://www.avrfreaks.net/

http://arduino.cc/

http://fritzing.org/

http://borgescorporation.blogspot.com.br/

REFERÊNCIAS BIBLIOGRAFICAS

“A vida é dura pra quem é mole!

29TM 29

MUITO OBRIGADO
PELA ATENÇÃO!

borgescorp@gmail.com

Mars Robot Curiosity is Powered by Arduino ...

