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wmoresare - Goncentracao de Tensao

Até o presente momento foi considerado nos calculos de
dimensionamento estrutural a tensdao média, figura ¢, ou seja, a razao
entre forca e area. Entretanto, em muitos casos esta simplificacao pode
nao ser valida ou fornecer informacdes invalidas ao projetista. Quando
componentes estruturais apresentarem variacbes ao longo da secao
transversal (por exemplo furos, reducOes, cantos vivos, entalhes) a
tensdo gerada no local onde existe a descontinuidade é superior a
tensdo média, figura b. Se o projetista ndo levar em consideracao a
variagcdo geométrica da secao transversal, a estrutura podera falhar
abaixo da carga admissivel calculada pela tensdo média.
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A razao entre a tensao realmente desenvolvida ou tens@o maxima e a Ienséo
média é definida como FATOR DE CONCENTRACAO DE TENSAO ou
FATOR DE FORMA e simbolizado pela letra K..

K _ Gmax G J _

Z_ me

média

A é a menor area da

secdo transversal

O fator de concentracdo de tensao geralmente é informado sob a forma de
graficos. Deve-se observar que o fator de concentracdo de tensdo independe
do tipo de material, mas apenas da geometria da secao transversal da
estrutura e do tipo de descontinuidade.



- Prof. MSc Eng Halley Dias

INSTITUTO FEDERAL DE HEEEEEEEEEEN
EDUCACAO, CIENCIA ETECNOLOGIA 32
t
/
Obsgrve no grafico ao lado que a 3,0 » @ o
medida que 0 valor da H ! |
descontinuidade, r, decresce, a - o —
concentragao de tensao aumenta. ’ o el H
me ( -9 )I
K
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P P
O-med ZZ — (h—q))t O-max — Kt ‘O-med
’ K, =225
P =5,00kN

o.. =2,25.12,8=28,8MPa
h = altura da chapa =40 mm

O = didmetrodo furo =14mm

t = espessura da chapa =15mm

P
O' =
" 1(40.107) = (14.107)].15.107
P _ 12,8 MPa

O' =
med = 390.107°

Observe que: se a chapa fosse dimensionada sem levar em conta o fator de
concentragao de tensao e utilizasse um fator de seguranca igual a 2, quanto posta em
servico a tensdo real seria 2,25 vezes superior a tensdo média, ou seja, acima da
tensao de escoamento do material, em outras palavras sem seguranca. Esse exemplo
mostra a importancia da analise da concentragcdo de tensdo, pois quando ignorada o
projetista pode dimensionar estruturas e/ou elementos de maquinas cuja seguranga
pode ficar comprometida.
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Exemplo: A tira de aco mostrada na figura abaixo esta submetida a uma carga axial de
80 kN. Determinar a tensdo normal maxima desenvolvida na tira. O aco tem limite de
escoamento o, = 700 MPa e mddulo de elasticidade E,, = 200 GPa
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P - :[\—JP_/»P - P
2,6 e m — —
| i o.=-K.o,_ , =(16).-)
25 i o £ ] A
méd ht |
22 : 3
K X =40 80. 10
20 | 1£=30 - O . = 1,6. = 640 MPa
. A (0,02).(0,01)
A = 3=15
ek A =12 Como a tensio maxima é inferior a
e + ]
1.4 S ~ .
% tensao de escoamento o material
12
10 permanece elastico.
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Cisalhamento

< l — A forca F provocara deformacao e falha
L e Tl da barra ao longo dos planos indicados
~aril § '  comABe CD.
Apoios rigidos

1 Para a condigéo de equilibrio a forca de F
: 1 cisalhamento média deve ser aplicada V=—
v em cada secao. 2

i) Distribuicdo da Tensao Cisalhante
Média atuante na secao

Fonte: Hibbeler, Resisténcia dos
Materiais, 52 ed, 2006.



(O Prof. MSc Eng Halley Dias
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-V
Tmédia o Z

» 7. tensao cisalhante média na se¢do, que se supde ser a mesma em
cada ponto localizado na secdo.

» V: resultante interna da forca de cisalhamento na secio determinada
pelas equacoes de equilibrio.

» A: drea da secao

Fonte: Hibbeler, Resisténcia dos
Materiais, 52 ed, 2006.
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Apresenta apenas uma superficie de cisalhamento.

(c) (d)

média

_V_F
A A

Fonte: Hibbeler, Resisténcia dos
Materiais, 52 ed, 2006.
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Apresenta duas superficies de cisalhamento.

(a) (b)

(d)

meédia

Fonte: Hibbeler, Resisténcia dos
Materiais, 52 ed, 2006.
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em Juntas Rebitadas, Parafusadas, Chavetas

No dimensionamento das juntas rebitadas, parafusadas, chavetas
torna-se necessaria a verificagcdo da pressao de contato entre o
elemento e a parede do furo na chapa (nas juntas). A carga de
cisalhamento além da tendéncia de corte do elemento de juncao
cria esforco de compressdo ou esmagamento entre o elemento (p.
ex. parafuso ou rebite) e a parede do furo. Essa pressao € definida
através da relacdo entre a carga de compressao atuante € a area da

seccao longitudinal do elemento, que € projetada na parede do
furo.

Fonte: MELCONIAN, Mecanica Técnica e
Resisténcia dos Materiais, 182 ed, 2007.
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Modos de Falha de Ligacoes ao Corte
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(a) Aplicacao de Rebite
(b) Flexao das Pecas Ligadas

(c) Corte do Rebite

(d) Rotura das Pecas Ligadas

(e) Esmagamento do Rebite ou da

(a) (b) (c) (d) _
Peca Ligada

(f) Corte da Bainha

(g) Rasgao da Bainha

(e)
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©2001 Brooks/Cole, a division of Thomson Learning, Inc. Thomson Learningm
is a trademark used herein under license.
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T, —tensdo de esmagamento V V
t — espessura da chapa Tb =
® — didametro do furo A ¢
A — area de esmagamento = t.P
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B
- Exemplo de Aplicacao
BB o Y plicag

.. SANTA CATARINA
Campus Ararangud

Pino da dobradica sujeito a
cisalhamento simples.

Pino deste trator submetido a
cisalhamento duplo.

Estrutura metalica, uniao por

parafusos — cisalhamento simples Fonte: Hibbeler,
Resisténcia dos

Materiais, 52 ed, 2006.
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Exemplo: Os dois elementos estdo acoplados em B como mostra a figura. A
figura também mostra o topo dos acoplamentos em A e B. Supondo que os
pinos tenham tensdo de cisalhamento admissivel de t,, = 12,5 ksi,
determinar o menor diametro dos pinos A e B necessdrio para suportar a

caroa

o=

4 pés

(a)
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3 p6344444<444443 pés
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Exemplo: Os pinos em B e C da estrutura t€m, cada um, um didmetro de

0,25 pol. Supondo que os pinos estejam submetidos a cisalhamento duplo,
determinar a tensdo de cisalhamento média em cada pino. Resolver o
problema para cisalhamento simples. Fonte: Hibbeler, Resisténcia dos
Materiais, 5% ed, 2006.

500 Ib
7/°\
Bf i

3 pés

C
o

i

ésl)

|
1.5 pél 1,5 pé

3001b

3 pés

Fonte: Hibbeler, Resisténcia dos
Materiais, 52 ed, 2006.
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Exemplo: a corrente foi fabricada com aco SAE 1020 laminado. Determine o diametro do
elo da corrente de modo que resista ao cisalhamento quando a corrente for submetida a
uma carga estatica de 8,50 kN. Dados: oe = 210 MPa; E = 210 GPa. Considere que a
tensdo de escoamento para o cisalhamento é 60% da tensdo e escoamento em tracéo.
Caso seja requerido coeficiente de seguranca igual a 2 (dois) qual devera ser o valor do
didmetro da corrente para essa situacao.

AR TED BS D Bd G
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Exemplo: Uma corrente de bicicleta consiste de uma série de pequenos elos, cada um
com 12 mm de comprimento entre os centros dos pinos cujo diametro é igual a 2,5
mm. Considere L o comprimento o braco da manivela (L = 300 mm) a partir do eixo
principal até o eixo do pedal e R o raio da catraca (R = 125 mm). (a) determine a
tracdo T na corrente devido a forca P,,, = 800 N aplicada a um dos pedais; (b)
Calcule a tensédo de cisalhamento média nos pinos; (c) pode-se afirmar que 0s pinos
da corrente estdo sofrendo apenas deformacéao elastica? Justifique sua resposta; (d)
caso a afirmativa do item ‘c’ se confirme, qual o coeficiente de seguranca utilizado; (e)
qual a carga que causaria escoamento no pinos da corrente?

Links Pin

7 (MPa)

T =30——~

—12 mm— —> [ —
2.5 mm

©2001 BrooksCole,adivision o Thomson

0,004 )




Plano ou area de

cisalhamento

Chaveta

Chaveta
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Exemplo: a alavanca é presa ao eixo A por meio de uma
chaveta que tem largura d e comprimento 25 mm. Supondo
que o eixo esteja fixo e seja aplicada uma forga vertical de
200 N perpendicular ao cabo, determinar a dimenséo d se a
tensao de cisalhamento admissivel para a chaveta for Ty, =
35 Mpa.

500 mm *

Inicio da falha
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Uma barra tracionada sofre simultaneamente alongamento axial e
contracao lateral e se for comprimida sofre contragao axial e alongamento
lateral.

Deformacao Axial
L o L() _ AL . 5
L L, L,

o

E =

Deformacao Lateral
_L,-Ly AL 6
L', L', L,

Coeficiente de Poisson

E

Deformacgdo Lateral

V=—
Deformacao Axial

NS
Compressio IS o’

Hibbeler, 2006.
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% O sinal negativo visa compensar o fato de que as
deformacdes apresentam sinais contrarios.

% O coeficiente de Poisson é valido na regiao elastica do
material.

“ Valores experimentais do coeficiente de Poisson para a
maioria dos materiais variam entre 0,25 e 0,35. A borracha é
o0 material que apresenta o maior valor com 0,5 e a cortica 0
menor valor nulo. O concreto apresenta valor entre 0,1 e 0,2.

Hibbeler, 2006.
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Exemplo: Um tubo de agco de comprimento L = 4,0 pés, diametro externo d, = 6,0
pol e diametro interno d, = 4,5 pol é comprimido por uma forga axial P = 140 kip. O
material tem mddulo de elasticidade E = 30.000 ksi e coeficiente de Poisson igual a
0,3. Dado: 30 ksi < 0 < 100 ksi.

A = %(df —d?)=12,34 pol®

P
P : L
Cb,ﬂ_ o=— " = —11,32 ksi (sinal negativo indica compressao)

Como a tensao desenvolvida é inforior a tensao admissivel

o material sofre deformacao elastica, portanto vale a Lei de Hooke

L
N £=2=—377,3x10°°
U E
0=¢.L=-0,018 pol
d, £'=—0.=113,2x10"°
d, Ad, =&'.d, =0,000679 pol

Ad, =¢'.d, =0,000509 pol
At=¢"1=0,000085 pol

A
A 4

Gere, 2003.
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smorocace 0 — LI de Hooke em Cisalhamento
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I
|
o

7 = Tensado Cisalhante
G = Modulo de rigidez transversal
ou moOdulo de elasticidade para cisalhamento

¥ = Deformacao Cisalhante

Relacaoentre Ge E

E
2.(1+0)

G =

Hibbeler, 2006.
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Um corpo-de-prova de liga de titanio é testado em tor¢ao, e o diagrama
tensao-deformagio de cisalhamento é mostrado na Figura 3.254. Determinar o
médulo de cisalhamento G, o limite de proporcionalidade e o limite de
resisténcia ao cisalhamento. Determinar também a distincia maxima d que o
topo de um bloco desse material, mostrado na Figura 3.25b, pode ser deslocado
horizontalmente se o material comporta-se elasticamente quando submetido 3
forca de cisalhamento V. Qual € a intensidade de V (forca cortante ou de
cisalhamento) necessdria para provocar o deslocamento?

7 (ks1)

20 -

30 /Tr=73 B
70 F Tip=52
60
50F 1A
40
30
20 -
10 i

y(rad)
O Y= 0,008 1=054 0,73

() Gere, 2003.
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v Modulo de cisalhamento: representa a inclinacao da reta AO do diagrama Z-y.
As coordenadas do ponto A sao (0,008 rad, 52 ksi).

52 Ksi

G= 0.008 rad - 6.500 ksi  Lei de Hooke para o cisalhamento
v" Limite de Proporcionalidade € obtido diretamente do diagrama.
jp =52 ksi

v’ Limite de Resisténcia ao Cisalhamento é obtido diretamente do diagrama, ponto B.
(. = 73 ksi
v' Limite Elastico Maximo e Forca de Cisalhamento

d

y =1g (0,008 rad) = 0,008 rad = —> d=0,02 pol

2 pol

V ~
(med - A
V =624 Ki
52 ksi = — - P
(3 pol).(4 pol)
Gere, 2003.

/
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Introducao a Flexao
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Determinacao dos Esforc¢os Internos

- Método das Secoes -

Sistema Bidimensional

!
la
Secao a-a — Convencao das Solicitacoes Internas

yA

v
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P
Carga Concentrada riﬁ}
Carga Distribuida
Uniformemente Distribuida [W; é

q = [ un. de forca/un. comprimento]

Linearmente Distribuida M
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Tipos de Carregamentos
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Momento Concentrado: M = [ un for¢ca*un. comprimento]

P >
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Exemplo (1)

Ay

v X

1 kN.m [2kN 4 kN
A5°
N

Z 1m Tm [Tm |1m
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Exemplo (2)
A y
1 kN/m 2 kN
)S \ 4 A 4

Z 1,59m 3m 1m




- Prof. MSc Eng Halley Dias

INSTITUTO FEDERAL DE Célculo da DiStribuigﬁo dOS
EDUCACAO, CIENCIA ETECNOLOGIA ESfOl‘gOS InternOS

Internamente, no plano:

N: ESFORCO NORMAL
V: ESFORCO CORTANTE
M: MOMENTO FLETOR

Convencao

Secao
(] / IBM
v N
I
|

V

yu
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Calculo da Distribuicao dos Esforcos Internos
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Método Direto

No método direto estabelece-se um roteiro para a determinacao
das equacoes que regem a distribuicao dos esfor¢os internos
ao longo do elemento estrutural.

(1) Desenhar ao diagrama de corpo livre (DCL);

(2) Calcular as reacoes;

(3) Estabelecer trechos para os quais as fungdes das solicitagcoes
internas sao iguais. Trecho por definicdo é a regido da viga,
onde ndo ocorre mudancas no carregamento, por
descontinuidade ou por apoios.

(4) Para cada trecho aplicar as equagdes de equilibrio
determinando as equagdes para os esfor¢os internos;

(5) Desenhar os diagramas das solicitagcoes.



Exemplo: Dada a viga abaixo submetida ao
mostrado, determine as solicitacdes internas.

y 3 kN
-
| >
3m | 2m

3 kN
DCL 3 kN.sen 309 .~
x" 3 kN.cos 30°
T RBx
RAyI 3m 2m RBy

Calculo das Reacoes

Y Fx=0;Ry —3kN.cos30°=0=> R, =2,6kN

1S

carregamento

> Fy=0;R,, +R,, —3kN.sen30°=0= R, + R, =150kN
> M, =0,-3kN.sen30°.3m+ R, .5m=0= R, =0,9kN = R, =0,6kN
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Calculo das Solicitacoes Internas
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1° Trecho: 0<x <3

: M
I f; "
X |
R,/ >

V

Y Fx=0;N =0=N =0

> Fy=0;R, -V =0=V =0,6kN

Y M, ., =0—R, x+M =0=M =0,6kN.x

para x=0=>M =0 para x=3m=>M =18kN.m
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Calculo das Solicitacoes Internas
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2°Trecho: 3<x <5

3 kN
3 kN.sen 309 .~ |
v 3 kN.cos 30° |9 M
, N
X—3m X
RAJ >\
X

Y Fx=0,N —2,60kN=0=N =2,6kN

Y Fy=0;R, —150kN-V =0=V =-09kN

> M, =0-R, x+L50kN.(x—3m)+M =0=M =0,6kN.x—1,5kN.(x—3m)
para x=3=>M=18kNm para x=5m=>M =0N.m
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3 kN

3 kN.sen 301
»" 3 KN.cos 30°

A RBX

ZZ .

V=06kN | > Salto = 3kN.sen60
x [m]

5| :

N
\

N\
v
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. DEfOrmacao por Flexao de um
Membro Reto

Dada uma viga prismatica, feita de material homogéneo,
submetida a flexao.

Eixo de
simetria ¥y

S~

M
Z .
=

X | Superticie
neutra
Eixo

longitudinal
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Antes da deformacio

(a)
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Ags retas horizontais
tornam-se curvas

As retas verticais
permanecem retas, mas giram

Apés a deformagao

(b)

“O comportamento de qualquer barra deformavel sujeita a momento
fletor faz o material da parte inferior esticar-se e o da parte superior
comprimir-se. Consequentemente, entre as duas regibes deve existir
uma superficie, chamada superficie neutra, na qual as fibras
longitudinais do material nao sofrem mudanca de comprimento.”
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Hipoteses Simplificativas:

» 0 eixo longitudinal, que fica na superficie neutra, nao sofre qualquer
mudanca de comprimento.

» todas as secOes transversais da viga permanecem planas e
perpendiculares ao eixo longitudinal durante a deformacéao.

» qualquer deformacao da secao transversal sera desprezada.
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o’

As = Ax
—i =
Elemento nao-deformado Elemento deformado
() (b)
eixo superficie
longitudinal neutra
i (b
Esse resultado importante indica que a deformacéao . As '— As
normal longitudinal de qualquer elemento da viga &= hm—
depende de sua localizagao y na secao transversal e As—0 As
do raio de curvatura do eixo longitudinal da viga nesse . (p—y)AB— pAO
ponto. Em outras palavras, para qualquer secao & = hm
transversal especifica, a deformagao normal longitudinal AO—0 PAO
varia linearmente com y a partir do eixo neutro. Ocorre
contracao (-€) nas fibras localizadas acima do eixo g:—l
neutro (+y), enquanto ocorre alongamento (+€) nas yo

fibras localizadas abaixo do eixo (-y).
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——

—m AXe—

/‘ S

ax
B
e

Distribuicao da deformac¢do normal

E =

(y)

\CJ

£

max

Prof. MSc Eng Halley Dias
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Considerar que o material tem comportamento linear-elastico de
modo que a lei de Hooke possa ser aplicada.

¥
(’ém;ix

o=LFE¢& ?_ I
(=)

0 E gma) Variacao da deformagae normal

(vista lateral)

(a)

Variagao da tensao de flexio
(vista lateral)

(b)
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M .c
O-max -
1
M.
o=
1

o . tensdo normal maxima no elemento, que ocorre

Variacao da tensao de flexdo

no ponto da drea da secao transversal mais afastado do (©
€1X0 neutro.

o tensao normal na distancia intermediaria y dos eixo neutro.

M: momento interno resultante, determinado pelo método

das secdes e pelas equagdes de equilibrios, e calculado em

torno do eixo neutro da secdo transversal.

I: monento de inércia da area da sec¢ao transversal calculado

em torno do eixo neutro.

y: distancia perpendicular qualquer do eixo neutro, onde o auta.

c: distancia perpendicular do eixo neutro ao ponto mais

afastado desse eixo, no qual o, atua.

X
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INSTITUTO FEDERAL DE

snseddionon Momento de Inércia
1= (I+Ad?)

[ : momento de 1nércia da area composta

A : area da secao particular.

d: distancia do eixo que passa pelo centroide

da area composta ao e1xo que passa pelo controide

da area particular.
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Exemplo: Determinar o momento de inércia do perfil |
mostrado na figura abaixo.

20 mmL l Tabelado
T | B ] T y
L C 150 mm
N J | A h 1 [
20 mm—| |— T l - X
150¢mm « . >
(- | "~ 1
20 mm D Ix = —bh3
" 250 mm 12
(b) 0
[ . =—hb
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N Exemplo 01: A viga simplesmente apoiada da figura tem
Eoucacho, CENCIAETECNOLOGIA - Jreg da secao transversal mostrada no exemplo anterior.
Determinar a tensao de flexdo maxima absoluta na viga e
desenhar a distribuicao de tensao na secao transversal
nessa localizacao.

5 kN/m

[ 6 m \

(@)
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Exemplo 02: A viga mostrada na figura tem area da
INSTITUTO FEDERAL DE ~ . .

eoucaco,cienciaeTecnoosia - S@CA0 transversal com perfil em forma de U. Determinar
a tensao de flexao maxima que ocorre na secao a-a da

+ ’eZSO mmﬁ

viga.
2,6 kN
13f112
/4 a Yy =59,09 mm "
\ 1
15 mm—|

2m e

C

1 m-—»

I~

(a)

(b)
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Estudo de tensoes e deformacoOes produzidas em
pecas de secao transversal circular, sujeitas a
acao de conjugados que tendem a torcer essas

pecas.

Tals conjugados sao chamados de:
Momentos de torcao
Momentos torcionais

Torque: € o momento que tende a torcer o
membro em torno de seu eixo longitudinal.
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INSTITUTO FEDERAL DE Hipéteses Simplificativas
EDUCACAO, CIENCIA ETECNOLOGIA

para eixos de secao circular uniforme

1) Uma secao inicialmente plana, perpendicular ao eixo da
secao circular, permanece plana apo6s a aplicacao dos
torques.

2) Em um membro circular sujeito a acao de um torque, as
deformacOes angulares y variam linearmente a partir do
eixo central. Isso significa que as linhas radiais no plano
ao longo do eixo longitudinal permanecem retas apds a
deformacao.

Circulos Y
permanecem —— 4~
circulares

4 As retas
“——longitudinais
ficam torcidas

As retas radiais
permanecem relas

Antes da deformacgao

Apds a deformagio
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INSTITUTO FEDERAL DE Anélise de Deformagéo em um Eixo

EDUCACAO, CIENCIA ETECNOLOGIA

. Se o eixo estiver preso em uma
‘ extremidade e for aplica um

Apoio fixo torque na outra extremidade, o

' plano sombreado da figura ao

7\‘, lado se distorcera e assumira

. ' uma forma  obligua como

llﬂ;{’}:_‘t'::;[n / mostrado. Nesse caso, uma linha

radial localizada na secao
transversal a um distancia x da
extremidade fixa, do eixo girara
plano sem por meio de um angulo ®(x). O
deformacio n . - ,
angulo ®(x), assim definido, é

,{ denominado angulo de torcao.
7z Ele depende da posicao x e varia
ao longo do eixo como mostrado.

O angulo de tor¢io $ix) aumenta & medida gque x aumenta.
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O
ﬁ INSTITUTO FEDERAL DE Anélise de Deformagéo em um Eixo

. . . EDUCACAO, CIENCIA ETECNOLOGIA

.. SANTA CATARINA
Campus Ararangud

Apoio fixo

Apoio fixo
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v: Deformacao de Cisalhamento

INSTITUTO FEDERAL DE
EDUCACAO, CIENCIA ETECNOLOGIA

®: Angulo de Torcao

Paro o arco BB' temos:

BB'=L.tgy e BB'=p.tgd

onde ¥ e ® sdao medidos em radianos. Se consideramos as deformagodes
no regime elatico, ou seja, muito pequenas, 1sso implica que a tangente
do angulo € o proprio angulo quando medidos em radianos, assim:

tey=yetgd = P

yL=b.p= 7/:%

p© € um raio qualquer entre o centro do eixo € a

superficie externa.
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EDUCACAO, CIENCIA ETECNOLOGIA

Seja um eixo de raio “c

_c®
L

Deformacao Cisalhante no Interior do Eixo

7/max

7/:£‘ max

C
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INSTITUTO FEDERAL DE Eq uagéo da TO rgéo

Regime Elastico

Lei de Hooke para tensoes e
deformacoces de Cisalhamento

T=Gy

T= G.E Y. .,comoGYy, =T / Ffﬁ

v
S}

T=— 'Tmax ¢ T
C max
Para eixo Vazado
T .

c - [
z-min = _I'Tmax ¢ > P

3 \\jl :
Onde ¢, € o raio externo e ¢, o raio interno
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INSTITUTO FEDERAL DE Eq uagéo da TO rgéo
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Eixo submetido a um Torque “T”

j pdb =T Para Eixo Macico
dF =71.dA |
' J=—rx.c"
PTAA=T 57

Px; Paa=T Para Eixo Vazado
J max * C :

1

J=—7.(c; —c})
2 2 1

Tmax
T = - j 0’ dA

onde, j p’dA é definido como momento Polar de Inércia

da Secdo Transversal =J

T ..J o 7 :T.c

ST = .
C J
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st Angulo de Torgdo
no Regime Elastico

c.P T 1C

=" e — “max
ymax ymax

L G JG

CID——[md]

No regime elastico o angulo de tor¢ao P €
proporcional ao momento de tor¢ao T aplicado

a0 e1xo circular.



