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Concentração de Tensão

Até o presente momento foi considerado nos cálculos de
dimensionamento estrutural a tensão média, figura c, ou seja, a razão
entre força e área. Entretanto, em muitos casos esta simplificação pode
não ser válida ou fornecer informações inválidas ao projetista. Quando
componentes estruturais apresentarem variações ao longo da seção
transversal (por exemplo furos, reduções, cantos vivos, entalhes) a
tensão gerada no local onde existe a descontinuidade é superior à
tensão média, figura b. Se o projetista não levar em consideração a
variação geométrica da seção transversal, a estrutura poderá falhar
abaixo da carga admissível calculada pela tensão média.abaixo da carga admissível calculada pela tensão média.
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A razão entre a tensão realmente desenvolvida ou tensão máxima e a tensão
média é definida como FATOR DE CONCENTRAÇÃO DE TENSÃO ou
FATOR DE FORMA e simbolizado pela letra Kt.
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O fator de concentração de tensão geralmente é informado sob a forma de
gráficos. Deve-se observar que o fator de concentração de tensão independe
do tipo de material, mas apenas da geometria da seção transversal da
estrutura e do tipo de descontinuidade.
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Observe no gráfico ao lado que a
medida que o valor da
descontinuidade, r, decresce, a
concentração de tensão aumenta.

Supor que temos uma chapa plana
de 100 mm de comprimento, 40 mm
de altura e 15 mm de espessura.
Essa chapa contém um furo no meio
com diâmetro igual a 14 mm. 2,25com diâmetro igual a 14 mm.
Determinar o valor de Kt .
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Observe que: se a chapa fosse dimensionada sem levar em conta o fator de
concentração de tensão e utilizasse um fator de segurança igual a 2, quanto posta em
serviço a tensão real seria 2,25 vezes superior à tensão média, ou seja, acima da
tensão de escoamento do material, em outras palavras sem segurança. Esse exemplo
mostra a importância da análise da concentração de tensão, pois quando ignorada o
projetista pode dimensionar estruturas e/ou elementos de máquinas cuja segurança
pode ficar comprometida.
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Exemplo: A tira de aço mostrada na figura abaixo está submetida a uma carga axial de
80 kN. Determinar a tensão normal máxima desenvolvida na tira. O aço tem limite de
escoamento σe = 700 MPa e módulo de elasticidade Eaço = 200 GPa
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Cisalhamento

Apoios rígidos

A força F provocará deformação e falha 
da barra ao longo dos planos indicados 
com AB e CD.

Para a condição de equilíbrio a força de 
cisalhamento média deve ser aplicada 
em cada seção. 2

F
V =

Distribuição da Tensão Cisalhante 
Média atuante na seção

Fonte: Hibbeler, Resistência dos 
Materiais, 5ª ed, 2006.
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A

V
média =τ

� τ: tensão cisalhante média na seção, que se supõe ser a mesma em

cada ponto localizado na seção.

Tensão Cisalhante Média

cada ponto localizado na seção.

� V: resultante interna da força de cisalhamento na seção determinada

pelas equações de equilíbrio.

� A: área da seção

Fonte: Hibbeler, Resistência dos 
Materiais, 5ª ed, 2006.



Prof. MSc Eng Halley Dias

Cisalhamento Simples ou Direto

Apresenta apenas uma superfície de cisalhamento.

A

F

A

V
média ==τ

Fonte: Hibbeler, Resistência dos 
Materiais, 5ª ed, 2006.
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Cisalhamento Duplo

Apresenta duas superfícies de cisalhamento.

A

F

A

V
média

2
==τ

Fonte: Hibbeler, Resistência dos 
Materiais, 5ª ed, 2006.
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Pressão de Esmagamento ou de Contato

em Juntas Rebitadas, Parafusadas, Chavetas

No dimensionamento das juntas rebitadas, parafusadas, chavetas

torna-se necessária a verificação da pressão de contato entre o

elemento e a parede do furo na chapa (nas juntas). A carga de

cisalhamento além da tendência de corte do elemento de junção

cria esforço de compressão ou esmagamento entre o elemento (p.

ex. parafuso ou rebite) e a parede do furo. Essa pressão é definidaex. parafuso ou rebite) e a parede do furo. Essa pressão é definida

através da relação entre a carga de compressão atuante e a área da

secção longitudinal do elemento, que é projetada na parede do

furo.

Fonte: MELCONIAN, Mecânica Técnica e 
Resistência dos Materiais, 18ª ed, 2007.
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Modos de Falha de Ligações ao Corte

(a) Aplicação de Rebite

(b) Flexão das Peças Ligadas

(c) Corte do Rebite

(d) Rotura das Peças Ligadas

(e) Esmagamento do Rebite ou da (e) Esmagamento do Rebite ou da 
Peça Ligada

(f) Corte da Bainha

(g) Rasgão da Bainha



Prof. MSc Eng Halley Dias

©2001 Brooks/Cole, a division of Thomson Learning, Inc.  Thomson Learning™

is a trademark used herein under license.
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Análise do Esmagamento

A
a a

t
Φ

R – tensão de esmagamento
t – espessura da chapa
Φ – diâmetro do furo
A – área de esmagamento = t.Φ

.
b

V V

A t
τ

φ
= =

bτ

A
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Exemplo de Aplicação

Pino da dobradiça sujeito a 
cisalhamento simples.

Pino deste trator submetido a Pino deste trator submetido a 
cisalhamento duplo.

Fonte: Hibbeler, 
Resistência dos 
Materiais, 5ª ed, 2006.

Estrutura metálica, união por 
parafusos – cisalhamento simples
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Exemplo: Os dois elementos estão acoplados em B como mostra a figura. A

figura também mostra o topo dos acoplamentos em A e B. Supondo que os

pinos tenham tensão de cisalhamento admissível de τadm = 12,5 ksi,

determinar o menor diâmetro dos pinos A e B necessário para suportar a

carga.
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Exemplo: Os pinos em B e C da estrutura têm, cada um, um diâmetro de 

0,25 pol.  Supondo que os pinos estejam submetidos a cisalhamento duplo, 

determinar a tensão de cisalhamento média em cada pino.  Resolver o 

problema para cisalhamento simples. Fonte: Hibbeler, Resistência dos 

Materiais, 5ª ed, 2006.

Fonte: Hibbeler, Resistência dos 
Materiais, 5ª ed, 2006.
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Exemplo: a corrente foi fabricada com aço SAE 1020 laminado. Determine o diâmetro do
elo da corrente de modo que resista ao cisalhamento quando a corrente for submetida a
uma carga estática de 8,50 kN. Dados: σe = 210 MPa; E = 210 GPa. Considere que a
tensão de escoamento para o cisalhamento é 60% da tensão e escoamento em tração.
Caso seja requerido coeficiente de segurança igual a 2 (dois) qual deverá ser o valor do
diâmetro da corrente para essa situação.
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Exemplo: Uma corrente de bicicleta consiste de uma série de pequenos elos, cada um
com 12 mm de comprimento entre os centros dos pinos cujo diâmetro é igual a 2,5
mm. Considere L o comprimento o braço da manivela (L = 300 mm) a partir do eixo
principal até o eixo do pedal e R o raio da catraca (R = 125 mm). (a) determine a
tração T na corrente devido à força Padm = 800 N aplicada a um dos pedais; (b)
Calcule a tensão de cisalhamento média nos pinos; (c) pode-se afirmar que os pinos
da corrente estão sofrendo apenas deformação elástica? Justifique sua resposta; (d)
caso a afirmativa do item ‘c’ se confirme, qual o coeficiente de segurança utilizado; (e)
qual a carga que causaria escoamento no pinos da corrente?

350
e

τ =

( )MPaτ

©2001 Brooks/Cole, a division of Thomson Learning, Inc.  Thomson Learning
™

is a trademark used herein under license.©2001 Brooks/Cole, a division of Thomson Learning, Inc.  Thomson Learning
™

is a trademark used herein under license.
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F
F

F
F

Exemplo: a alavanca é presa ao eixo A por meio de uma
chaveta que tem largura d e comprimento 25 mm. Supondo
que o eixo esteja fixo e seja aplicada uma força vertical de
200 N perpendicular ao cabo, determinar a dimensão d se a
tensão de cisalhamento admissível para a chaveta for Ƭadm =
35 Mpa.
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Início da falha
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5 – Coeficiente de Poisson

Uma barra tracionada sofre simultaneamente alongamento axial e
contração lateral e se for comprimida sofre contração axial e alongamento
lateral.
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Hibbeler, 2006.
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� O sinal negativo visa compensar o fato de que as
deformações apresentam sinais contrários.

Coeficiente de Poisson

ε

ε
υ

'
−=

� O coeficiente de Poisson é válido na região elástica do
material.

� Valores experimentais do coeficiente de Poisson para a
maioria dos materiais variam entre 0,25 e 0,35. A borracha é
o material que apresenta o maior valor com 0,5 e a cortiça o
menor valor nulo. O concreto apresenta valor entre 0,1 e 0,2.

Hibbeler, 2006.
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Exemplo: Um tubo de aço de comprimento L = 4,0 pés, diâmetro externo d2 = 6,0
pol e diâmetro interno d1 = 4,5 pol é comprimido por uma força axial P = 140 kip. O
material tem módulo de elasticidade E = 30.000 ksi e coeficiente de Poisson igual a
0,3. Dado: 30 ksi < σ < 100 ksi.

P

2 2 2

2 1  ( ) 12,34
4

11,32 (sinal negativo indica compressão)

Como a tensão desenvolvida é inforior a tensão admissível

A d d pol

P
ksi

A

π

σ

= − =

= − = −

d2

d1

L

Como a tensão desenvolvida é inforior a tensão admissível

o material sofre deformação elástica, portanto vale a Lei de Hooke

σ
ε = 6

6
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Gere, 2003.
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6 – Lei de Hooke em Cisalhamento

γτ .G=

tocisalhamen para deelasticida de móduloou 

al transversrigidez de Módulo G

Cisalhante Tensão τ

⇒

⇒

)2.(1

E
 G 

E eG  entre Relação

Cisalhante Deformação 

υ

γ

+
=

⇒

Hibbeler, 2006.
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Gere, 2003.



Prof. MSc Eng Halley Dias

Solução

ζlp = 52 ksi 

G = 
52 ksi

0,008 rad
= 6.500 ksi

� Módulo de cisalhamento: representa a inclinação da reta AO do diagrama ζ-γ.  
As coordenadas do ponto A são (0,008 rad, 52 ksi).

Lei de Hooke para o cisalhamento

� Limite de Proporcionalidade é obtido diretamente do diagrama.

� Limite de Resistência ao Cisalhamento é obtido diretamente do diagrama, ponto B.

ζr = 73 ksi 

γ = tg (0,008 rad) ≈ 0,008 rad =
d

2 pol

� Limite Elástico Máximo e Força de Cisalhamento

ζmed = 
V
A

52 ksi = 
V

(3 pol).(4 pol)

V = 624 kip

d = 0,02 pol

Gere, 2003.
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Introdução à Flexão

Determinação dos Esforços Internos

- Método das Seções -

Sistema Bidimensional

a

a
Seção a-a – Convenção das Solicitações Internas

y

x
RByRAy

RAx

V

M

T

N T
VM

N
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Tipos de Carregamentos

Carga Concentrada

P

Carga Distribuída

Uniformemente Distribuída

q = [ un. de força/un. comprimento]

Linearmente Distribuída
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Tipos de Carregamentos

Momento Concentrado: M = [ un força*un. comprimento]

P

=

P

.
M
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Cálculo de Reações nos Apoios

2 kN

Exemplo (1)

.
4 kN1 kN.m

x

y

45°.
1 m 1 m 1 m 1 mz
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Cálculo de Reações nos Apoios

Exemplo (2)

x

y
1 kN/m 2 kN

1,5 m 3 m 1 mz
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Internamente, no plano:

N: ESFORÇO NORMAL

V: ESFORÇO CORTANTE

M: MOMENTO FLETOR

Convenção

Cálculo da Distribuição dos 
Esforços Internos

Convenção

y

x

Seção

V

N

M
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Cálculo da Distribuição dos Esforços Internos

Método Direto

No método direto estabelece-se um roteiro para a determinação

das equações que regem a distribuição dos esforços internos

ao longo do elemento estrutural.

(1) Desenhar ao diagrama de corpo livre (DCL);(1) Desenhar ao diagrama de corpo livre (DCL);

(2) Calcular as reações;

(3) Estabelecer trechos para os quais as funções das solicitações

internas são iguais. Trecho por definição é a região da viga,

onde não ocorre mudanças no carregamento, por

descontinuidade ou por apoios.

(4) Para cada trecho aplicar as equações de equilíbrio

determinando as equações para os esforços internos;

(5) Desenhar os diagramas das solicitações.
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Exemplo: Dada a viga abaixo submetida ao carregamento

mostrado, determine as solicitações internas.

3 kN

3 m 2 m

x

y

30°

DCL
3 kN

3 kN.cos 30°
3 kN.sen 30°

RBx

3 m 2 m
RBx

RByRAy

Cálculo das Reações

∑
∑
∑

=⇒=⇒=+°−=

=+⇒=°−+=

=⇒=°−=

kNRkNRmRmsenkNM

kNRRsenkNRRFy

kNRkNRFx

AyByByA

ByAyByAy

BXBX

6,09,005.3.30.3;0

50,1030.3;0

6,2030cos.3;0
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Cálculo das Solicitações Internas

1º Trecho: 0 ≤ x ≤ 3

RAy

N

V

M

x

NNFx 00;0 =⇒==∑

mkNMmxparaMxpara

xkNMMxRM

kNVVRFy

NNFx

Ayseção

Ay

.8,1300

.6,00.;0

6,00;0

00;0

=⇒==⇒=

=⇒=+−=

=⇒=−=

=⇒==

∑
∑
∑
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Cálculo das Solicitações Internas

2º Trecho: 3 ≤ x ≤ 5

RAy

N

V

M

x

3 kN

3 kN.cos 30°
3 kN.sen 30°

X – 3 m

mNMmxparamkNMxpara

mxkNxkNMMmxkNxRM

kNVVkNRFy

kNNkNNFx

Ayseção

Ay

.05.8,13

)3.(5,1.6,00)3.(50,1.;0

9,0050,1;0

6,2060,2;0

=⇒==⇒=

−−=⇒=+−+−=

−=⇒=−−=

=⇒=−=

∑
∑
∑
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Diagrama das Solicitações
3 kN

3 m 2 m

3 kN.cos 30°
3 kN.sen 30°

RBx

RByRAy

N [N]

x [m]
+

N = 2,6 kN

V [N]

-

+

V [N] V = 0,6 kN

V = -0,9 kN
M [N.m]

x [m]

x [m]

Mmax = 1,8 kN.m

+

Salto = 3kN.sen60
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Deformação por Flexão de um 
Membro Reto

Dada uma viga prismática, feita de material homogêneo,
submetida à flexão.
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“O comportamento de qualquer barra deformável sujeita a momento

fletor faz o material da parte inferior esticar-se e o da parte superior

comprimir-se. Conseqüentemente, entre as duas regiões deve existir

uma superfície, chamada superfície neutra, na qual as fibras

longitudinais do material não sofrem mudança de comprimento.”
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Hipóteses Simplificativas:Hipóteses Simplificativas:

� o eixo longitudinal, que fica na superfície neutra, não sofre qualquer
mudança de comprimento.

� todas as seções transversais da viga permanecem planas e
perpendiculares ao eixo longitudinal durante a deformação.

� qualquer deformação da seção transversal será desprezada.
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0

0

'

( )

lim

lim

s

s s

s

y

y

θ

ε

ρ θ ρ θ
ε

ρ θ

ε
ρ

∆ →

∆ →

∆ − ∆
=

∆

− ∆ − ∆
=

∆

= −

Esse resultado importante indica que a deformação
normal longitudinal de qualquer elemento da viga
depende de sua localização y na seção transversal e
do raio de curvatura do eixo longitudinal da viga nesse
ponto. Em outras palavras, para qualquer seção
transversal específica, a deformação normal longitudinal
varia linearmente com y a partir do eixo neutro. Ocorre
contração (-ε) nas fibras localizadas acima do eixo
neutro (+y), enquanto ocorre alongamento (+ε) nas
fibras localizadas abaixo do eixo (-y).
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max.
y

c
ε ε

 
= − 

 
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Fórmula da Flexão

Considerar que o material tem comportamento linear-elástico de
modo que a lei de Hooke possa ser aplicada.

max

.

( )
. .

E

y
E

c

σ ε

σ ε

=

− 
=  

 
max

max

. .

.

E
c

y

c

σ ε

σ σ

=  
 

 
= − 

 
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max

max

.

.

: tensão normal máxima no elemento, que ocorre

no ponto da área da seção transversal mais afastado do

eixo neutro.

: tensão normal na distância intermediária y dos eixo neutro.

M: mome

M c

I

M y

I

σ

σ

σ

σ

=

= −

nto interno resultante, determinado pelo métodoM: momento interno resultante, determinado pelo método

das seções e pelas equações de equilíbrios, e calculado em 

torno do eixo neutro da seção transversal.

I: monento de inércia da área da seção transversal c

max

alculado

em torno do eixo neutro.

y: distância perpendicular qualquer do eixo neutro, onde  auta.

c: distância perpendicular do eixo neutro ao ponto mais 

afastado desse eixo, no qual  atua.

σ

σ
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Momento de Inércia

2( . )

: momento de inércia da área composta

: área da seção particular.

I I A d

I

A

−

= +∑

: área da seção particular.

: distância do eixo que passa pelo centróide

da área composta ao eixo que passa pelo contróide

da área particular.

A

d
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Exemplo: Determinar o momento de inércia do perfil I
mostrado na figura abaixo.

y

c.h

Tabelado

x
c.

b

h

3

3

1
.

12

1
.

12

x

y

I b h

I h b

=

=
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Exemplo 01: A viga simplesmente apoiada da figura tem
área da seção transversal mostrada no exemplo anterior.
Determinar a tensão de flexão máxima absoluta na viga e
desenhar a distribuição de tensão na seção transversal
nessa localização.
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Exemplo 02: A viga mostrada na figura tem área da
seção transversal com perfil em forma de U. Determinar
a tensão de flexão máxima que ocorre na seção a-a da
viga.
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Estudo de tensões e deformações produzidas em
peças de seção transversal circular, sujeitas a
ação de conjugados que tendem a torcer essas
peças.

TORÇÃO

Tais conjugados são chamados de:

Momentos de torção

Momentos torcionais

Torque: é o momento que tende a torcer o 
membro em torno de seu eixo longitudinal.
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Hipóteses Simplificativas

para eixos de seção circular uniforme

1) Uma seção inicialmente plana, perpendicular ao eixo da
seção circular, permanece plana após a aplicação dos
torques.

2) Em um membro circular sujeito à ação de um torque, as
deformações angulares γ variam linearmente a partir do
eixo central. Isso significa que as linhas radiais no plano
ao longo do eixo longitudinal permanecem retas após aao longo do eixo longitudinal permanecem retas após a
deformação.
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Análise de Deformação em um Eixo

Apoio fixo

Se o eixo estiver preso em uma
extremidade e for aplica um
torque na outra extremidade, o
plano sombreado da figura ao
lado se distorcerá e assumirá
uma forma oblíqua como
mostrado. Nesse caso, uma linha
radial localizada na seçãoradial localizada na seção
transversal a um distância x da
extremidade fixa, do eixo girará
por meio de um ângulo Φ(x). O
ângulo Φ(x), assim definido, é
denominado ângulo de torção.
Ele depende da posição x e varia
ao longo do eixo como mostrado.
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A
B

Apoio fixo

L

Análise de Deformação em um Eixo

A
B

Apoio fixo

L

T
B’

.
.

.
Φγ
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γ: Deformação de Cisalhamento

Φ: Ângulo de Torção

Paro o arco BB' temos:

BB' L. e BB' . tg

onde  e  são medidos em radianos. Se consideramos as deformações

no regime elático, ou seja, muito pequenas, isso implica que a tangente

do ângulo é o próprio 

tgγ ρ

γ

= = Φ

Φ

ângulo quando medidos em radianos, assim:do ângulo é o próprio ângulo quando medidos em radianos, assim:

tg  e tg   

.
.L .

é um raio qualquer entre o centro do eixo e a

superfície externa.

L

γ γ

ρ
γ ρ γ

ρ

= Φ = Φ

∴

Φ
= Φ ⇒ =
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Deformação Cisalhante Máxima

Seja um eixo de raio “c”

L

c Φ
=

.
maxγ

L

Deformação Cisalhante no Interior do Eixo

max.γ
ρ

γ
c

=
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Equação da Torção

Regime Elástico

max max max

Lei de Hooke para tensões e

deformaçõces de Cisalhamento

.

. ; .

G

G comoG
c

τ γ

ρ
τ γ γ τ

=

= =

maxτ

ρ

τ

max

1
min max

2

2 1

.
c

Para eixo Vazado

.
c

Onde c  é o raio externo e c  o raio interno

c

c

ρ
τ τ

τ τ

∴

=

=

maxτ

ρ

τ

minτ

1c 2c
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Equação da Torção

Eixo submetido a um Torque “T”

T

ρ dF

dF

dFdA

TdA
c

TdA

dAdF

TdF

...

..

.

.

max =

=

=

=

∫

∫

∫

ρ
τρ

τρ

τ

ρ

4

Para Eixo Maciço

1
J . .

2

Para Eixo Vazado

cπ=

dF

dF

J

cT
e

c

J

dA

dA
c

T

TdA
c

..
T

J lTransversa Seção da

Inércia dePolar  momento como definido é  onde,

..

...

max
max

2

2max

max

==∴

≡

=

∴

=

∫

∫

∫

τ
τ

ρ

ρ
τ

τρ

4 4

2 1

1
J . .( )

2
c cπ= −
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Ângulo de Torção 
no Regime Elástico

[ ]

max
max max

. .

.

.

c T c
e

L G J G

T L

τ
γ γ

Φ
= = =

∴

Φ = [ ]
.

.

No regime elástico o ângulo de torção  é 

proporcional ao momento de torção T aplicado

ao eixo circular.

T L
rad

G J
Φ =

Φ


