
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Este é um material de apoio para os alunos do técnico em Eletromecânica. 

 Bons estudos. 
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Aprender é um dom natural do ser humano, e ninguém tem o direito de destruí-lo. 

 



 

 

Resolvendo Problemas Utilizando Decomposição de Forças e Momento de 
Força 

 
Para resolvermos esses problemas utilizaremos das leis da Estática que nos fala sobre equilíbrio 

de um corpo. 
Segundo a primeira lei de Newton um corpo está em equilíbrio quando: 

1) a resultante das forças que atuam sobre ele é nula 
2) o momento resultante dos momentos que atuam sobre ele em relação a qualquer ponto, é nulo. 

A Estática, que é a parte da Mecânica que aqui estudaremos, estuda os corpos em equilíbrio. 
 
Equilíbrio de Um Ponto Material 

 
 

Inicialmente calcularemos o equilíbrio de um ponto material. Como um ponto não tem dimensão, nele 
não atuam momentos porque , como vimos anteriormente, para que uma força produza momento temos 
que ter uma distância entre o ponto de referência e o ponto da atuação da força. 

Então, utilizemos os dois princípios de equilíbrio. 
1o  princípio ( utilizaremos a decomposição de forças nos eixos  x  e  y ). Portanto: 

 
ΣFX  = 0 
ΣFY  = 0 

 
Exercícios Resolvidos 

 
 

1) Decompor a força F = 2000 N, em duas componentes, nos eixo x e y, conforme o esquema 
abaixo: 

 
 
 
y seno 30° = 0,50 

co-seno 30° = 0,87 
seno 60° = 0,87 

Fy F co-seno 60° = 0,50 
Respostas Fx =   100 N 

Fy =   174 N 
30° 

 

 
 

Fx x 



 

 

 
 
2) Calcular as forças atuantes nos cabos  1  e  2  do esquema abaixo sabendo que o peso de 1000 N está em 

equilíbrio. 
 

Colocamos o esquema nos eixos   x   e   y 
 

 
 

y ângulo 30o
 

 
cabo 1 cabo 2 solução F2 

F1 ângulo 60o
 

 

 
 

Peso 1000 N x 
1000 N 

 
Fazemos a decomposição das forças nos eixos   x   e   y 

y 
 
 
 

F2y F2 

 
F1 F1y 

30o
 

60o
 

 
F1x F2x x 

 

 
 

1000 N 
 

Com esse procedimento geramos as componentes  F1x   e  F1y   as componentes  F2x  e  F2y. Para 
termos equilíbrio é necessário que: 

 
ΣFx   =  0 temos que somar as forças do eixo  x  e igualar a zero 
ΣFx  = - F1x  + F2x  = 0  mas  F1x  = F1  . sen 60o

 

F2x  = F2  . sen 30o   temos 
- F1  . sen 60o  + F2  . sen 30o  =0  donde 
- F1  . 0,87 + F2  . 0,5 = 0 
- 0,87F1  = - 0,5 F2 

 
F1  = 0,5 F2  / 0,87   ou  F1  = 0,57 F2 

 
Agora fazemos ΣFy = 0 
F1  . cos 60o  + F2  . cos 30o  – 1000 = 0 

F1  . 0,5 + F2  . 0,87 =1000 
0,5 F1  + 0,87 F2  = 1000 



 

 

 

 
 

como F1 = 0,5 F2 / 0,87  fazemos a substituição: 
0,5 ( 0,57 F2  ) + 0,87 F2  = 1000 

0,285 F2  + 0,87 F2  = 1000 
1,155 F2  = 1000 

F2  = 1000 / 1,155 
F2  = 866 N 

Daí resulta que   F1  = 0,57 F2 então  F1  = 0,57 x 866 
F1  = 494 N 

 
Resultado:   a força atuante no cabo 1 vale 494 N 

a força atuante no cabo 2 vale 866 N 
 
 
 

Exercícios Propostos 
 
1) Calcule as forças F1   e  F2  no esquema abaixo. 

 
 
 
 

60° F2 
 

 
 

F1 

 
 
 
 

20 000 N Resp  F1 = 11 628 N 
F2  = 23 256 N 

 
 
 
 
2) Calcule a Força F1, no esquema abaixo. 

 
1 000 N 1 000 N 

 
 
 
 

120° 
120° 

 

 
F1 Resp. F1  = 1 000 N 



 

 

 

 
 
Calcule as forças F1  e  F2   nos esquemas abaixo: 

 
3) 

 
 
 
 

F1 60° 60° F2 

 
 
 
 
 
 
 
 
 
 

5 000 N Resp. F1  = F2  = 2 907 N 
 

 
 
 
 
4) 

 
 

F1 F2 
 
 
 
 
 
 

10 000 N Resp. F1   = F2  = 5 000 N 
 
 
 
 
 
 
 
5) 

60° 30° 
F2 F1 

 
 
 
 
 
 
 
 

Resp   F1  = 5 050 N 
10 000 N F2  = 8 686 N 



 

 

 

 
 

Equilibro de Um Corpo 
 

Para calcularmos o equilíbrio de um corpo vamos utilizar as três equações anteriormente 
apresentadas 

 
ΣFX = 0 
ΣFY = 0 
ΣM0 = 0 

 
Exercícios Resolvidos 

 
1)  Calcular as reações nos apoios  A  e  B  no esquema abaixo sabendo que o corpo está em equilíbrio: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Para resolvermos esse exercício aplicaremos a segunda condição de equilíbrio: 
(Um corpo está em equilíbrio quando a soma dos momentos que atuam sobre ele, em relação a qualquer 
ponto, é nulo) 
Verificamos os momentos que atuam, no corpo, em relação ao ponto  B: 
( Usaremos aqui a convenção: momento no sentido horário positivo e ante-horário negativo) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ΣMB  = 0 
RA . 10 – 400 . 8 – 600 . 3 = 0 

10 RA –3200 – 1800 = 0 
10 RA = 5000 

RA  = 5000 / 10 
RA  = 500 N 



 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ΣMA = 0 
400 . 2 + 600 . 7 – RB  .10 = 0 

800 + 4200 = 10 RB 

10 RB  = 5000 
RB  = 5000 / 10 
RB  = 500 N 

 
 
 

Podemos ainda, como forma de verificação, aplicar o ΣFy = 0  então 
RA + RB  - 400 - 600 = 0 

500 + 500 - 400 – 600 = 0 
1000 – 1000 = 0 

 
Conclusão   RA = 500 N 

RB = 500 N 
 
 
 
 

Exercícios Propostos 
 

 
Calcule as reações RB e  RB  nos esquemas abaixo: 

 
1) 5 000 N 

 
A B 

 
 
 
 

2 m 3 m Resp.  
RA = 3 000 N 
RB  = 2 000 N 



 

 

 

 
 
2) 

6 000 N 8 000 N 
 

A B 
 
 
 
 

2 m 5 m 3 m 
 
 
 

Resposta 
 
 
 
 

7 200 N 6 800 N 
 

 
 
 
 
 
3) 

2 000 N 8 000 N 
A B 

 

 
 
 
 
 

2 m 1 m 3 m 
 
 
 
 
 

7 333 N 
Resposta 

 
 
 
 
 
 

17 333 N 



 

 

1. Treliças 
 

 
Definição 
 

Denomina-se  treliça  plana,  o  conjunto  de  elementos  de  construção  (barras 
redondas, chatas, cantoneiras, I, U, etc.), interligados entre si, sob forma geométrica 
triangular,  através  de  pinos,  soldas,  rebites,  parafusos,  que  visam  formar  uma 
estrutura rígida, com a finalidade de resistir a esforços normais apenas. 

A  denominação  treliça  plana  deve-se  ao  fato  de  todos  os  elementos  do 
conjunto  pertencerem  a  um  único  plano.  A  sua  utilização  na  prática  pode  ser 
observada em pontes, viadutos, coberturas, guindastes, torres, etc. 

Dois métodos de dimensionamento podem ser utilizados para as treliças: 
 

• Método dos Nós ou Método de Cremona 

 
• Método  de  Ritter  ou  Método  das  Seções  (analíticos  e  usados  com  maior 

freqüência) 
 
Métodos dos Nós ou Método de Cremona 

 
A  resolução  de  treliças  planas  pelo  método  dos  nós  consiste  em  verificar  o 

equilíbrio de cada nó da treliça, seguindo-se os passos descritos a seguir: 
 

(a)   determinação das reações de apoio 
 

(b)   identificação  do  tipo  de  solicitação  em  cada  barra  (barra  tracionada  ou 
barra comprimida) 

 
(c)   verificação  do  equilíbrio  de  cada  nó  da  treliça,  iniciando-se  sempre  os 

cálculos pelo nó que tenha o menor número de incógnitas. 
 
Exemplo 1 

 
Determinar as forças normais nas barras da treliça dada. 

 

 



   

 

 

 
Solução 
 

(a)   Cálculo das reações de apoio 

 
As reações de apoio em VA  e em VB  são iguais, pois a carga P está aplicada 

simetricamente aos apoios. Portanto, 

 
P 

VA  = VB  = 
2 

 
(b)   Identificação dos esforços nas barras 

 
As  barras  1  e  5  estão  comprimidas,  pois  equilibram  as  reações  de  apoio.  A 

barra 3 está tracionada,  pois equilibra a ação da carga P no nó D. As barras 2 e 4 
estão tracionadas, pois equilibram as componentes horizontais das barras 1 e 5. 
 

(c)   Cálculo dos esforços nas barras 
 

Inicia-se o cálculo dos esforços pelo nó A, que juntamente com o nó B é o que 
possui o menor número de incógnitas. 
 

∑ Fy  = 0 
 

 

F1 = 
P 

2 sen α 
= 
P 
cos sec α 

2 

 

∑ Fx  = 0 
 

F2  = F1 cos α 
 

 

F   = 
P cos α  

= 
P 
cotg α

 
2 

2 sen α 2 

 
Determinada  a  força  na  barra  2,  o  nó  que  se  torna  mais  simples  para  os 

cálculos é o nó D. 
 

∑ Fy  = 0 

 
F3  = P 

 

∑ Fx  = 0 
 

 

F4  = F2 = 
P 
cotg α 

2 

 
Para determinar a força normal na barra 5, utiliza-se o nó B. 



   

 

 

 

 

 
 
 

∑ Fy  = 0 
 

 

F5  = 
P 

2 sen α 
= 
P 
cos ec α 

2 
 
 
 
 

As  forças  normais  nas  barras  4  e  5,  podem  ser  determinadas  através  da 
simetria da estrutura e do carregamento aplicado. 
 
Exemplo 2 

 
Determinar as forças normais nas barras da treliça dada. 

 

C 
 

 

5 
1 

3 

 
HA A

 
α α B 

2 D  
 

 
 

VA VB 

 

 
 
 
 
 
 

Solução 

 
O  ângulo  α  formado  pelas  barras  1  e  2  e  pelas  barras  4  e  5  deve  ser 

determinado: 

 

tg α = 
1,5 

= 0,75 ⇒ α = 37º 
2 

 

(sen 37º = 0,60 e cos 37º = 0,80) 

 
(a)   Cálculo das reações de apoio 

 

 
n 

∑ MA  = ∑ Fi di  = 0 
i=1 

(a priori, adotar-se-á como positivo, o momento no sentido 
horário) 

 
− VB (4) + 20 . 2 + 6 . 1,5 = 0 

 

 
VB  = 12,25 kN 



   

 

 

 
Agora, pode-se utilizar a equação do somatório das forças verticais para obter- 

se a reação vertical no apoio B. 
  

 
VA  + VB  = 20 ⇒ VA  = 7,75 kN 

 
E  finalmente,  aplicando-se  a  equação  do  somatório  das  reações  horizontais 

igual a zero, tem-se, 
 

∑ H = 0 ⇒ H A  − 6 = 0 ⇒ HA  = 6 kN 

 
(b)   Cálculo dos esforços nas barras 

 
Inicia-se o cálculo dos esforços pelo nó A, que juntamente com o nó B é o que 

possui o menor número de incógnitas. 
 

∑ Fy  = 0 
 

 
F1 sen 37º = VA 

 
 

F  = 
7,75 

= 12,9 kN 1 
0,6 

 

 

∑ Fx  = 0 
 

F2  = H A  + F1 cos 37º 
 

 
F2  = 6 + 12,9.0,8 =16,3  kN 

 
Determinada  a  força  F2,  o  nó  que  se  torna  mais  simples  para  prosseguir  os 

cálculos é o nó C. 
 

∑ Fx  = 0 
 

 
 

F4  = F2  = 16,3 kN 
 

 

∑ Fy  = 0 
 

 
 

F3 = 20 kN 
 

Para determinar a força normal na barra 5, utiliza-se o nó B. 



   

 

 

 
 
 

∑ Fy  = 0 
 
 

F5  sen 37º = VB 
 

 
F5  = 20,42 kN 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Exemplo 3 
 

Determinar as forças normais nas barras da treliça dada. 

D E 

4 
 

 

1 3 5 7 
 

 

HA 

A α C α B 

 
2 6 

 

VA VB 

 
 
 
 

 
Solução 

 
O  ângulo  α  formado  pelas  barras  1  e  2  e  pelas  barras  4  e  5  deve  ser 

determinado: 

 

tg α = 
1,6 

⇒ α = 53º 
1,2 

 

(sen 53º = 0,80 e cos 53º = 0,60) 



   

 

 

 
(c)   Cálculo das reações de apoio 

 

 
n 

∑ MA  = ∑ Fi di  = 0 
i=1 

(a priori, adotar-se-á como positivo, o momento no sentido 
horário) 

 
− VB (4,8) + 40 . 2,4 + 6 . 1,6 = 0 

 

 
VB  = 22 kN 
Agora, pode-se utilizar a equação do somatório das forças verticais para obter- 

se a reação vertical no apoio B. 

 
VA  + VB  = 40 ⇒ VA  = 18 kN 

 
E  finalmente,  aplicando-se  a  equação  do  somatório  das  reações  horizontais 

igual a zero, tem-se, 
 

∑ H = 0 ⇒ H A  − 6 = 0 ⇒ HA  = 6 kN 

 
(d)   Cálculo dos esforços nas barras 

 
Iniciando-se o cálculo dos esforços pelo nó A, determina-se a força normal nas 

barras 1 e 2. 
 

∑ Fy  = 0 

 
F1 sen 53º = VA 

 
 

F  = 
18 

1 
0,8 

= 22,5 kN 

 

 

∑ Fx  = 0 
 

F2  = H A  + F1 cos 53º 
 

 
F2  = 6 + 22,5.0,6 =19,5  kN 

 
Determinada a força na barra 1, pode-se utilizar o nó D para calcular F3  e F4. 



   

 

 

 

 

∑ Fy  = 0 

 
F3  cos 37º = F1 cos 37º 

 
F3  = F1 = 22,5 kN 

 

∑ Fx  = 0 
 

F4  = (F1 +F 3 )sen 37º 
 

F4  = (2 . 22,5). 0,6 = 27 kN 

 
O nó B é conveniente para os cálculos das forças nas barras 6 e 7. 

 

∑ Fy  = 0 
 
 

F7  sen 53º = VB 
 

 

F   =  
22 

= 27,5 kN 7 
0,8 

 

 

∑ Fx  = 0 
 

F6  = F7  cos 53º = 27,5 . 0,6 = 16,5 kN 
 

Finalmente, efetuando-se o equilíbrio do nó E, determina-se a força na barra 5. 
 

 
 
 

∑ Fy  = 0 
 
 

F5   cos 37º = F7 cos 37º 
 

 
F5  = F7  = 27,5 kN 

 
 
 

 

 



1  

 

 

 

 1) M(A) = 0 =8.3.a/2 – RC.2.a 

RC = 6 kN 

2) FV = 0 = RA – 8 + RC 

RA = 2 kN 

3) FH = 0 = HA 

4) Nó A: 

 

  

a) 2 + FAD.sen 60° = 0 FAD = - 2,30 kN 

b) FAD.cos 60° + FAB = 0                  FAB = 1,15 kN 

5) Nó D: 

   

a) 2,30.cos 30° – FDB.cos 30° = 0     FDB = 2,30 kN 

b) 2,30.cos 60° + FDB.sen 30° + FDE = 0 FDB = -2,30 kN 

6) Nó E: 

 

a) 2,30 – FEB.cos 60° + FEC.cos 60° = 0  

FEC - FEB = -4,60 

b)-8 – FEB.cos 30° – FEC.cos 30° = 0 

- FEC - FEB= 9,25 

De (a) e (b) FEB = -2,30 kN    e             FEC = -6,90 kN 

7) Nó C:   

 6,90.cos60° - FCB =0 FCB = 3,45 kN 



2  

 

 

8) Nó B: (verificação) 

 

a) FH = -1,15 – 2,30.cos 60° - 2,30.cos60° + 3,45 = 0 

b) FV = 2,30.sen 60° - 2,30.sen 60° = 0 
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Determine os esforços nos elementos da treliça mostrada no desenho abaixo e calcule as 
reações nos apoios C e D. 

 

 

 
 
 
 
 
 
 
 
Determine a força em cada elemento da treliça e indique se esses elementos estão sob tração 
ou compressão.  Determine, também, as reações nos apoios A e D.  Considere P = 5 kN e θ = 
53,1301º. 

 
 
 
 
 



4  

 

 

 
 

 
4. 

Respostas: 
 

VA = 50 kN 
HA = 60 
KN(←) 
VB = 50 
Kn 
NAH = - 
70,7 kN 
NAC = 
+110 kN 
NIJ = - 160 
kN NID = - 
10 kN NCD 
= +160 kN 
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Momento de uma força 

 

 

 

 

 

 

 

EXERCÍCIOS PARA FIXAÇÃO  

1) No sistema abaixo há uma barra, que se encontra apoiada sobre dois apoios (A e B). É necessário 

saber qual a força de reação dos apoios abaixo. 

 

 



6  

 

Estes são exercícios de fixação. Calcular a força de reação nos dois apoios. 
a) 

1,5 2,5 

A1 A2 

20N 

2m 

A1 A2 

20N 

1m 

10N 

1m 
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DICAS IMPORTANTES PARA ESTUDAR RESISTÊNCIA DOS MATERIAIS 

 

Resistência dos materiais: Estudo das tensões e das deformações que se desenvolvem nos 

sólidos, resultantes de forças exteriores a eles aplicadas 

Resistência: Qualidade que têm os materiais de suportarem a aplicação de esforços externos 

sem cederem ou romperem.  

Força: Todo agente capaz de alterar o módulo ou a direção da velocidade de um corpo; todo 

agente capaz de atribuir uma aceleração a um corpo. 

Equilíbrio: Estado de um sistema no qual a resultante de todas as forças que atuam sobre ele 

é nula. 

Unidade do sistema internacional (básico eletromecânica): 

Comprimento: metro (m ) 

Força: Newtons (N) 

Massa: Quilograma: (kg) 

Pressão ou tensão: N/m² ou Pa 

Área: metros quadrados (m²); 

Volume: metros cúbicos (m³); 

Intensidade de corrente: Ampére (A); 

 

Múltiplos e submúltiplos 

Múltiplo – símbolo - nome 

10³              k             quilo 

106             M            mega 

109                   T             Tera 

 

 10-3            m             mili 

10-6            µ              Micro   

10-9            ρ              pico   
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TRAÇÃO OU COMPRESSÃO AXIAL 

(SIMPLES) 

A. TENSÕES E DEFORMAÇÕES: 
 

Sempre que tivermos uma peça de estrutura, submetida à carga externa com componente no 
seu eixo longitudinal, esta peça desenvolverá solicitação interna de esforço normal (N). 

 

Admite-se  que  este esforço  normal  se distribui  uniformemente  na área  em  que atua  (A), 
ficando a tensão definida pela expressão: 

 
 
 
 

σ =  
N 

A 

sendo: 
 

N → Esforço Normal desenvolvido 

A→ Área da seção transversal 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Na prática, vistas isométricas do corpo são raramente empregadas, sendo a visualização 
simplificada como: 
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ΣFy = 0 ∴ Q = 0 

Σ Ms = 0 ∴ M = 0 

Σ Fx = 0 ∴ N - P = 0 

 
 
 
 
 
 
 

N = P 
 
 
 

 
 

A tração ou Compressão axial simples pode ser observada, por exemplo, em tirantes, pilares e 
treliças. 

 

Lembramos a convenção adotada para o esforço normal (N) 
 

 
 

Nas tensões normais, adotamos a mesma convenção. 
 

As deformações desenvolvidas podem ser calculadas diretamente pela lei de Hooke: 
 
 

ε = 
∆ l 
l 

ε =   
σ

 
E 

 
 

N = P  σ =   
N 

A 
 

∆ l   
=   

σ 
∴  

∆ l   
=  

N 
 

ou : 
l  E  l  EA 

 

∆l  =  
N. l 
E. A 

 
 
 

OBS: 
 

Ao aceitarmos as equações acima, deve-se ter em mente que o comportamento do material é 
idealizado, pois todas as partículas do corpo são consideradas com contribuição igual para o 
equilíbrio da força N. 

 

Como partimos  da premissa  de que em todos os elementos  de área atua a mesma tensão, 
decorre daí que: 

N = σ. A 



1
0 

 

 

 
 
 
 

 
Nos  materiais  reais  esta  premissa  não  se  verifica  exxatamente.  Por  exemplo,  os  metais 
consistem  em grande  número  de grãos e as madeiras  são fibrosas.  Sendo assim,  algumas 
partículas  contribuirão  mais  para  a  resistência  de  que  outras,  e  o  diagrama  exato  da 
distribuição das tensões varia em cada caso particular e é bastante irregular. 

 

Em termos práticos porém, os cálculos pela equação da tensão uniforme são considerados 
corretos. 

 

Outros dois fatores de concentração de tensões, onde a distribuição uniforme não é válida, são 
mostrados abaixo, e representam peças com variações bruscas de seção. 

 
 

 
 

Deve-se ter um cuidado adicional  para com as peças comprimidas,  pois as peças esbeltas 
devem ser verificadas à flambagem. 

 

A flambagem representa uma situação de desequilíbrio elasto-geométrico do sistema e pode 
provocar o colapso sem que se atinja o esmagamento. 

 
 

B. PESO PRÓPRIO DAS PEÇAS 
 

O peso  próprio  das peças constitui-se  em uma  das cargas  externas  ativas  que devem  ser 
resistidas. Podemos observar como se dá a ação do peso próprio: 

 

 
 

Podemos notar que nas peças horizontais o peso próprio constitui-se em uma carga transversal 
ao eixo, desenvolvendo Momento Fletor e Esforço Cortante. 

 
No caso das peças verticais o peso próprio (G), atua na direção do eixo longitudinal da peça e 
provoca Esforço Normal, que pode ter um efeito diferenciado dependendo da sua vinculação: 



1
1 

 

 

 
 
 
 
 

 
 

Nas peças suspensas (tirantes) o efeito do peso é de tração e nas apoiadas (pilares)  este 
efeito é de compressão. 

 

O peso próprio de uma peça (G) pode ser calculado, multiplicando-se  o volume da 
mesma pelo peso específico do material: 

 

 

 G = A . γ . l 
 

Sen
do: 
A - área da seção transversal da 
peça l - comprimento 
γ –  peso específico do 

material 

Na tração ou compressão axial a não consideração do peso próprio é o caso mais 
simples. 

 



1
2 

 

 

Exemplo 1 
 

 

A  barra  circular  de  aço  apresentada  na  figura  abaixo  possui  d  =  20  mm  e 
comprimento l = 0,80 m. Encontra-se submetida à ação de uma carga axial de 7,2 kN. 
Pede-se determinar: 

 

 
(a) tensão normal atuante na barra 
(b) o alongamento 
(c)  a deformação longitudinal 
(d) a deformação transversal 

 

 

Dados: 
Eaço  = 210.000 MPa 

νaço  = 0,3 (coeficiente de Poisson) 
 
Solução 

 
(a) tensão normal atuante 

7,2 kN  
 
 
 

 
0,80 

 

 

σ =  
F 
A 

= 
F 

πd2 
4 

=   
4F 

πd2 

 

MPa 

σ = 
4 . 7200 N 

π (20 . 10 - 3 m)2 
= 

4 . 7200 N 

π . 20 2 . 10 - 6 m2
 

=  
4 . 7200 

. 10 6   
N 

π . 20 2 m2
 

 

 
σ = 22,9 MPa 

(b) alongamento da barra (δ) 



1
3 

 

 

A A
A

A

 

 

δ =  
P L 
E A 

= 
σ L 
E 

22,9 . 10 6 Pa . 0,80 m 
= 

210000 . 106 Pa 

 
δ = 0,087 . 10-3  m = 0,087 mm 

 
(c)  a deformação longitudinal (ε) 

 

ε =  
δ 
L 

0,087 . 10 -3 m 
= 

0,80 m 
 

 
ε = 0,000109 m/m = 109 µε 

 
(d) a deformação transversal (εt) 

 
εt  = - ν . ε = -0,3 . 109 

 

εt  = -33 µε 
 

 
Exemplo 2 

 

 

A figura apresentada a seguir representa duas barras de aço soldadas. A carga 
de tração que atua no conjunto é de 4,5 kN. A seção A da peça possui dA  = 15 mm e 
comprimento  lA  =  0,60  m,  sendo  que  a  seção  B  possui  dB  =  25  mm  e  lB  =  0,90  m. 
Desprezando-se  o  efeito  do  peso  próprio  do  material,  pede-se  determinar  para  as 
seções das peças A e B: 
 

 
(a) tensão normal 

 
(b) o alongamento 

 
(c)  a deformação longitudinal 

 
(d) a deformação transversal 

 
(e) o alongamento total da peça 

 

4,5 kN 
 

 
A 

 

 
 
 
 

B 

 
 
 

 

0,60 m 
 

 
 
 
 

0,90 m 

 

 
 
 

Solução 
 

(a) tensão normal 

 
F 

σ A  = 
A 

= 
F 

πd2 

4 

=   
4F 

πd2 

 
 

MPa 

 

 

σ = 
4 . 4500 N 

=
 4 . 4500 N 

=  
4 . 4500 

. 106   
N 

π (15 . 10- 3 m)2 π . 15 2 . 10 - 6 m2
 π . 152 m2
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B B

B

L

L 

 

 
σA  = 25,5 MPa 

 

σ    =   
F 

B 
AB 

= 
F 

πd2 
4 

=   
4F 

πd2 

 
 

MPa 

 

σ = 
4 . 4500 N 

=
 4 . 4500 N 

=  
4 . 4500 

. 10 6   
N 

π (25 . 10 - 3 m)2 π . 25 2 . 10- 6 m2
 π . 25 2 m2

 

 

 
σB  = 9,2 MPa 

 
(b) alongamento da barra (δ) 

 
 

δ A  = 
P L A 

E A A 
= 

σ A L A 
E 

25,5 . 10 6 Pa . 0,60 m 
= 

210000 . 10 6 Pa 

 
δA  = 0,073 . 10

-3  m = 0,073 mm 

 
 

δB  = 
P LB 

E A B 
= 

σB LB 
E 

9,2 . 10 6 Pa . 0,90 m 
= 

210000 . 10 6 Pa 

 
δB  = 0,039 . 10

-3  m = 0,039 mm 
 

 
(c)  a deformação longitudinal (ε) 

 
δ A ε A  = 
A 

0,073 . 10 -3 m 
= 

0,60 m 
 

 
εA  = 0,000122 m/m = 122 µε 

 
δB εB  = 
B 

0,039 . 10-3 m 
= 

0,90 m 
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εB  = 0,000043 m/m = 43 µε 

 
(d) a deformação transversal (εt) 

 
εt A  = - ν . εA  = -0,3 . 122 ⇒ εt A  = -37 µε εt B  = 

- ν . εB  = -0,3 . 43 ⇒ εt B  = -13 µε 

(e) o alongamento total da peça (δ) 
 

 
 

δ = δ A  + δB  = 0,073 + 0,039 
 

 
δ = 0,112 mm 

 
 
CISALHAMENTO CONVENCIONAL 

 
A. ASPECTOS GERAIS 

 
Consideremos  inicialmente  um sistema formado por duas chapas de espessura "t"   ligadas 
entre si por um pino de diâmetro "d", conforme esquematizado abaixo: 

 
A largura destas chapas é representada por "l" e a ligação está sujeita à uma carga de tração 
"P". 

 
 

Considerando-se   o  método  das  seções,  se  cortarmos  a  estrutura  por  uma  seção  "S", 
perpendicular ao eixo do pino e justamente no encontro das duas chapas, nesta seção de pino 
cortada devem ser desenvolvidos esforços que equilibrem o sistema isolado pelo corte. 

 

Então: 
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Isolando e aplicando as equações de equilíbrio: 

 
Σ Fx = 0 

 

Q   -   P   =   0 Q = P  ∴ 

 

Σ MS = 0 
 

M - P.t/2 =0   ∴ M  =  P .  
t
 

2 
 
 
 
 
 

Vimos  então  que  as  solicitações  que  se  desenvolvem  na  seção  de  corte  do  pino  são  de 
Momento Fletor e Esforço Cortante, com os valores acima calculados. 

 

 
 

B. CISALHAMENTO CONVENCIONAL 
 

Conforme os cálculos acima efetuados, podemos notar que o valor do momento é pequeno já 
que estamos  trabalhando  com a união  de chapas  que,  por definição,  tem a sua espessura 
pequena em presença de suas demais dimensões. 

 

Podemos, nestes casos, fazer uma aproximação, desprezando o efeito do momento fletor em 
presença do efeito do esforço cortante. 

 

Em  casos  de  ligações  de  peças  de  pequena  espessura,  como  normalmente  aparecem  em 
ligações rebitadas, soldadas, parafusadas, pregadas e cavilhas, esta solução simplificada nos 
leva a resultados práticos bastante bons, e então adotaremos nestes casos, o cisalhamento 

 

O cisalhamento  convencional  é uma aproximação  do cisalhamento  real, onde o efeito do 
momento fletor é desprezado. 

 

Como teríamos apenas uma área sujeita à uma força contida em seu plano e passando pelo seu 
centro de gravidade, para o cálculo das tensões desenvolvidas adotaríamos a da distribuição 
uniforme, dividindo o valor da força atuante pela área de atuação da mesma, área esta 
denominada de ÁREA RESISTENTE, que deveria então ser o objeto da nossa análise. 

 

A distribuição  uniforme nos diz que em cada ponto desta área a tensão tangencial  teria o 
mesmo valor dada por: 
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τ  =  
Q 

Aresist 
 
 
 
 
 
 

A lei exata da distribuição de tensões deve ser posteriormente estudada para os outros casos 
em que o cisalhamento convencional não é adotado. 

 
 
 
 

EXERCÍCIOS: 
 

 
1. Uma força de tração axial é aplicada à barra de aço estrutural abaixo, que tem 25 mm de 

espessura.  Se  a  tensão  de  tração  admissível  deste  aço  é  135  MPa  e  a  deformação 
longitudinal admissível 1,25 mm, determine a largura mínima ‘d’ da barra. 

 
 
 
 
 
 

200 kN 200 kN  

‘d’ 
 
 
 

25 mm 
 
 
 

2. Levou-se a laboratório uma barra cilíndrica de um metal que tem 15 mm de diâmetro e 400 
mm de comprimento.  Observou-se  que ele ao apresentar o comprimento  de 401 mm, o 
metal escoou. Neste momento era medida uma força axial de compressão de 30 kN. De 
posse destes dados, determine: 

a.   Tensão de escoamento do material (σe) 
b.   Módulo de elasticidade longitudinal (E) 

c.   Deformação específica longitudinal (ε) 
 
 
 

3. Uma  barra  de  seção  transversal  retangular  de  3  x  1  cm  tem  comprimento  de  3  m. 
Determinar o  alongamento produzido por uma carga axial de tração de 60 kN, sabendo-se 

que o módulo de elasticidade longitudinal do material é de 2 . 104 kN/cm2. 
 

R: 0,3 cm 
 

4. Uma barra de aço e outra de alumínio tem as dimensões indicadas na figura.Determine a 
carga "P" que  provocará um encurtamento total de 0,25 mm no comprimento do sistema. 
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Admitimos  que as barras são impedidas  de flambar  lateralmente,  e despreZa-se  o peso 
próprio das barras. 

Dados:  Eaço = 2 . 104 kN/cm2  EAl = 0,7 . 104 kN/cm2 
OBS : medidas em cm 

                                                    R : P ≅ 1.900 kN 
 

 
 
 

5. Um cilindro sólido de 50 mm de diâmetro e 900 mm de comprimento acha-se sujeito à 
uma força axial de tração de 120 kN. Uma parte deste cilindro de comprimento L1 é de aço 

e a outra parte unida ao aço é de alumínio e tem comprimento L2. 

a.   Determinar os comprimentos L1 e L2 de modo que os dois materiais apresentem o 
mesmo alongamento 

 
Dados:  Eaço = 2 . 104 kN/cm2  EAl = 0,7 . 104 kN/cm2 
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R : (a)  L1 = 66,5 cm  L 2 = 23,33 cm 

 
6. Uma força axial de 400 kN é aplicada à um bloco de madeira de pequena altura que se 

apoia em uma base de concreto que repousa sobre o solo. Determine, despreZando o peso 
próprio da madeira: 

a. Tensão de esmagamento na base do bloco de madeira 

 
 
 
 
 
 
 

R: (a) 3,33 kN/cm2 

(b)  l66 mm 

b.   As dimensões do bloco de 
concreto qque tem peso 
específico  de  25  kN/m3, 
para 

que  não  se  ultrapasse  no 
solo a tensão de 1,45 kN/cm2. 

 
7. A  carga  P  aplicada  à  um  pino  de  aço  é  transmitida  por  um  suporte  de  madeira  por 

intermédio de uma arruela de diâmetro interno 25 mm e de diâmetro externo "d". Sabendo- 
se que a tensão normal axial no pino de aço não deve ultrapassar 35 MPa e que a tensão de 
esmagamento média entre a peça de madeira e a arruela não deve exceder 5MPa, calcule o 
diâmetro "d"  necessário para a arruela. 

 

 
 
 
 
 
 
 
 
 
 
 

R: 6,32 cm 



2
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8. Aplica-se à extremidade C da barra de aço ABC uma carga de 66,7 kN. Sabe-se que o 

módulo de elasticidade longitudinal do aço é de 2,1.104 kN/cm2. Determinar o diâmetro 
"d" da parte BC para a qual o deslocamento do ponto C seja de 1,3 mm. 

                                 R: 21,8 mm 

 
 
 

9. Usando o desenho do problema anterior, suponha as duas partes da barra de alumínio com 

módulo de elasticidade longitudinal de 0,7 . 104kN/cm2. O diâmetro da parte BC é de 28 
mm. Determinar a máxima força que pode ser aplicada na extremidade C sabendo-se que o 
seu deslocamento não pode ultrapassar 3,8 mm. Sabe-se que a tensão de escoamento 

admissível para o alumínio é de 16,5 kN/cm2. 
R: P ≅ 84 kN 

10.   Uma  barra de aço tem seção transversal de 10 cm2 e está solicitada pelas forças 
axiais indicadas. Determinar as tensões desenvolvidas nos diversos trechos da barra. 

 
 

R:  trecho 1 : 1.000 kgf/cm2 

trecho 2 :  700 kgf/cm2 

trecho 3 :  900 kgf/cm2 
 

 
 

11.  Uma guilhotina para cortes de chapas tem mesa com 2 metros de largura de corte e 
450 kN de capacidade. Determinar as espessuras máximas de corte em toda a largura para 

as chapas : 
a. Aço  ( τ =  220 MPa )                                                      R:  (a)  0.10 cm 
b. Cobre ( τ =  130 MPa )                                                          (b)  0.17 cm 
c. Alumínio  ( τ =  70 MPa )                                                       (c) 0.32 cm 

 

 
12.  Considere-se o pino de 12.5 mm de diâmetro da junta da figura. A força "P" igual à 

37.50 kN. Admita a distribuição de tensões de cisalhamento uniforme. Qual o valor destas 
tensões nos planos a-a' e b-b'. 
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R: 1.528 Kgf/cm2 
 

13.       De acordo com a figura, a força P tende a fazer com que a peça superior (1) deslize 
sobre a inferior (2). Sendo P = 4.000 Kgf, qual a tensão desenvolvida no plano de contato 
entre as duas peças? 

                        R: 4,71 kgf/cm2 

 
14.       O aço  de baixo  teor de carbono  usado  em estruturas  tem  limite  de resistência  ao 

cisalhamento de 31 kN/cm2 . Pede-se a força P necessária para se fazer um furo de 2.5 cm 
de diâmetro, em uma chapa deste aço com 3/8" de espessura. 

                                 R:  231,91 kN 

 
 

15.       Considere-se o corpo de prova da figura, de seção transversal retangular 2.5 x 5 cm, 

usado para testar a resistência a tração da madeira. Sendo para a peroba de 1,3 kN/cm2 a 
tensão de ruptura ao cisalhamento, pede-se determinar  comprimento mínimo "a" indicado, 
para que a ruptura se de por tração e não por cisalhamento nos encaixes do corpo de prova. 
Sabe-se que a carga de ruptura do corpo por tração é de 10,4 kN. 
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R: a ≥ 0.8 cm 

 
16.       Considere-se um pino de aço de 3/8" de diâmetro sujeito à força axial de tração de 10 

kN. Calcular a tensão   de cisalhamento  na cabeça  do pino, admitindo  que a superfície 
resistente seja de um cilindro de mesmo diâmetro do pino, como se indica em tracejado. 

 
 
 

    R:  1,05 kN/cm2 

 
 

17.       As peças de madeira A e B são ligadas por cobrejuntas de madeira que são colados nas 
superfície de contato com as peças. Deixa-se uma folga de 8 mm entre as extremidades de 
A e B . Determine o valor do comprimento  "L"para que a tensão de cisalhamento  nas 

superfícies coladas não ultrapasse 0,8 kN/cm2. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

R: 308 mm 
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18.   Ao se aplicar a força indicada,  a peça de madeira se rompe por corte ao longo 
da superfície tracejada. Determine a tensão de cisalhamento média na superfície de 
ruptura. 

 
 
 
 
 
 
 
 
 
 
 
 
 

R:  6 MPa 
 

19.   Sabendo que a tensão de ruptura ao cisalhamento de uma chapa de aço é de 330 
MPa, determine: 

a.   A força necessária para produzir por punção um furo de 30 mm de diâmetro 
em uma chapa com 9 mm de espessura 

b.  A tensão normal correspondente no furador 
 
 

   R: (a) 279,91 kN  (b) 39,59 kN/cm2 
20.  A placa indicada na figura é presa à base por meio de 3 parafusos de aço. A tensão 

de cisalhamento  última do aço é de 331 MPa. Utilizando-se um coeficiente de segurança 
de 3,5 determine o diâmetro do parafuso à ser usado. 
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R: 22 mm 



 

20  

 

 

 
 
 
 
 
 

21.  A ligação AB está sujeita à uma força de tração de 27 kN. Determine: 
a. O diâmetro "d"do pino no qual a tensão média permitida é de 100 MPa. 
b. A dimensão "b"da barra para a qual a máxima tensão normal será de 120 MPa. 

      R: (a) 1,85 cm  (b) 3,75 cm 
 

22.   Dimensionar um eixo de uma roldana fixa que deve suportar a elevação de uma carga 
de 100 kN. Sabe-se que o material do eixo apresenta tensão admisível ao cisalhamento de 
120 MPa. 
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Lei de Hooke 

 
Os diagramas tensão-deformação da maioria dos materiais apresentam uma região 

inicial de comportamento elástico e linear. 
A relação linear entre a tensão e a deformação, no caso de uma barra em tração, 

pode ser expressa por: 
 

σ = E ⋅ ε 
 

onde E é uma constante de proporcionalidade conhecida como módulo de elasticidade do 
material. 

 
Este é o coeficiente angular da parte linear do diagrama tensão-deformação e é 

diferente para cada material. O módulo de elasticidade é também conhecido como módulo 
de Young e a equação anterior é chamada de Lei de Hooke. 

 

Quando uma barra é carregada por tração simples, a tensão axial é 
 

δ 
deformação específica é ε = . 

L 

σ = 
P  

e a 
A 

Combinando estas expressões com a lei de Hooke, tem-se que o alongamento da 

P ⋅ L 
barra é δ = . 

E ⋅ A 
Esta  equação  mostra  que  o  alongamento de  uma  barra  linearmente elástica  é 

diretamente proporcional à carga e ao seu comprimento e inversamente proporcional ao 
módulo de elasticidade e à área da seção transversal. 

O produto E ⋅ A é conhecido como rigidez axial da barra. 

A flexibilidade da barra é definida como a deformação decorrente de uma carga 

unitária. Da equação anterior, vemos que a flexibilidade é L . 
E ⋅ A 

De modo análogo, a rijeza da barra é definida como a força necessária para produzir 
 

uma deformação unitária. Então, a rijeza é igual a 

E ⋅ A , que é o inverso da flexibilidade. 
L 
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Vários casos que envolvem barras com carregamento axial podem ser solucionados 

P ⋅ L 
aplicando-se a expressão: δ = . 

E ⋅ A 



 

 

 
 

n 

A figura mostra uma barra carregada axialmente. O procedimento para 
determinação da deformação da barra consiste em obter a força axial em cada 
parte da barra (AB, BC e CD) e, em seguida, calcular separadamente o 
alongamento (ou encurtamento) de cada parte. 

 
P 

A 
2

P

L

1 

a 
B 

L2 

P 
C 

2P L3 b 
 

D 
 

P 
 

A  soma  algébrica  dessas  variações  de  comprimento  dará  a  variação  
total  de comprimento da barra, tal que: 

 
 

δ = ∑ 
Pi ⋅ Li 

i =1 
Ei ⋅ Ai 

 
O mesmo método pode ser usado quando a barra é formada por partes com 

diferentes seções transversais. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


