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Métodos Heurísticos

Métodos heurísticos1 são algoritmos exploratórios que buscam resolver problemas. 

Geralmente  não  envolvem  a  implementação  computacional  de  um  conhecimento 

especializado  (por  exemplo,  um  método  heurístico,  para  resolver  uma  equação  de 

segundo grau, não usaria, necessariamente, a fórmula de Báscara, mas buscaria, por 

outros métodos, uma solução que atendesse à equação). Por este motivo, muitas vezes, 

esses métodos são classificados como “busca cega”.

Uma solução ótima de um problema nem sempre é o alvo dos métodos heurísticos, 

uma  vez  que,  tendo  como  ponto  de  partida  uma  solução  viável,  baseiam-se  em 

sucessivas aproximações direcionadas a um ponto ótimo. Logo, estes métodos costumam 

encontrar  as  melhores  soluções  possíveis  para  problemas,  e  não  soluções  exatas, 

perfeitas, definitivas.

Esta subjetividade, ou falta de precisão dos métodos heurísticos, não se trata de 

uma deficiência, mas uma particularidade análoga à inteligência humana. Muitas vezes, 

no  cotidiano,  resolvemos  diversos  problemas  sem conhecê-los  com precisão.  Alguns 

exemplos: ao estacionarmos um veículo, não nos preocupamos com o tamanho exato do 

mesmo  e  das  vagas  disponíveis;  ao  adoçarmos  uma  bebida,  pouco  conhecemos  as 

propriedades do soluto e do solvente; ao tentarmos mover ou levantar um objeto, pouco 

nos preocupamos com leis da física que possam auxiliar ou comprometer a ação. Nestas 

e em diversas outras situações, a melhor solução imediata é encontrada e adotada, em 

detrimento de soluções comprovadamente ótimas e precisas.

Em  (Colin,  2007),  há  uma  ótima  analogia  entre  os  métodos  heurísticos  e  o 

problema de localizar,  empiricamente,  o  ponto  mais alto  da Terra.  Para resolver  este 

1 Heurística é um conjunto de regras e métodos que conduzem à descoberta, à invenção e à resolução de problemas.
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problema,  partiria-se  de  um  ponto  viável,  ou  seja,  de  qualquer  lugar  na  superfície 

terrestre, em busca das montanhas mais altas. Neste processo, várias montanhas seriam 

escaladas  e  suas  alturas  comparadas.  O  ponto  mais  alto  iria  progressivamente 

aumentando  com  as  novas  descobertas  (os  chamados  ótimos  locais).  Até  que  em 

determinado momento as buscas se dessem por encerradas por algum motivo (a não 

descoberta de pontos mais altos por um longo período, falta de segurança, restrições de 

tempo ou financeiras) e o ponto mais alto fosse definido, mesmo sem uma comprovação 

científica, mesmo que outro mais alto possa ainda estar oculto.

Assim são os métodos heurísticos. Uma busca contínua e empírica, com vários 

ótimos  locais,  cujo  resultado  é  o  melhor  que  se  pode  encontrar  sob  determinadas 

condições.

Estudaremos  neste  capítulo  os  métodos:  algoritmos  genéticos  e  simulated 

annealing.

1 Algoritmos Genéticos

Este método é baseado na genética (Colin, 2007), como o próprio nome já diz, e na 

seleção natural. É uma simulação computacional iterativa que faz analogia a um processo 

evolutivo de várias gerações de uma população  (Santos, 2002), onde cada indivíduo é 

uma representação abstrata de uma solução do problema, a seleção natural é um critério 

de escolha das melhores soluções e eliminação das ruins, o cruzamento e a mutação são 

meios para a obtenção de novas soluções.

Os  algoritmos  genéticos  têm  características  bastante  peculiares  em  relação  a 

outros métodos de busca:

● São baseados em um conjunto de soluções possíveis;
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● Não  envolvem  modelagem  do  problema  (a  modelagem  é  restrita  às 

soluções);

● O  algoritmo  apresenta  como  resultado  uma  população  de  soluções 

(classificadas qualitativamente pela seleção natural) e não apenas uma;

● Trata-se  de  um  método  probabilístico  e  não  determinístico.  Em  outras 

palavras,  uma  mesma  população  dificilmente  apresentará  os  mesmos 

resultados para um mesmo problema.

1.1 Terminologia

Os algoritmos genéticos tomam emprestado vários termos da genética, com a qual 

mantêm conceitos análogos. Os termos principais são:

● População: conjunto de cromossomos ou soluções;

● Cromossomo:  conjunto  de  genes.  Cada  cromossomo  representa  uma 

solução do problema. Muitas vezes é tomado como sinônimo de indivíduo;

● Gene:  menor  unidade  de  informação  em  um  cromossomo.  Cada  gene 

representa uma variável da solução do problema;

● Locus: posição de um gene em um cromossomo. Alguns genes podem ter 

seu locus alterado em processos de cruzamento ou mutação;

● Cruzamento (ou  crossover):  processo de reprodução sexuada em que há 

combinação  de  genes  dos  cromossomos  originando  um  ou  mais 

descendentes. O cruzamento é o principal  responsável  pela variabilidade 

genética;
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● Mutação: anomalias que causam a alteração aleatória de genes, seja na sua 

localização, seja no seu conteúdo;

● Seleção natural: processo que elimina os indivíduos menos adaptados (ou 

aptos) em relação à cada geração da população;

● Geração: iteração do algoritmo genético;

● Aptidão (ou fitness): indicador qualitativo de um indivíduo. O grau de aptidão 

de um indivíduo é obtido a partir de uma função objetivo;

● Função objetivo: função matemática que avalia as soluções (indivíduos) em 

relação ao problema. 

1.2 Passos do algoritmo

Embora haja uma grande variedade e implementações, a estrutura geral de um 

algoritmo genético é basicamente a mesma. Dado que a representação de soluções dos 

problemas devem ser modeladas em forma de cromossomos, temos os seguintes passos:

4

Criar população inicial: que pode ser gerada aleatoriamente com m cromossomos;

Nova Geração: criar uma nova geração (de tamanho fixo (m) ou variável)

1 – Selecionar n cromossomos para reprodução;

2 – Realizar cruzamentos de forma aleatória;

3 – Permitir que mutações aleatórias ocorram em alguns dos cromossomos 

      gerados;

4 – Selecionar os cromossomos melhores adaptados para a próxima geração e 

      eliminar os menos adaptados (análogo à seleção natural);

5 – Substituir os indivíduos eliminados por novos indivíduos;

Critério de Parada: Caso a solução atenda a um critério de parada, ou caso seja 

detectada convergência da população, PARE. Caso contrário vá para o passo NOVA 

GERAÇÃO.



Para melhor compreensão, estes passos podem ser visualizados na Figura 1.

As maiores variações que se pode encontrar em algoritmos genéticos envolvem, 

normalmente,  a  seleção de indivíduos,  cruzamento  e  mutação,  e  critérios  de  parada. 

Estas  variações são baseadas em particularidades dos problemas a serem resolvidos.

Nas  próximas  subseções  veremos  em  mais  detalhes  os  métodos  de  seleção, 

cruzamento e mutação.

1.2.1 Seleção

Os métodos de seleção podem ser usados tanto na escolha de quais indivíduos 

serão progenitores, quanto na escolha dos melhores adaptados para passar à próxima 

geração (Santos, 2002). A seleção é baseada em um método de avaliação de aptidão de 

indivíduos. 

Quanto mais apto um indivíduo, maior sua probabilidade de realizar cruzamentos 

(uma vez que indivíduos bem adaptados tendem a criar descendentes também aptos) e 
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Figura 1: Fluxograma geral de um algoritmo genético
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melhor é sua resposta em relação ao problema (se um algoritmo genético chegar a uma 

solução ótima, o cromossomo que representa esta solução terá aptidão máxima).

A aptidão de um indivíduo pode ser obtida pela equação:

Onde  i  é o índice que identifica um indivíduo na população,  m  é o tamanho da 

população  e f i uma  função  objetivo  relacionada  ao  problema.  O  resultado  desta 

equação consiste em uma probabilidade, logo um indivíduo com aptidão alta tem maior 

probabilidade de ser escolhido.

1.2.2 Cruzamento

Os métodos  de cruzamento são responsáveis pela reprodução de cromossomos e 

a mistura  de genes, o que garante a diversidade e a constante evolução populacional. 

Basicamente,  este  mecanismo  consiste  em selecionar  os  pontos  de  cruzamento  nos 

progenitores, separar os cromossomos, e trocar as partes destes cromossomos (Goldbarg

e Luna, 2000). Este mecanismo também é chamado de crossover (Santos, 2002).

A Figura 2 ilustra o um cruzamento de dois cromossomos, cujos genes, a título de 

exemplo, consistem em números binários.  Note que foi selecionado apenas um ponto de 

cruzamento, entre o quinto  e sexto gene, ou  locus,  e os descendentes receberam as 

cargas genéticas trocadas com base neste ponto. 
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Este mecanismo pode sofrer uma série de variações. Uma delas é a definição de 

vários pontos de cruzamento, podendo gerar um número crescente de descendentes por 

cruzamento.  Muitas  vezes,  ao  processo  de  cruzamento  é  associado  o  método  de 

mutação.

1.2.3 Mutação

A mutação  consiste  em selecionar  um  ou  mais  locus cujos  genes  devem  ser 

alterados. Geralmente ocorre na criação do cromossomo, ou seja, durante ou logo após o 

cruzamento.  A  mutação,  de  forma  análoga  à  biologia  evolutiva,  é  um  importante 

fenômeno para a diversidade e evolução,  podendo ser  benéfica,  tornando o indivíduo 

mais apto,  ou maléficas,  condenando o indivíduo a não sobreviver  à  seleção natural. 

Portanto, ela pode desencadear o surgimento de soluções melhores, bem como soluções 

inferiores ou inviáveis.

A Figura 3 ilustra duas diferentes mutações em um mesmo cromossomo. Note que 

em negrito estão nos locus escolhidos para a troca de genes (o terceiro gene passou para 

o lugar do oitavo gene, e este passou a ocupar o terceiro  locus). Já o locus sublinhado 

teve seu gene alterado de 0 para 1.
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Figura 2: Cruzamento entre dois cromossomos
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Apesar de sua importância para a diversidade e evolução, a mutação excessiva em 

uma  população  pode  acarretar  várias  soluções  anômalas,  impedindo  a  evolução  da 

população. 

1.3 Variações das Etapas dos Algoritmos Genéticos

Baseado nos conceitos apresentados, passaremos a analisar variantes das etapas 

dos  algoritmos  genéticos.  Inicialmente  trataremos  das  variações  dos  operadores 

cruzamento. A seguir serão tratadas outras possibilidades de seleção e codificação. Por 

fim, serão analisadas algumas alternativas para a formação de populações.

1.3.1 Outras Estratégias de Crossover

Dentre as várias alternativas existentes, nesta seção analisaremos o crossover de 

dois pontos e o crossover uniforme.

Crossover de dois pontos

No crossover de dois pontos, apenas o material genético entre os locus escolhidos 

são trocados. Na Figura 4, os locus escolhidos foram o terceiro e o sexto.  Pode-se notar 
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Figura 3: Mutação de genes em um cromossomo.
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que os genes à esquerda e à direita do intervalo escolhido permanecem inalterados, ao 

contrário dos genes dentro do intervalo.

Esta variação do crossover tende a tornar o algoritmo genético mais eficiente, uma 

vez  que  contribui  para  a  variabilidade  genética  (Linden,  2006).  Este  método  abrange 

também o  crossover de um ponto, visto anteriormente, caso o primeiro ou último gene 

sejam escolhidos.                                  

Crossover uniforme

O crossover uniforme consiste em um sorteio binário para cada gene, definindo 

como  os  genes  de  cada  progenitor  serão  distribuídos  entre  os  descendentes.  Por 

exemplo,  caso  seja  sorteado  1  para  um  determinado  gene,  o  primeiro  descendente 

recebe  o  gene  do  primeiro  progenitor  e  o  segundo  descendente  recebe  o  gene  do 

segundo progenitor. Caso seja sorteado 0, o processo se inverte. Este sorteio é realizado 

para cada um dos genes dos cromossomos.

Esta  estratégia  de  crossover tende a  prover  maior  diversidade,  porém tem um 
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Figura 4: Crossover de dois pontos
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custo de processamento mais alto, uma vez que há um sorteio para cada gene de cada 

indivíduo.

1.3.2 Outras Estratégias de Seleção

As estratégias de seleção podem acelerar ou retardar tanto a busca pela solução 

ótima, quanto a convergência, uma vez que definem os cromossomos que irão gerar e 

participar  da próxima geração.  Dada a importância  da  seleção analisaremos algumas 

variações.

Seleção por Torneio

Neste método, há um torneio entre indivíduos selecionados aleatoriamente, sem 

qualquer favorecimento aos melhores adaptados  (Linden, 2006). Uma vez selecionados 

os indivíduos,  os mais  aptos  vencerão o torneio.  Devem ser  definidos previamente  o 

número de indivíduos a participarem de cada torneio e quantos torneios serão realizados.

A vantagem deste método é a impossibilidade de alguns cromossomos dominarem 

a população, o que levaria a uma rápida convergência.  

Seleção por Vizinhança

Neste  método,  também  chamado  de  seleção  local,  são  definidas  vizinhanças 

aleatórias, ou seja, intervalos aleatórios de indivíduos. Os indivíduos destas vizinhanças 
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poderão realizar  crossover entre si. Caso haja interseção entre vizinhanças (indivíduos 

em  mais  de  uma  vizinhança),  os  indivíduos  destas  poderão  interagir  entre  si.  As 

interseções  são  bastante  desejáveis,  uma  vez  que  impede  que  o  crossover seja 

segmentado  em  pedaços  pequenos  da  população,  o  que  acarretaria  em  baixa 

variabilidade.

1.3.3 Outras Estratégias de codificação

O método de codificação de soluções apresentado foi  a  representação binária. 

Porém, esta representação apresenta algumas limitações(Linden, 2006):

● Variáveis  contínuas e de alta precisão podem resultar  em cromossomos 

excessivamente grandes;

● O número de soluções codificadas é sempre uma potência de dois:  2k , 

onde  k  é  o  número  de  genes  de  um  cromossomo.  Caso  a  variável 

representada  descreva  um número  finito  de  estados  que  não  seja  uma 

potência de dois, várias soluções possíveis serão inválidas2;

Portanto podemos fazer uso de outras estratégias de codificação.

2 Por exemplo: uma variável pode ter apenas cinco estados; neste caso serão necessários dois genes, pois 23 = 8. Logo, 
três  soluções  serão  inválidas,  o  que exige  um certo  tratamento,  tornando o algoritmo mais  complexo e menos 
eficiente.
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Representação numérica

Em  muitos  problemas  pode  ser  mais  conveniente  o  uso  cromossomos  com 

números reais ao invés de binários. A representação numérica não traz limitações quanto 

a precisão e permite que os cromossomos tenham tamanho mínimo. 

Utilizando representação numérica, o cromossomo do problema da equação de 2º 

grau teria  apenas dois  genes,  um para cada solução.  A  Figura 5 apresenta algumas 

soluções codificadas em números reais.

As vantagens desta estratégia de codificação são: a possibilidade de representar 

casas decimais, números negativos e o tamanho reduzido dos cromossomos. Entretanto 

os operadores genéticos devem ser adaptados:

● O crossover será mais simples, permitindo apenas a permuta dos pares de 

genes de cada cromossomo;
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Figura 5: Codificação de soluções usando números reais
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● A mutação envolverá a inversão dos genes ou a alteração do valor contido 

neles;

A representação numérica é flexível e abrangente, podendo se utilizada em vários 

tipos de problemas que envolvam variáveis quantitativas. Porém, quando se trabalha com 

variáveis categóricas, um outro tipo de representação é necessária.

Representação categórica

Na representação categórica, são codificados conjuntos valores predefinidos. São 

exemplos de variáveis categóricas:

● Direções: esquerda, direita, frente e trás; ou norte, sul, leste e oeste;

● Bases de DNA: A, C, G e T;

● Substâncias químicas: Na, Cl, O, N, H e outros.

Esta representação pode codificar soluções de problemas como:

● Caminho para sair de um labirinto;

● Busca de um genoma;

● Identificação ou composição de uma substância química;

O operador genético que necessitaria de uma maior adaptação seria a mutação, 

uma  vez  que,  ao  alterar  o  conteúdo  de  um  gene,  há  um  conjunto  limitado  de 
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possibilidades para mutação.

1.3.4 Outras Estratégias de Formação de Populações

Visando tirar o melhor proveito das qualidades de cada geração, pode-se adotar 

diferentes alternativas para se compor uma população.

O tamanho é um importante critério na formação e evolução de uma população, 

pois  uma  população  muito  pequena  dificilmente  alcançará  uma  grande  variedade 

genética. Já uma população muito grande (embora tenha maior diversidade) tornará a 

execução bastante pesada, afetando a eficiência do algoritmo genético. Infelizmente não 

existe um tamanho padrão indicado para todos os tipos de problema. Modelagens com 

pequenos  cromossomos  podem ter  grandes  populações  sem perda  de  eficiência.  Já 

modelagens  com  grandes  cromossomos  devem  ter  populações  de  tamanho  limitado 

devido ao custo de processamento. Portanto, deve-se obter empiricamente o tamanho 

ideal  para  cada problema,  podendo-se  adotar  um valor  inicial  para  testes,  valor  este 

baseado no tamanho do cromossomo. Por exemplo: 20 * Tamanho do Cromossomo.

Outra  alternativa  é  adotar  populações de tamanho variável.  Isto  pode ser  feito 

associando uma idade a cada indivíduo. A medida que a idade vai aumentando, a cada 

geração,  aumenta a probabilidade de “morte”  dos indivíduos.  Portanto,  o  tamanho da 

população  varia  com  a  “taxa  de  natalidade”  (baseada  nos  critérios  de  seleção  e 

crossover) e com a “taxa de mortalidade”.

Além das  definições  de  tamanho,  pode-se  adotar  a  técnica  de  elitismo.  Nesta 

técnica,  normalmente  integrada  ao  processo  de  seleção,  determinado  número  de 

melhores  indivíduos  deve  passar  a  próxima  geração,  garantindo  que  boas  soluções 
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permaneçam na população e possam gerar soluções melhores nas próximas gerações.

1.4 Exemplo: Algoritmo genético para resolver equações de 1º grau.

Uma equação de 1º grau completa é dada no seguinte formato:

Uma equação do 1º grau pode ser facilmente resolvida por operações matemáticas 

simples.  Mas  vamos  desenvolver  um  exemplo  didático  de  algoritmo  genético  para 

introduzir o leitor à  implementação deste método.

Equação utilizada

Para este exemplo foi usada a equação abaixo, cuja cuja solução é 5.

Modelagem da solução

As soluções serão representadas por números binários de seis bits. Logo, cada 

cromossomo será constituído por seis genes,  cujos valores podem ser  1 ou 0.  Estes 

números binários são convertidos para números inteiros e posteriormente para números 
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bx−c=0

2x−10=0



reais. Apesar da solução desta equação ser inteira, é interessante trabalhar com números 

reais, pois vários problemas trabalham com variáveis contínuas.

Criação da população inicial

A população inicial foi criada com o uso funções geradoras de números aleatórios. 

Sendo cada gene de cada indivíduo definido aleatoriamente, é bastante provável que haja 

uma significativa variabilidade populacional na primeira geração. O tamanho da população 

foi fixado em cinquenta indivíduos.

Seleção

A seleção foi baseada na função objetivo:

Esta função será aplicada a cada cromossomo. Quanto mais próximo a solução 

representada estiver de uma da solução ótima, mais próximo de 1 será o resultado desta 

função.  Portanto,  quando  um  cromossomo  representar  uma  das  soluções  ótimas,  o 

resultado da função será exatamente 1.

A aptidão de cada cromossomo será obtida a partir da fórmula geral:
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Evidentemente, quanto mais próximo das soluções ótimas, maior será a aptidão. 

Há duas situações em que um indivíduo pode ser escolhido:

● A  primeira  é  determinística:  O  indivíduo  cuja  aptidão  for  maior  que  a 

probabilidade de seleção (parâmetro pré-definido que se tornará cada vez 

mais restritivo a cada geração, “forçando” a evolução da população) será 

selecionado;

● A  segunda  é  probabilística:  Para  o  indivíduo  de  aptidão  menor  que  a 

probabilidade  de  seleção,  será  gerado  um  número  aleatório.  Se  este 

número for maior que a aptidão do indivíduo, ele será selecionado. Este 

critério  tende a selecionar  indivíduos menos adaptados (uma vez que é 

menor a probabilidade de um número aleatório ser maior que a aptidão de 

indivíduos bem adaptados), visando garantir a diversidade genética e evitar 

a convergência da população.

Cruzamento

Para  cada  cruzamento  são  escolhidos,  aleatoriamente,  dois  indivíduos  já 

previamente selecionados. Em seguida, são definidos, também aleatoriamente, dois locus 

para então as cargas genéticas serem trocadas gerando dois novos indivíduos, conforme 

exibido na Figura 4.
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Mutação

Neste exemplo, foi definida a taxa, ou porcentagem, de mutação na população, ou 

seja, um número fixo de mutações irá ocorrer a cada geração. Com base nesta taxa é 

dada a probabilidade de um indivíduo sofrer ou não mutação. Por exemplo, uma taxa de 

10% indica que cada indivíduo possui probabilidade 0,1 de sofrer uma mutação. Já o 

locus  de  mutação  é  definido  aleatoriamente  e  os  bits  nestes  locais  são  invertidos, 

conforme exibido na Figura 3.

Em boa parte das publicações, a mutação é totalmente aleatória, tando quanto à 

taxa  de  ocorrência  a  cada  geração,  quanto  à  probabilidade  individual.  Porém,  a 

parametrização deste operador genético permite um maior controle sobre a diversidade e 

evolução  da  população,  o  que  pode  ser  desejável  quando  se  está  adaptando  um 

algoritmo  genético  para  diferentes  problemas,  ou  quando  se  busca  estabelecer 

parâmetros otimizados de busca. 

Substituição

Os indivíduos não selecionados para o cruzamento são substituídos pelos novos 

cromossomos.  Desta  forma,  a  população  mantém  tamanho  constante  e  permite  que 

indivíduos com alta aptidão sobrevivam a várias gerações3.

Critério de parada

3 A aptidão é relativa, ou seja, ela varia de acordo com a evolução de uma população. Logo, um indivíduo bem 
adaptado em uma determinada geração, pode vir a ter uma baixa aptidão em gerações futuras.
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O critério de parada é baseado em soluções quase ótimas. Quando uma solução 

se mantém como a melhor durante dez gerações o algoritmo é encerrado. Este critério 

não garante solução ótima, tampouco garante que um ótimo local seja encontrado. Como 

ocorre em qualquer  implementação de algoritmos genéticos,  há risco de a população 

convergir para um ótimo local, o que pode ser evitado com a variabilidade populacional. 
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Performance do Algoritmo

Foram criadas quinze populações, ou seja, o algoritmo genético foi executado 15 

vezes para coleta e análise dos dados exibidos na Tabela 1.

Tabela 1: Resultados de 15 populações para o problema da equação de 1º grau

População Número de 
Gerações

Tempo de 
Execução (s)

1 25 11,94
2 21 9,82
3 17 7,98
4 19 8,78
5 31 14,33
6 19 8,65
7 29 13,01
8 29 13,27
9 31 14,61
10 16 7,22
11 21 10,1
12 21 9,69
13 30 13,78
14 16 7,4
15 13 6,17

Máximo 31 14,61
Mínimo 13 7,22
Média 22,53 10,45
Coeficiente de 
Variação 0,27 0,27

Todos as populações encontraram uma solução ótima ou quase ótima, havendo 

aproximação nestes casos apenas na terceira casa decimal. Houve variação apenas no 
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número de gerações e tempo de execução de cada população. Em outras palavras, todas 

as populações foram eficazes, porém nem todas foram eficientes.

Em relação ao número de gerações,  houve valores extremos de 13 e 31, com 

média de aproximadamente 22 gerações. Já os tempos de execução variaram entre os 

extremos 7,22 e 14,61 segundos. A média de tempo foi de 10,45 segundos.

Os diagramas de dispersão destes dados são exibidos na  Figura 6  e  Figura 7. 

Tanto a análise destes diagramas, quanto a análise dos coeficientes de variação(Vieira,

1999) da  Tabela 1, mostram a mesma dispersão do tempo de execução e número de 

gerações4. Entretanto é bastante óbvio que o número de gerações e o tempo de execução 

são variáveis com forte correlação5.

4 Ao  contrário  do  número  de  gerações,  os  tempos  de  execução  podem variar  de  acordo  com a  capacidade  de 
processamento  dos recursos  computacionais  utilizados.  Quanto  maior  o  poder  de processamento,  menor  será  a 
variação dos tempos de execução. Este algoritmo genético foi executado em um Pentium 4 de 3GHz e 512MB de 
RAM. 

5 A correlação destas variáveis, para o recurso computacional utilizado, foi 1, o que indica uma forte correlação.

21

Figura 6: Diagrama de dispersão do número de gerações
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O código fonte (em Octave®) deste algoritmo genético está disponível no Apêndice 

A.
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Figura 7: Diagrama de dispersão dos tempos de execução
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2 Simulated Annealing

A metalurgia utiliza um processo de tratamento térmico visando alterar a estrutura 

cristalina  de  metais  conferindo-lhes  características  mecânicas  e  estruturais  desejadas. 

Este processo, chamado de recozimento, consiste em aquecer continuamente metais até 

determinada temperatura, e,  posteriormente, resfriá-los em um forno com resfriamento 

controlado. Diferentes velocidades de resfriamento levam a diferentes propriedades nos 

metais. Um resfriamento muito rápido acarreta em imperfeições nos cristais metálicos. Já 

um resfriamento muito lento leva à formação de cristais muito grandes.

Baseado  neste  processo,  foi  criado  o  método  heurístico  chamado  simulated 

annealing (SA), ou recozimento simulado, em português. Neste método, parte-se de uma 

solução viável de um problema e passa-se a aceitar soluções vizinhas. A princípio, nas 

altas temperaturas (analogamente falando), há grande probabilidade de qualquer solução 

vizinha ser aceita. Mas, a medida que ocorre o resfriamento, há maior probabilidade de 

soluções melhores serem aceitas.

Como  vantagens  do  SA  pode-se  citar  tanto  a  sua  capacidade  de  resolver 

problemas de diversos níveis de complexidade em várias áreas específicas, quanto a sua 

relativa previsibilidade e simplicidade, uma vez que trabalha com poucos parâmetros e 

envolve operações matemáticas e computacionais simples.

2.1 Passos do Algoritmo

Antes de iniciar um algoritmo de SA, é necessário definir os parâmetros:
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● t: temperatura inicial;

● r:  fator de resfriamento, que determina a velocidade de “resfriamento” do 

algoritmo. O fator de resfriamento deve estar no intervalo: 0<r<1;

● k:  número  de  soluções  vizinhas  a  serem  testadas  a  cada  nível  de 

temperatura;

Além destes parâmetros, deve ser definido o critério de parada, podendo se tratar 

de um número máximo de iterações, uma temperatura mínima ou uma solução ótima ou 

quase ótima.

Os passos do SA são dados a seguir.
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Criar  conjunto de soluções iniciais

Inicialização dos parâmetros: t, r e k

Escolher uma solução inicial: x

Iteração: 

Repita de 1 até k

1 – Escolher aleatoriamente uma solução vizinha: x*

2 – Comparar o custo da solução atual e da nova solução:                     

                                                Δ = custo(x*)-custo(x)

3 – Se Δ≤0 (função objetivo diminui)

     então  x=x*

          senão se probabilidade  >  exp(-Δ/t) 

                           então  x=x*

Reduza a temperatura:  t=t*r

Critério de Parada: Caso a solução atenda a um critério de parada, PARE. Caso 

contrário realize uma nova iteração.



O algoritmo acima exposto é aplicavel a um problema de minimização, uma vez que Δ será 

menor ou igual a zero se o custo da nova solução (x*) for menor ou igual ao custo da solução atual 

(x). Mesmo que a nova solução não minimize o custo, ela ainda assim pode ser aceita. Para tanto, 

deve-se gerar um número aleatório (ou seja uma probabilidade), e, se este for maior que       exp(-Δ/

t) ,  a  solução será aceita.  Note que à medida que a temperatura  t  diminui,  o valor de  exp(-Δ/t) 

aumenta, consequentemente haverá menor chance de se gerar um número aleatório maior que este 

valor e, portanto, menor probabilidade de uma solução ruim ser aceita. É exatamente esta a essência 

do SA.

Caso o valor de r seja muito pequeno, haverá um resfriamento rápido, fazendo com que 

o algoritmo se limite a uma busca local (Colin, 2007). Entretanto, um r muito grande (próximo de 

1) faz com que o algoritmo possa gastar muitas iterações com soluções ruins.

Para um problema de maximização, este algoritmo pode ser facilmente adaptado. Basta 

considerar aceitáveis as soluções com Δ≥0, ou com probabilidade < exp(Δ/t).

2.2 Exemplo: Um SA para resolver equações de 1º Grau

Uma equação de 1º grau completa é dada no seguinte formato:

Uma equação do 1º grau pode ser facilmente resolvida por operações matemáticas 

simples.  Porém,  vamos  desenvolver  um  exemplo  didático  de  SA  para  resolver  uma 

equação de 1º grau , afim de introduzir o leitor à  implementação deste algoritmo.
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Equação utilizada

Para este exemplo também foi usada a equação:

A solução desta equação é x=5, e sua modelagem para SA não envolve nenhuma 

adaptação, ao contrário da implementação em Algoritmos Genéticos.

Criação das soluções iniciais

As  soluções  iniciais  foram  criadas  com  o  uso  funções  geradoras  de  números 

aleatórios em torno de uma solução inicial. O número de soluções foi fixado em dez.

Critério de parada

Como critério de parada foi  definida a temperatura de 10-6.  Temperaturas mais 

baixas demonstraram pouco contribuir com um melhor resultado.

Performance do Algoritmo
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O algoritmo foi executado 15 vezes para coleta e análise dos dados exibidos na 

Tabela 2.

Tabela 2: Resultados de 15 execuções do SA  para o problema da equação de 1º grau

Execução Resultado
Tempo de 
Execução 

(s)
1 4,99 0,11
2 5,01 0,12
3 5,02 0,11
4 5,00 0,12
5 5,06 0,12
6 4,97 0,13
7 5,02 0,12
8 4,97 0,12
9 5,02 0,13
10 4,98 0,12
11 5,01 0,12
12 4,97 0,12
13 5,02 0,12
14 5,17 0,12
15 5,04 0,11

Máximo 5,17 0,13
Mínimo 4,97 0,11
Média 5,02 0,12
Coeficiente de 
Variação 0,01 0,05

Esta implementação de SA se mostrou tanto eficiente quanto eficaz (embora a 

implementação em Algoritmos Genéticos tenha tido resultados mais precisos), uma vez 

que  as  execuções  exigiram  pouco  tempo  de  processamento  e  retornaram  valores 

27



bastante  próximos  do  resultado  ótimo.  São  estas  características,  nas  suas  devidas 

proporções, que tornam o SA atraente para problemas mais complexos.

Os diagramas de dispersão destes dados são exibidos na  Figura 8  e  Figura 9. 

Ficam evidenciados nestes diagramas a baixa dispersão das execuções do SA. Esta é 

outra característica bastante desejável do SA, a previsibilidade.

O código fonte (em Octave®) deste exemplo está disponível no Apêndice B.
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Figura 8: Diagrama de dispersão de tempos de execução do SA
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Figura 9: Diagrama de dispersão dos resultados do SA
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1.5 Exercícios

1. Utilizando o exemplo estudado na seção 1.4, experimente variar  os parâmetros 

tamanho da população, tamanho do cromossomo, probabilidade inicial de seleção 

e probabilidade de mutação, verifique como a eficácia e eficiência do algoritmo são 

afetadas.

2. Implemente  a  estratégia  de  crossover  uniforme  no  algoritmo  da  seção  1.4. 

Verifique os ganhos ou perdas de performance obtidos.

3. Implemente as estratégias de seleção por torneio e por vizinhança no algoritmo da 

seção 1.4. Verifique, para cada uma destas estratégias, os ganhos ou perdas de 

performance obtidos.

4. Modifique  o  algoritmo  da  seção  1.4  para  que  o  tamanho  da  população  seja 

variável. Verifique os ganhos ou perdas de performance obtidos.

5. Altere os parâmetros do algoritmo SA da seção 2.2 e verifique as variações dos 

resultados e tempos de execução.
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Apêndice A – Código Fonte do Algoritmo Genético para 
Resolução de Equações de 1º Grau

clc

tempo_inicial=clock();
tempo_inicial=tempo_inicial(6);
%%%%%parametros%%%%%%

sup=100;
inf=0;

%tamanho da população
m=50
%tamanho do cromossomo
n=4;
%probabilidade inicial de selecao
ps=0.1;

%probabilidade de mutação
pm=0.5;

%inicia vetor de soluções
solucoes=[];

%%%%%%%%%%criação da primeira geração

%%%%%primeiro cromossomo é formado por uma sequencia de 1
cromossomos=ones(1,n);

melhor=-1;
cont_melhor=0;
x_melhor=[];

%inicia contador
i=1;

b=2;
c=-10;

%repetir até atingir tamanho da população
while (i<=m-1)

       %insere primeiro gene
       if rand>0.5
               novo_cromossomo=1;
       else
               novo_cromossomo=0;
       endif
       %cria um indivíduo (repete até que seja atingido o tamanho do cromossomo)
       for j=1:n-1     
               if rand>0.5
                       novo_cromossomo=[novo_cromossomo 1];
               else    
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                       novo_cromossomo=[novo_cromossomo 0];
               endif
       endfor
       
       cromossomos=[cromossomos; novo_cromossomo];
       
       i++;
endwhile

geracoes=1;

% início do processo iterativo
while (1)

  
%%%%%%%%%%criação de nova geração

%%%%%%%%%%%%%%%%%%%%%%%%%%%         seleção

  %inicia vetor de resultados da funcao objetivo e aptidoes
  funcao=zeros(m,1);
  aptidao=zeros(m,1);
  
  individuos_reais=[];
  
  %realiza teste de aptidao para cada cromossomo
  for i=1:m
    %valor de x para cromossomo
    %cromossomos(i,:)   
    %cromossomos(i,1:n)
     x=bin2dec(num2str(cromossomos(i,1:n)));
    
    %converte o número inteiro para real
     x=inf+((sup-inf)/2^n-1)*x    -rand;
     
     %armazena individuos convertidos para numeros reais
      individuos_reais=[individuos_reais; x];
      
     %obtem resultado da equacao
     teste=b*x+c;
     %funçãoo objetivo. Quanto mais próximo o resultado da equação estiver de zero, melhor será o 
valor de x, mais próximo funcao estará de 1
    funcao(i)=1/(2^abs(teste));
    %funcao(i) = teste;
  endfor
    
%[individuos_reais funcao]
  
  %soma todo vetor funcao
  soma=sum(funcao);
  %média das funcoes
  media=soma/m;
  
  selecionados=[];
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  i=1;
  num_selecionados=0;
  while num_selecionados<=ps*m
            
    
    %cada individuo é escolhido de forma determinística
    if (funcao(i)>=max(funcao)-abs(media)/2)
      selecionados=[selecionados i];
      num_selecionados++;
    endif
    i++;
    if(i>m)
      break;
    endif  
  endwhile
  
  
  
   %caso nenhum indivíduo tenha sido selecionado, metade da população é escolhida
   if(size(selecionados,1)==0)      
     for(i=1:m/2)
       selecionados(i)=i;
     endfor  
   endif  
    
  %a probabilidade deve ir decrescendo à medida que a população converge (no início muitos podem 
ser selecionados, mas gradativamente
  %a seleção vai se tornando mais restritiva)
  ps=ps+(1/m^1);
  
  
 
  %%%%%%%%%%%%%%%%%%%%%%%%%%%         fim de seleção
  
  %%%%%%%%%%%%%%%%%%%%%%%%        critério de parada  
  
   %verifica se há solução melhor que a atual
  if(melhor<max(funcao) )
    %nova solução passa a ser a melhor e sua posição é armazenada
    [melhor posicao]=max(funcao);
    cont_melhor=0;
    %novo melhor x é armazenado
    x_melhor=individuos_reais(posicao,:) ;
    else %caso não haja solução melhor que a atual, contador é incrementado
      cont_melhor=cont_melhor+1;
      %se uma mesmo solução for a melhor durante 10 gerações, então programa se encerra
      if((cont_melhor==10) & (melhor!=-1))
        x_melhor
        melhor
        break;
        
       endif 
  endif
  
    
    %%%%%%%%%%%%%%%%%%%%%%%%      fim do critério de parada  
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  %%%%%%%%%%%%%%%%%%%%%%%%%%%         cruzamento
 
  
  if(m==num_selecionados)
     novos_individuos=round(num_selecionados/2);
    else
    novos_individuos=round(m-num_selecionados);
   endif 
  if(mod(novos_individuos,2)!=0)
    round(novos_individuos++);
  endif  
  num_selecionados;
  
  
  novos_cromossomos=[];
  i=1;
  
  while i<=novos_individuos
    %seleciona individuos aleatoriamente
    individuo1=round(rand*10);
    if(individuo1>num_selecionados | individuo1==0)
      individuo1=num_selecionados;
    endif
    
    individuo2=round(rand*10);
    if(individuo2>num_selecionados | individuo2==0)
      individuo2=1;
    endif
        
    %seleciona pontos de crossover aleatoriamente
    crossover1=round(rand*10);
    while(crossover1>=n/2 | crossover1==0)
      crossover1=round(rand*10);
    endwhile
    
    crossover2=crossover1+n/2;
    
   % crossover2=round(rand*10);
    %while(crossover2>=2*n | crossover2==0 | crossover2<=crossover1)
     % crossover2=round(rand*10);
    %endwhile
    
    %operação de crossover de dois pontos
    novos_cromossomos=[novos_cromossomos; 
cromossomos(selecionados(individuo1),1:crossover1) 
cromossomos(selecionados(individuo2),(crossover1+1):crossover2) 
cromossomos(selecionados(individuo1),(crossover2+1):n)];
    novos_cromossomos=[novos_cromossomos; 
cromossomos(selecionados(individuo2),1:crossover1) 
cromossomos(selecionados(individuo1),(crossover1+1):crossover2) 
cromossomos(selecionados(individuo2),(crossover2+1):n)];
    
    
    
    
    %soma a quantidade de indivíduos criados ao índice i
    i=i+2;
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  endwhile
  
  
  %inclusão cromossomos selecionados para próxima geração
  novos_cromossomos=[novos_cromossomos ;  cromossomos(selecionados,:)];
  
  
  %%%%%%%%%%%%%%%%%%%%%%%%%%%         mutação
  
  %obtém número de mutações 
  num_mutacoes=m*pm;
  
  for i=1:num_mutacoes
    %escolha de indivíduo para mutação
    individuo=round(rand*100);
    while(individuo>m | individuo==0)
      individuo=round(rand*100);
    endwhile
     
    %escolha de locus para mutação
    locus=round(rand*10); 
    while(locus>n | locus==0)
      locus=round(rand*10);
    endwhile    
    
    
    %efetua inversão do bit na posição selecionada
    novos_cromossomos(individuo,locus)=not(novos_cromossomos(individuo,locus)
);
    
    %escolha de locus para mutação
    locus=round(rand*10); 
    while(locus>n | locus==0)
      locus=round(rand*10);
    endwhile    
    
    %efetua inversão do bit na posição selecionada
    novos_cromossomos(individuo,locus)=not(novos_cromossomos(individuo,locus)
);
  
  %escolha de locus para mutação
    locus=round(rand*10); 
    while(locus>n | locus==0)
      locus=round(rand*10);
    endwhile    
    
    %efetua inversão do bit na posição selecionada
    novos_cromossomos(individuo,locus)=not(novos_cromossomos(individuo,locus)
);
  
  
  endfor
  
  %geração anterior é substituída pela atual
  cromossomos=novos_cromossomos;
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  geracoes++;
  ps
  geracoes  
  
  %se probabilidade de seleção for negativa, ela é resetada e a probabilidade de mutação dobrada
  if(ps<0)
    ps=0.1;
    pm=pm*2;
   endif 
 endwhile
 
 %obtém tempo de execução
  tempo_final=clock();
  tempo_final=tempo_final(6);
  
  %exibe tempos
  tempo_inicial
  tempo_final
  tempo_final-tempo_inicial
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Apêndice B – Código Fonte do SA para Resolução de 

Equações de 1º Grau

tempo_inicial=clock();

tempo_inicial=tempo_inicial(6);

%temperatura inicial
t=5;
%repetições
k=5;
%fator de resfriamento
r=0.8;
%número de iterações
num_iter=50;
%solução inicial
x=0;
%solução atual
x_atual=x;

%número de soluções
num_solucoes=10;

i=1;
while(t>10^-6)
  
        %cria vizinhança de soluções
       x_maximo=x_atual+10;
       x_minimo=x_atual-10;
       solucoes=rand(num_solucoes,1)*(x_maximo-x_minimo)+x_minimo;
       solucoes=[x;solucoes];

       for(m=1:k)
               
       
               %escolhe vizinho aleatoriamente
               vizinho=int32(rand*(num_solucoes-1)+1);
               
               %cálculo de custos
               custo_atual=abs(2*x_atual-10);
               x=solucoes(vizinho);
               custo=abs(2*x-10);
               delta=custo-custo_atual;
               
                %teste de aceitação da solução escolhida
               if(delta<=0)
                       x_atual=x
               else
                       probabilidade=exp(-delta/t);
                       teste=rand;
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                       if probabilidade>teste
                               x_atual=x
                       endif
               endif           

       endfor
       
       %redução da temperatura
       t=r*t;
        i=i+1;
endwhile
x_atual
t
i

%obtém tempo de execução
  tempo_final=clock();
  tempo_final=tempo_final(6);
  
  %exibe tempos
  tempo_inicial;
  tempo_final;
  tempo_final-tempo_inicial
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