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Métodos Heuristicos

Métodos heuristicos' sdo algoritmos exploratérios que buscam resolver problemas.
Geralmente nao envolvem a implementacdo computacional de um conhecimento
especializado (por exemplo, um método heuristico, para resolver uma equagédo de
segundo grau, nao usaria, necessariamente, a férmula de Bascara, mas buscaria, por
outros métodos, uma solugdo que atendesse a equagéao). Por este motivo, muitas vezes,

esses métodos sao classificados como “busca cega”.

Uma solucdo 6tima de um problema nem sempre € o alvo dos métodos heuristicos,
uma vez que, tendo como ponto de partida uma solugdo viavel, baseiam-se em
sucessivas aproximagdes direcionadas a um ponto 6timo. Logo, estes métodos costumam
encontrar as melhores solugbes possiveis para problemas, e ndo solugcbes exatas,

perfeitas, definitivas.

Esta subjetividade, ou falta de precisdo dos métodos heuristicos, ndo se trata de
uma deficiéncia, mas uma particularidade analoga a inteligéncia humana. Muitas vezes,
no cotidiano, resolvemos diversos problemas sem conhecé-los com precisdo. Alguns
exemplos: ao estacionarmos um veiculo, ndo nos preocupamos com o tamanho exato do
mesmo e das vagas disponiveis; ao adogarmos uma bebida, pouco conhecemos as
propriedades do soluto e do solvente; ao tentarmos mover ou levantar um objeto, pouco
nos preocupamos com leis da fisica que possam auxiliar ou comprometer a agdo. Nestas
e em diversas outras situagdes, a melhor solugao imediata € encontrada e adotada, em

detrimento de solu¢gdes comprovadamente 6timas e precisas.

Em (Colin, 2007), ha uma otima analogia entre os métodos heuristicos e o

problema de localizar, empiricamente, o ponto mais alto da Terra. Para resolver este

1 Heuristica ¢ um conjunto de regras e métodos que conduzem a descoberta, a invengao e a resolug@o de problemas.
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problema, partiria-se de um ponto viavel, ou seja, de qualquer lugar na superficie
terrestre, em busca das montanhas mais altas. Neste processo, varias montanhas seriam
escaladas e suas alturas comparadas. O ponto mais alto iria progressivamente
aumentando com as novas descobertas (os chamados o6timos locais). Até que em
determinado momento as buscas se dessem por encerradas por algum motivo (a nao
descoberta de pontos mais altos por um longo periodo, falta de seguranga, restricbes de
tempo ou financeiras) e o ponto mais alto fosse definido, mesmo sem uma comprovagéao

cientifica, mesmo que outro mais alto possa ainda estar oculto.

Assim sdo os métodos heuristicos. Uma busca continua e empirica, com varios
otimos locais, cujo resultado € o melhor que se pode encontrar sob determinadas

condigoes.

Estudaremos neste capitulo os métodos: algoritmos genéticos e simulated

annealing.

1 Algoritmos Genéticos

Este método é baseado na genética (Colin, 2007), como o proprio nome ja diz, e na
selecdo natural. E uma simulagdo computacional iterativa que faz analogia a um processo
evolutivo de varias geragdes de uma populagdo (Santos, 2002), onde cada individuo é
uma representacio abstrata de uma solug¢ao do problema, a selegcao natural € um critério
de escolha das melhores solucdes e eliminacido das ruins, o cruzamento e a mutacao sao

meios para a obtencédo de novas solucgodes.

Os algoritmos genéticos tém caracteristicas bastante peculiares em relagdo a

outros métodos de busca:

e S&0 baseados em um conjunto de solugdes possiveis;



e Nao envolvem modelagem do problema (a modelagem ¢€ restrita as
solugdes);
e O algoritmo apresenta como resultado uma populacdo de solugdes

(classificadas qualitativamente pela sele¢cao natural) e ndo apenas uma;

e Trata-se de um método probabilistico e ndo deterministico. Em outras
palavras, uma mesma populacdo dificimente apresentara os mesmos

resultados para um mesmo problema.

1.1 Terminologia

Os algoritmos genéticos tomam emprestado varios termos da genética, com a qual

mantém conceitos analogos. Os termos principais séo:
e Populagio: conjunto de cromossomos ou solugdes;

e Cromossomo: conjunto de genes. Cada cromossomo representa uma

solugéo do problema. Muitas vezes € tomado como sinébnimo de individuo;

e Gene: menor unidade de informagdo em um cromossomo. Cada gene

representa uma variavel da solucéo do problema;

e Locus: posicao de um gene em um cromossomo. Alguns genes podem ter

seu locus alterado em processos de cruzamento ou mutacao;

e Cruzamento (ou crossover). processo de reprodugdo sexuada em que ha
combinagdo de genes dos cromossomos originando um ou mais
descendentes. O cruzamento é o principal responsavel pela variabilidade

genética;



e Mutagdo: anomalias que causam a alteragao aleatoria de genes, seja na sua

localizagao, seja no seu conteudo;

e Selecdo natural: processo que elimina os individuos menos adaptados (ou

aptos) em relacéo a cada geragéo da populagao;
e Geragao: iteragdo do algoritmo genético;

e Aptidao (ou fitness): indicador qualitativo de um individuo. O grau de aptidao

de um individuo € obtido a partir de uma fungao objetivo;

e Funcéo objetivo: fungdo matematica que avalia as solugdes (individuos) em

relagcado ao problema.

1.2 Passos do algoritmo

Embora haja uma grande variedade e implementagdes, a estrutura geral de um
algoritmo genético é basicamente a mesma. Dado que a representacao de solugdes dos

problemas devem ser modeladas em forma de cromossomos, temos os seguintes passos:

Criar populacio inicial: que pode ser gerada aleatoriamente com 7 cromossomos;
Nova Geracao: criar uma nova geragao (de tamanho fixo (m) ou variavel)
1 — Selecionar n cromossomos para reprodugao;
2 — Realizar cruzamentos de forma aleatoria;
3 — Permitir que mutagdes aleatérias ocorram em alguns dos cromossomos
gerados;
4 — Selecionar os cromossomos melhores adaptados para a proxima geracao e
elimmar os menos adaptados (analogo a selecao natural);
5 — Substituir os individuos eliminados por novos individuos;
Critério de Parada: Caso a solugdo atenda a um critério de parada, ou caso seja
detectada convergéncia da populagdo, PARE. Caso contrario va para o passo NOVA
GERACAO.




Para melhor compreensao, estes passos podem ser visualizados na Figura 1.

Populacao Inicial

pNova Geragio

ndo atendido

Critério
FIM
de e

atendido
Parada

Figura 1: Fluxograma geral de um algoritmo genético

As maiores variagdes que se pode encontrar em algoritmos genéticos envolvem,
normalmente, a selecdo de individuos, cruzamento e mutacdo, e critérios de parada.

Estas variagdes sdo baseadas em particularidades dos problemas a serem resolvidos.

Nas proximas subsecbes veremos em mais detalhes os métodos de selegao,

cruzamento e mutacio.

1.2.1 Selegao

Os métodos de selegao podem ser usados tanto na escolha de quais individuos
serao progenitores, quanto na escolha dos melhores adaptados para passar a proxima
geracao (Santos, 2002). A selecao é baseada em um método de avaliacdo de aptidao de

individuos.

Quanto mais apto um individuo, maior sua probabilidade de realizar cruzamentos

(uma vez que individuos bem adaptados tendem a criar descendentes também aptos) e



melhor é sua resposta em relagdo ao problema (se um algoritmo genético chegar a uma

solugdo 6tima, o cromossomo que representa esta solugéo tera aptiddo maxima).

A aptidao de um individuo pode ser obtida pela equagao:

fi

m

2 f

Aptiddo,=

Onde i é o indice que identifica um individuo na populagcédo, m € o tamanho da
populagdo e f; uma funcdo objetivo relacionada ao problema. O resultado desta
equacgao consiste em uma probabilidade, logo um individuo com aptidao alta tem maior

probabilidade de ser escolhido.

1.2.2 Cruzamento

Os métodos de cruzamento sdo responsaveis pela reprodugcdo de cromossomos e
a mistura de genes, o0 que garante a diversidade e a constante evolugdo populacional.
Basicamente, este mecanismo consiste em selecionar os pontos de cruzamento nos
progenitores, separar 0s cromossomos, e trocar as partes destes cromossomos (Goldbarg

e Luna, 2000). Este mecanismo também é chamado de crossover (Santos, 2002).

A Figura 2 ilustra 0 um cruzamento de dois cromossomos, cujos genes, a titulo de
exemplo, consistem em numeros binarios. Note que foi selecionado apenas um ponto de
cruzamento, entre o quinto e sexto gene, ou locus, e os descendentes receberam as

cargas genéticas trocadas com base neste ponto.



Progenitores

100110001 110001010
Descendentes
110000001 100111010

Figura 2: Cruzamento entre dois cromossomos

Este mecanismo pode sofrer uma série de variagbes. Uma delas é a definicdo de
varios pontos de cruzamento, podendo gerar um numero crescente de descendentes por
cruzamento. Muitas vezes, ao processo de cruzamento € associado o método de

mutacao.

1.2.3 Mutagao

A mutacdo consiste em selecionar um ou mais locus cujos genes devem ser
alterados. Geralmente ocorre na criagdo do cromossomo, ou seja, durante ou logo apos o
cruzamento. A mutagcdo, de forma analoga a biologia evolutiva, € um importante
fendbmeno para a diversidade e evolucédo, podendo ser benéfica, tornando o individuo
mais apto, ou maléficas, condenando o individuo a n&o sobreviver a selegdo natural.
Portanto, ela pode desencadear o surgimento de solu¢gées melhores, bem como solugdes

inferiores ou inviaveis.

A Figura 3 ilustra duas diferentes mutagbes em um mesmo cromossomo. Note que
em negrito estdo nos locus escolhidos para a troca de genes (o terceiro gene passou para
o lugar do oitavo gene, e este passou a ocupar o terceiro locus). Ja o locus sublinhado

teve seu gene alterado de 0 para 1.



Cromossomo antes da mutagao Cromossomo apos a mutagao

— P
101001001 100011011

Figura 3: Mutacdo de genes em um cromossomo.

Apesar de sua importancia para a diversidade e evolugdo, a mutagcdo excessiva em
uma populagdo pode acarretar varias solugdes anbémalas, impedindo a evolugcdo da

populacgao.

1.3 Variagoes das Etapas dos Algoritmos Genéticos

Baseado nos conceitos apresentados, passaremos a analisar variantes das etapas

dos algoritmos genéticos. Inicialmente trataremos das variagbes dos operadores

cruzamento. A seguir serao tratadas outras possibilidades de selegao e codificacdo. Por

fim, serdo analisadas algumas alternativas para a formagao de populagoes.

1.3.1 Outras Estratégias de Crossover

Dentre as varias alternativas existentes, nesta secdo analisaremos o crossover de

dois pontos e o crossover uniforme.

Crossover de dois pontos

No crossover de dois pontos, apenas 0 material genético entre os locus escolhidos

sao trocados. Na Figura 4, os locus escolhidos foram o terceiro e o sexto. Pode-se notar



que os genes a esquerda e a direita do intervalo escolhido permanecem inalterados, ao

contrario dos genes dentro do intervalo.

Progenitores

100110001 110001010

Descendentes

100001001 110110010

Figura 4: Crossover de dois pontos

Esta variagdo do crossover tende a tornar o algoritmo genético mais eficiente, uma
vez que contribui para a variabilidade genética (Linden, 2006). Este método abrange
também o crossover de um ponto, visto anteriormente, caso o primeiro ou ultimo gene

sejam escolhidos.

Crossover uniforme

O crossover uniforme consiste em um sorteio binario para cada gene, definindo
como os genes de cada progenitor serdo distribuidos entre os descendentes. Por
exemplo, caso seja sorteado 1 para um determinado gene, o primeiro descendente
recebe o gene do primeiro progenitor e o segundo descendente recebe o gene do
segundo progenitor. Caso seja sorteado 0, o processo se inverte. Este sorteio € realizado

para cada um dos genes dos cromossomos.

Esta estratégia de crossover tende a prover maior diversidade, porém tem um



custo de processamento mais alto, uma vez que ha um sorteio para cada gene de cada

individuo.

1.3.2 Outras Estratégias de Selecao

As estratégias de selecdo podem acelerar ou retardar tanto a busca pela solugao
6tima, quanto a convergéncia, uma vez que definem os cromossomos que irdo gerar e
participar da préxima geragdo. Dada a importancia da selegdo analisaremos algumas

variacoes.

Selegao por Torneio

Neste método, ha um torneio entre individuos selecionados aleatoriamente, sem
qualquer favorecimento aos melhores adaptados (Linden, 2006). Uma vez selecionados
os individuos, os mais aptos vencerdo o torneio. Devem ser definidos previamente o

numero de individuos a participarem de cada torneio e quantos torneios serao realizados.

A vantagem deste método € a impossibilidade de alguns cromossomos dominarem

a populagéao, o que levaria a uma rapida convergéncia.

Selegao por Vizinhanca

Neste método, também chamado de selegdo local, sdo definidas vizinhancgas
aleatdrias, ou seja, intervalos aleatérios de individuos. Os individuos destas vizinhangas
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poderdo realizar crossover entre si. Caso haja intersegdo entre vizinhangas (individuos
em mais de uma vizinhanga), os individuos destas poderdo interagir entre si. As
interse¢cdes sdo bastante desejaveis, uma vez que impede que O crossover seja
segmentado em pedagos pequenos da populagdo, o que acarretaria em baixa

variabilidade.

1.3.3 Outras Estratégias de codificacao

O método de codificacdo de solucdes apresentado foi a representagao binaria.

Porém, esta representacao apresenta algumas limitagdes(Linden, 2006):

e Variaveis continuas e de alta precisdo podem resultar em cromossomos

excessivamente grandes;

e O numero de solugdes codificadas é sempre uma poténcia de dois: 2*,
onde k € o numero de genes de um cromossomo. Caso a variavel
representada descreva um numero finito de estados que ndo seja uma

poténcia de dois, varias solugdes possiveis serdo invalidas?;

Portanto podemos fazer uso de outras estratégias de codificagéo.

2 Por exemplo: uma variavel pode ter apenas cinco estados; neste caso serdo necessarios dois genes, pois 2° = 8. Logo,
trés solugdes serdo invalidas, o que exige um certo tratamento, tornando o algoritmo mais complexo e menos
eficiente.
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Representagao numérica

Em muitos problemas pode ser mais conveniente 0 uso Cromossomos com
numeros reais ao invés de binarios. A representagcdo numérica nao traz limitacdes quanto

a precisao e permite que os cromossomos tenham tamanho minimo.

Utilizando representagdo numérica, o cromossomo do problema da equacao de 2°
grau teria apenas dois genes, um para cada solugdo. A Figura 5 apresenta algumas

solucdes codificadas em numeros reais.

1 5
20 3
8,5 2
0 -15
2,5 3
4 1

Figura 5: Codificag¢do de solugdes usando numeros reais

As vantagens desta estratégia de codificagao sao: a possibilidade de representar
casas decimais, numeros negativos e o tamanho reduzido dos cromossomos. Entretanto

os operadores genéticos devem ser adaptados:

e O crossover sera mais simples, permitindo apenas a permuta dos pares de

genes de cada cromossomo;
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e A mutagdo envolvera a inversdo dos genes ou a alteragéo do valor contido

neles;

A representagcdo numeérica é flexivel e abrangente, podendo se utilizada em varios
tipos de problemas que envolvam variaveis quantitativas. Porém, quando se trabalha com

variaveis categoricas, um outro tipo de representagédo € necessaria.

Representagao categorica

Na representacéo categorica, sdo codificados conjuntos valores predefinidos. Sao

exemplos de variaveis categoricas:

e Diregbes: esquerda, direita, frente e tras; ou norte, sul, leste e oeste;

e Basesde DNA: A, C,GeT,;

e Substancias quimicas: Na, CI, O, N, H e outros.

Esta representacado pode codificar solugcdes de problemas como:

e Caminho para sair de um labirinto;
e Busca de um genoma;
e |dentificacdo ou composicdo de uma substancia quimica,;

O operador genético que necessitaria de uma maior adaptagdo seria a mutagao,

uma vez que, ao alterar o conteudo de um gene, ha um conjunto limitado de

13



possibilidades para mutacao.

1.3.4 Outras Estratégias de Formacao de Populagées

Visando tirar o melhor proveito das qualidades de cada geracéo, pode-se adotar

diferentes alternativas para se compor uma populacgao.

O tamanho é um importante critério na formacédo e evolugcdo de uma populagao,
pois uma populacdo muito pequena dificiimente alcangara uma grande variedade
genética. Ja uma populagdo muito grande (embora tenha maior diversidade) tornara a
execugao bastante pesada, afetando a eficiéncia do algoritmo genético. Infelizmente néo
existe um tamanho padrao indicado para todos os tipos de problema. Modelagens com
pequenos cromossomos podem ter grandes populagdes sem perda de eficiéncia. Ja
modelagens com grandes cromossomos devem ter populagdes de tamanho limitado
devido ao custo de processamento. Portanto, deve-se obter empiricamente o tamanho
ideal para cada problema, podendo-se adotar um valor inicial para testes, valor este

baseado no tamanho do cromossomo. Por exemplo: 20 * Tamanho do Cromossomo.

Outra alternativa é adotar populagdes de tamanho variavel. Isto pode ser feito
associando uma idade a cada individuo. A medida que a idade vai aumentando, a cada
geragado, aumenta a probabilidade de “morte” dos individuos. Portanto, o tamanho da
populagdo varia com a “taxa de natalidade” (baseada nos critérios de selegdo e

crossover) e com a “taxa de mortalidade”.

Além das definicdbes de tamanho, pode-se adotar a técnica de elitismo. Nesta
técnica, normalmente integrada ao processo de selegdo, determinado numero de

melhores individuos deve passar a préxima geragdo, garantindo que boas solugdes
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permanegam na populagao e possam gerar solugdes melhores nas proximas geragoes.

1.4 Exemplo: Algoritmo genético para resolver equacgées de 1° grau.

Uma equacgéao de 1° grau completa € dada no seguinte formato:

bx—c=0

Uma equacao do 1° grau pode ser facilmente resolvida por operagdes matematicas
simples. Mas vamos desenvolver um exemplo didatico de algoritmo genético para

introduzir o leitor a implementagao deste método.

Equacao utilizada

Para este exemplo foi usada a equagao abaixo, cuja cuja solugéo é 5.

2x—10=0

Modelagem da solugao

As solugdes serao representadas por numeros binarios de seis bits. Logo, cada
cromossomo sera constituido por seis genes, cujos valores podem ser 1 ou 0. Estes

numeros binarios sao convertidos para numeros inteiros e posteriormente para numeros

15



reais. Apesar da solucado desta equacao ser inteira, é interessante trabalhar com numeros

reais, pois varios problemas trabalham com variaveis continuas.

Criacao da populagao inicial

A populagéo inicial foi criada com o uso fungdes geradoras de numeros aleatérios.
Sendo cada gene de cada individuo definido aleatoriamente, € bastante provavel que haja
uma significativa variabilidade populacional na primeira geragao. O tamanho da populagéo

foi fixado em cinquenta individuos.

Selecao

A selecéo foi baseada na fungao objetivo:

Esta fungdo sera aplicada a cada cromossomo. Quanto mais préximo a solugao
representada estiver de uma da solugao 6tima, mais proximo de 1 sera o resultado desta
funcdo. Portanto, quando um cromossomo representar uma das solugdes o6timas, o

resultado da fungao sera exatamente 1.

A aptidao de cada cromossomo sera obtida a partir da formula geral:

16



i

Aptiddo, =

m

Evidentemente, quanto mais préoximo das solugdes 6timas, maior sera a aptidao.

Ha duas situagdes em que um individuo pode ser escolhido:

e A primeira é deterministica: O individuo cuja aptiddo for maior que a
probabilidade de selecéo (parametro pré-definido que se tornara cada vez
mais restritivo a cada geracgao, “forcando” a evolugado da populagao) sera

selecionado;

e A segunda é probabilistica: Para o individuo de aptiddo menor que a
probabilidade de selegdo, sera gerado um numero aleatério. Se este
numero for maior que a aptiddo do individuo, ele sera selecionado. Este
critério tende a selecionar individuos menos adaptados (uma vez que é
menor a probabilidade de um numero aleatério ser maior que a aptidao de
individuos bem adaptados), visando garantir a diversidade genética e evitar

a convergéncia da populagéo.

Cruzamento

Para cada cruzamento sdo escolhidos, aleatoriamente, dois individuos ja
previamente selecionados. Em seguida, sao definidos, também aleatoriamente, dois locus
para entdo as cargas genéticas serem trocadas gerando dois novos individuos, conforme

exibido na Figura 4.
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Mutacgao

Neste exemplo, foi definida a taxa, ou porcentagem, de mutagéo na populagéo, ou
seja, um numero fixo de mutagdes ird ocorrer a cada geragdo. Com base nesta taxa é
dada a probabilidade de um individuo sofrer ou ndo mutagao. Por exemplo, uma taxa de
10% indica que cada individuo possui probabilidade 0,1 de sofrer uma mutacido. Ja o
locus de mutacdo é definido aleatoriamente e os bits nestes locais sédo invertidos,

conforme exibido na Figura 3.

Em boa parte das publicacbes, a mutacéo é totalmente aleatdria, tando quanto a
taxa de ocorréncia a cada geragdo, quanto a probabilidade individual. Porém, a
parametrizagao deste operador genético permite um maior controle sobre a diversidade e
evolugdo da populagdo, o que pode ser desejavel quando se esta adaptando um
algoritmo genético para diferentes problemas, ou quando se busca estabelecer

parametros otimizados de busca.

Substituicao

Os individuos néo selecionados para o cruzamento sédo substituidos pelos novos
cromossomos. Desta forma, a populagdo mantém tamanho constante e permite que

individuos com alta aptiddo sobrevivam a varias geragdes®.

Critério de parada

3 A aptiddo ¢ relativa, ou seja, ela varia de acordo com a evolug@o de uma populagdo. Logo, um individuo bem
adaptado em uma determinada geracao, pode vir a ter uma baixa aptidao em gerac¢des futuras.
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O critério de parada é baseado em solucdes quase 6timas. Quando uma solucéo
se mantém como a melhor durante dez geragdes o algoritmo € encerrado. Este critério
nao garante solugéo 6tima, tampouco garante que um 6timo local seja encontrado. Como
ocorre em qualquer implementagdo de algoritmos genéticos, ha risco de a populagéo

convergir para um 6timo local, o que pode ser evitado com a variabilidade populacional.
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Performance do Algoritmo

Foram criadas quinze populagdes, ou seja, o algoritmo genético foi executado 15

vezes para coleta e analise dos dados exibidos na Tabela 1.

Tabela 1: Resultados de 15 populagdes para o problema da equagdo de 1° grau

Populagiio Nl’lmer? de Temp(~) de
Geracoes Execucao (s)
1 25 11,94
2 21 9,82
3 17 7,98
4 19 8,78
5 31 14,33
6 19 8,65
7 29 13,01
8 29 13,27
9 31 14,61
10 16 7,22
11 21 10,1
12 21 9,69
13 30 13,78
14 16 7,4
15 13 6,17
Maximo 31 14,61
Minimo 13 7,22
Média 22,53 10,45
Coemedeam o

Todos as populagdes encontraram uma solugao 6tima ou quase 6tima, havendo

aproximacao nestes casos apenas na terceira casa decimal. Houve variagdo apenas no
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numero de geragdes e tempo de execugao de cada populagdo. Em outras palavras, todas

as populagdes foram eficazes, porém nem todas foram eficientes.

Em relagdo ao numero de geracgdes, houve valores extremos de 13 e 31, com
média de aproximadamente 22 geragdes. Ja os tempos de execugado variaram entre os

extremos 7,22 e 14,61 segundos. A média de tempo foi de 10,45 segundos.

Os diagramas de dispersédo destes dados sdo exibidos na Figura 6 e Figura 7.
Tanto a andlise destes diagramas, quanto a andlise dos coeficientes de variagao(Vieira,
1999) da Tabela 1, mostram a mesma dispersao do tempo de execugdo e numero de
geragbes”. Entretanto é bastante dbvio que o nimero de geragdes e o tempo de execugéo

sdo0 variaveis com forte correlagao®.

Dispersao de Tempos de Execucéo
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Figura 6: Diagrama de dispersdo do numero de geragoes

4 Ao contrario do nimero de geragdes, os tempos de execu¢do podem variar de acordo com a capacidade de
processamento dos recursos computacionais utilizados. Quanto maior o poder de processamento, menor sera a

variagdo dos tempos de execu¢do. Este algoritmo genético foi executado em um Pentium 4 de 3GHz e 512MB de
RAM.

5 A correlagdo destas varidveis, para o recurso computacional utilizado, foi 1, o que indica uma forte correlacao.
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Dispersao de Numero de Geracdes
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Figura 7: Diagrama de dispersdo dos tempos de execu¢io

O cadigo fonte (em Octave®) deste algoritmo genético esta disponivel no Apéndice

22



2 Simulated Annealing

A metalurgia utiliza um processo de tratamento térmico visando alterar a estrutura
cristalina de metais conferindo-lhes caracteristicas mecanicas e estruturais desejadas.
Este processo, chamado de recozimento, consiste em aquecer continuamente metais até
determinada temperatura, e, posteriormente, resfria-los em um forno com resfriamento
controlado. Diferentes velocidades de resfriamento levam a diferentes propriedades nos
metais. Um resfriamento muito rapido acarreta em imperfeicbes nos cristais metalicos. Ja

um resfriamento muito lento leva a formacéao de cristais muito grandes.

Baseado neste processo, foi criado o método heuristico chamado simulated
annealing (SA), ou recozimento simulado, em portugués. Neste método, parte-se de uma
solugdo viavel de um problema e passa-se a aceitar solugdes vizinhas. A principio, nas
altas temperaturas (analogamente falando), ha grande probabilidade de qualquer solugao
vizinha ser aceita. Mas, a medida que ocorre o resfriamento, ha maior probabilidade de

solugdes melhores serem aceitas.

Como vantagens do SA pode-se citar tanto a sua capacidade de resolver
problemas de diversos niveis de complexidade em varias areas especificas, quanto a sua
relativa previsibilidade e simplicidade, uma vez que trabalha com poucos parametros e

envolve operagcdes matematicas e computacionais simples.

2.1 Passos do Algoritmo

Antes de iniciar um algoritmo de SA, é necessario definir os parémetros:
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e t: temperatura inicial;

e . fator de resfriamento, que determina a velocidade de “resfriamento” do

algoritmo. O fator de resfriamento deve estar no intervalo: 0O<r<1;

e k: numero de solugdes vizinhas a serem testadas a cada nivel de

temperatura;

Além destes parametros, deve ser definido o critério de parada, podendo se tratar
de um numero maximo de iteragdes, uma temperatura minima ou uma solugao 6tima ou

quase o6tima.

Os passos do SA sao dados a seguir.

Criar conjunto de solugdes iniciais
Inicializacdo dos parametros: 7, r e k
Escolher uma solucao inicial: x
Iteracao:
Repita de 1 até k
1 — Escolher aleatoriamente uma solu¢ao vizinha: x *
2 — Comparar o custo da solugdo atual e da nova solucao:
A = custo(x *)-custo(x)
3 — Se A<0 (fungdo objetivo diminui)
entdo x=x*
sendo se probabilidade > exp(-A/t)
entio x=x*
Reduza a temperatura: ¢t=¢*r

Critério de Parada: Caso a solucdo atenda a um critério de parada, PARE. Caso

contrario realize uma nova iteracao.
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O algoritmo acima exposto ¢ aplicavel a um problema de minimizagdo, uma vez que A sera
menor ou igual a zero se o custo da nova solugdo (x*) for menor ou igual ao custo da solugdo atual
(x). Mesmo que a nova solu¢do ndo minimize o custo, ela ainda assim pode ser aceita. Para tanto,
deve-se gerar um nimero aleatorio (ou seja uma probabilidade), e, se este for maior que exp(-4/
f) , a solucdo sera aceita. Note que a medida que a temperatura ¢ diminui, o valor de exp(-4/¢t)
aumenta, consequentemente haverd menor chance de se gerar um numero aleatorio maior que este
valor e, portanto, menor probabilidade de uma solugdo ruim ser aceita. E exatamente esta a esséncia

do SA.

Caso o valor de r seja muito pequeno, haverd um resfriamento rapido, fazendo com que
o algoritmo se limite a uma busca local (Colin, 2007). Entretanto, um » muito grande (préximo de

1) faz com que o algoritmo possa gastar muitas iteragdes com solucdes ruins.

Para um problema de maximizag¢ao, este algoritmo pode ser facilmente adaptado. Basta

considerar aceitaveis as solu¢cdes com A>0, ou com probabilidade < exp(A/t).

2.2 Exemplo: Um SA para resolver equacgodes de 1° Grau

Uma equacgéao de 1° grau completa € dada no seguinte formato:

bx—c=0

Uma equacao do 1° grau pode ser facilmente resolvida por operagdes matematicas
simples. Porém, vamos desenvolver um exemplo didatico de SA para resolver uma

equacao de 1° grau , afim de introduzir o leitor a implementacgao deste algoritmo.
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Equacéo utilizada

Para este exemplo também foi usada a equacéao:

2x—10=0

A solugao desta equacgao € x=5, e sua modelagem para SA ndo envolve nenhuma

adaptacgao, ao contrario da implementagdo em Algoritmos Genéticos.

Criagdo das solugées iniciais

As solugdes iniciais foram criadas com o uso fungdes geradoras de numeros

aleatdrios em torno de uma solugéo inicial. O numero de solugdes foi fixado em dez.

Critério de parada

Como critério de parada foi definida a temperatura de 10°. Temperaturas mais

baixas demonstraram pouco contribuir com um melhor resultado.

Performance do Algoritmo
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O algoritmo foi executado 15 vezes para coleta e andlise dos dados exibidos na

Tabela 2.

Tabela 2: Resultados de 15 execugoes do SA para o problema da equacgdo de 1° grau

Tempo de
Execu¢ao Resultado Execucao

(s)

1 4,99 0,11

2 5,01 0,12

3 5,02 0,11

4 5,00 0,12

5 5,06 0,12

6 4,97 0,13

7 5,02 0,12

8 4,97 0,12

9 5,02 0,13

10 4,98 0,12

11 5,01 0,12

12 4,97 0,12

13 5,02 0,12

14 5,17 0,12

15 5,04 0,11
Maximo 5,17 0,13
Minimo 4,97 0,11
Média 5,02 0,12
Coteenede oo oas

Esta implementacdo de SA se mostrou tanto eficiente quanto eficaz (embora a
implementagdo em Algoritmos Genéticos tenha tido resultados mais precisos), uma vez

que as execugdes exigiram pouco tempo de processamento e retornaram valores
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bastante proximos do resultado 6timo. Sdo estas caracteristicas, nas suas devidas

proporcdes, que tornam o SA atraente para problemas mais complexos.

Os diagramas de dispersao destes dados sdo exibidos na Figura 8 e Figura 9.
Ficam evidenciados nestes diagramas a baixa dispersdo das execugdes do SA. Esta é

outra caracteristica bastante desejavel do SA, a previsibilidade.

Dispersao de Tempos de Execucao

0,14
0,13 0,13
0,13 L
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Figura 8: Diagrama de dispersdo de tempos de execugdo do SA
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Figura 9: Diagrama de dispersdo dos resultados do SA

O cddigo fonte (em Octave®) deste exemplo esta disponivel no Apéndice B.
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1.5 Exercicios

1. Utilizando o exemplo estudado na secado 1.4, experimente variar os parametros
tamanho da populacido, tamanho do cromossomo, probabilidade inicial de selecao
e probabilidade de mutacéo, verifique como a eficacia e eficiéncia do algoritmo sao

afetadas.

2. Implemente a estratégia de crossover uniforme no algoritmo da secdo 1.4.

Verifique os ganhos ou perdas de performance obtidos.

3. Implemente as estratégias de selegao por torneio e por vizinhanga no algoritmo da
secao 1.4. Verifique, para cada uma destas estratégias, os ganhos ou perdas de

performance obtidos.

4. Modifique o algoritmo da sec¢do 1.4 para que o tamanho da populagcdo seja

variavel. Verifique os ganhos ou perdas de performance obtidos.

5. Altere os parametros do algoritmo SA da secado 2.2 e verifique as variagdes dos

resultados e tempos de execucéo.
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Apéndice A — Cédigo Fonte do Algoritmo Genético para
Resolugcao de Equacgoes de 1° Grau

clc

tempo_inicial=clock();
tempo_inicial=tempo_.inicial(6);
%°/o°/o°/o%par‘ame‘rr‘os"/o"/o"/o"/o"/o"/o

sup=100;
inf=0;

%tamanho da populagdo

m=50

%tamanho do cromossomo

n=4;

%probabilidade inicial de selecao
ps=0.1;

%probabilidade de mutagdo
pm=0.5;

%inicia vetor de solugdes
solucoes=[];

%% o %07 %o /0% % Tocriagdo da primeira geragdo

% %% % Toprimeiro cromossomo é formado por uma sequencia de 1
cromossomos=ones(1,n);

melhor=-1;
cont_melhor=0;
x_melhor=[];

%inicia contador
i=1;

b=2;
c=-10;

%repetir até atingir tamanho da populagdo
while (i<=m-1)

%insere primeiro gene
if rand>0.5
NOvVOo_Cromossomo=1;
else
novo_cromossomo=0;
endif
%cria um individuo (repete até que seja atingido o tamanho do cromossomo)
for j=1:n-1
if rand>0.5
novo_cromossomo=[novo_cromossomo 1];
else
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novo_cromossomo=[novo_cromossomo 0];
endif
endfor

cromossomos=[cromossomos; novo_cromossomo];

i++;
endwhile

geracoes=1;

% inicio do processo iterativo
while (1)

%070 0% T /0% % Tocriagdo de nova geragdo

Yoo %o %o Yo %o oo To %o To %o To %o To Yo To Yo 7o Yo %o To %o To %o To 7o selegdo

%inicia vetor de resultados da funcao objetivo e aptidoes
funcao=zeros(m,1);
aptidao=zeros(m,1);

individuos_reais=[1;

%realiza teste de aptidao para cada cromossomo
for i=1:m
%valor de x para cromossomo
Jocromossomos(i,:)
Jecromossomos(i,1:n)
x=bin2dec(num2str(cromossomos(i,1:n)));

%converte o nimero inteiro para real
x=inf+((sup=inf)/2/~n=-1)*x -rand;

%armazena individuos convertidos para numeros reais
individuos_reais=[individuos_reais; x];

%obtem resultado da equacao
teste=b*x+c;
%fungdoo objetivo. Quanto mais proximo o resultado da equagdo estiver de zero, melhor serd o
valor de x, mais préximo funcao estard de 1
funcao(i)=1/(2”abs(teste));
%funcao(i) = teste;
endfor

%[individuos_reais funcao]
%soma todo vetor funcao
soma=sum(funcao);
%média das funcoes

media=soma/m;

selecionados=[];
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i=1;
num_selecionados=0;
while num_selecionados<=ps*m

%cada individuo € escolhido de forma deterministica

if (funcao(i)>=max(funcao)-abs(media)/2)
selecionados=[selecionados i];
num_selecionados++;

endif

i++;

if(i>m)
break;

endif

endwhile

%caso nenhum individuo tenha sido selecionado, metade da populagdo € escolhida
if(size(selecionados,1)==0)
for(i=1:m/2)
selecionados(i)=i;
endfor
endif

%a probabilidade deve ir decrescendo a medida que a populagdo converge (ho inicio muitos podem
ser selecionados, mas gradativamente

%a selegdo vai se tornando mais restritiva)

ps=ps+(1/m~1);

Yoo %o %o Voo oo o To o Vo Vo Vo Vo Vo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo Yo fim de Selegao
Yoo oo Yoo Vo %o %o Yo Vo 7o Yo Yo Yo Vo Yo Yo Yo Yo Yo 7o %o Yo critério de pGI"GdG

%verifica se hd solugdo melhor que a atual
if(melhor<max(funcao) )
%hova solugdo passa a ser a melhor e sua posigdo é armazenada
[melhor posicao]=max(funcao);
cont_melhor=0;
%hovo melhor x é armazenado
x_melhor=individuos_reais(posicao,:) ;
else %caso ndo haja solugdo melhor que a atual, contador é incrementado
cont_melhor=cont_melhor+1;
%se uma mesmo solugdo for a melhor durante 10 geragdes, entdo programa se encerra
if((cont_melhor==10) & (melhor!=-1))
X_melhor
melhor
break;

endif
endif

ToToToTo Yoo ToTo Vo Yo o Yo To Vo Vo Yo Vo Yo Vo Vo Yo Vo Yo Vo fim do critério de pﬂl"CldG
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Voo o Yo Yo Vo Vo Vo Yo Yo Vo Vo Yo Yo Yo o Vo Yo Yo Yo o Vo Vo Yo Yo Yo o cruzamento

if(m==num_selecionados)
novos_individuos=round(num_selecionados/2);
else
novos_individuos=round(m-num_selecionados);
endif
if(mod(novos_individuos,2)1=0)
round(novos_individuos++);
endif
num_selecionados;

novos_cromossomos=[];
i=1;

while i<=novos_individuos
%seleciona individuos aleatoriamente
individuol=round(rand*10);
if(individuol>num_selecionados | individuol==0)
individuol=num_selecionados;
endif

individuo2=round(rand*10);

if(individuo2>num_selecionados | individuo2==0)
individuo2=1;

endif

%seleciona pontos de crossover aleatoriamente

crossoverl=round(rand*10);

while(crossoverl>=n/2 | crossoverl==0)
crossoverl=round(rand*10);

endwhile

crossover2=crossoverl+n/2;

% crossover2=round(rand*10);

Yewhile(crossover2>=2*n | crossover2==0 | crossover2<=crossoverl)
% crossover2=round(rand*10);

%endwhile

%operagdo de crossover de dois pontos

Nnovos_cromossomos=[novos_cromossomos;
cromossomos(selecionados(individuol),1:crossoverl)
cromossomos(selecionados(individuo2),(crossoverl+1):crossover2)
cromossomos(selecionados(individuol),(crossover2+1):n)];

Novos_cromossomos=[novos_cromossomos;
cromossomos(selecionados(individuo2),1:crossoverl)
cromossomos(selecionados(individuol),(crossoverl+1):crossover2)
cromossomos(selecionados(individuo2),(crossover2+1):n)];

%soma a quantidade de individuos criados ao indice i
i=i+2;

33



)

)

)

endwhile

%inclusdo cromossomos selecionados para préxima geragdo
Nnovos_cromossomos=[novos_cromossomos ; cromossomos(selecionados,:)];

%070 o Yoo %o Yo To %o o %o Yo To %o Yo To %o To %o 1o To %o Yo To 7o o 7o mutagdo

J%e0btém nimero de mutagdes
num_mutacoes=m*pm;

for i=1:num_mutacoes
%escolha de individuo para mutagdo
individuo=round(rand*100);
while(individuo>m | individuo==0)
individuo=round(rand*100);
endwhile

%escolha de locus para mutagdo
locus=round(rand*10);
while(locus>n | locus==0)

locus=round(rand*10);
endwhile

%efetua inversdo do bit na posigdo selecionada
novos_cromossomos(individuo,locus)=not(novos_cromossomos(individuo,locus)

%escolha de locus para mutagdo
locus=round(rand*10);
while(locus>n | locus==0)

locus=round(rand*10);
endwhile

%efetua inversdo do bit na posigdo selecionada
novos_cromossomos(individuo,locus)=not(novos_cromossomos(individuo,locus)

%escolha de locus para mutagdo
locus=round(rand*10);
while(locus>n | locus==0)

locus=round(rand*10);
endwhile

%efetua inversdo do bit na posigdo selecionada
novos_cromossomos(individuo,locus)=not(novos_cromossomos(individuo,locus)

endfor

%geragdo anterior é substituida pela atual
Cromossomos=novos_Cromossomos;
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geracoes++;
ps
geracoes

%se probabilidade de selegdo for negativa, ela é resetada e a probabilidade de mutagdo dobrada
if(ps<0)
ps=0.1;
pm=pm*2;
endif
endwhile

%obtém tempo de execugdo
tempo_final=clock();
tempo_final=tempo_final(6);

%exibe tempos
tempo_inicial

tempo_final
tempo_final-tempo_inicial
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Apéndice B — Cédigo Fonte do SA para Resolugao de

Equacoes de 1° Grau

tempo_inicial=clock();

tempo_inicial=tempo_inicial(6);

%temperatura inicial
t=5;

Jorepeticdes

k=5;

%fator de resfriamento
r=0.8;

%nidmero de iteracdes
num_iter=50;
%solucdo inicial

x=0;
%solugdo atual
x_atual=x;

%ndmero de solucdes
num_solucoes=10;

i=1;
while(t>102-6)

%cria vizinhanga de solugdes
X_maximo=x_atual+10;
X_minimo=x_atual-10;
solucoes=rand(num_solucoes,1)*(x_maximo=x_minimo)+x_minimo;
solucoes=[x;solucoes];

for(m=1:k)

%escolhe vizinho aleatoriamente
vizinho=int32(rand*(num_solucoes-1)+1);

%cdlculo de custos
custo_atual=abs(2*x_atual-10);
x=solucoes(vizinho);
custo=abs(2*x-10);
delta=custo-custo_atual;

%teste de aceitagdo da solugdo escolhida
if(delta<=0)
x_atual=x
else
probabilidade=exp(-delta/t);
teste=rand;
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if probabilidade>teste
x_atual=x
endif
endif

endfor

%redugdo da temperatura
t=r*t;
i=i+1;
endwhile
x_atual
t
i

%0btém tempo de execugdo
tempo_final=clock();
tempo_final=tempo_final(6);

%exibe tempos

tempo_inicial;

tempo_final;
tempo_final-tempo_.inicial
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