
Métodos Heurísticos
Teoria e Implementações

Tutorial desenvolvido por:
Fabrício Bueno

IFSC/Araranguá, 2009

Sumário
Métodos Heurísticos...1

1Algoritmos Genéticos..2
1.1Terminologia..3
1.2Passos do algoritmo...4

1.2.1Seleção..5
1.2.2Cruzamento..6
1.2.3Mutação..7

1.3Variações das Etapas dos Algoritmos Genéticos...8
1.3.1Outras Estratégias de Crossover...8
1.3.2Outras Estratégias de Seleção...10
1.3.3Outras Estratégias de codificação...11
1.3.4Outras Estratégias de Formação de Populações...14

1.4Exemplo: Algoritmo genético para resolver equações de 1º grau.......................................15
2Simulated Annealing..23

2.1Passos do Algoritmo..23
2.2Exemplo: Um SA para resolver equações de 1º Grau..25
1.5Exercícios...30

Apêndice A – Código Fonte do Algoritmo Genético para Resolução de Equações de 1º Grau........31
Apêndice B – Código Fonte do SA para Resolução de Equações de 1º Grau...................................37

Índice de Figuras
Figura 1: Fluxograma geral de um algoritmo genético..5
Figura 2: Cruzamento entre dois cromossomos...7
Figura 3: Mutação de genes em um cromossomo..8
Figura 4: Crossover de dois pontos..9
Figura 5: Codificação de soluções usando números reais..12
Figura 6: Diagrama de dispersão do número de gerações..21
Figura 7: Diagrama de dispersão dos tempos de execução..22
Figura 8: Diagrama de dispersão de tempos de execução do SA...28
Figura 9: Diagrama de dispersão dos resultados do SA...28

Índice de tabelas
Tabela 1: Resultados de 15 populações para o problema da equação de 1º grau...............................20
Tabela 2: Resultados de 15 execuções do SA para o problema da equação de 1º grau....................27

Métodos Heurísticos

Métodos heurísticos1 são algoritmos exploratórios que buscam resolver problemas.

Geralmente não envolvem a implementação computacional de um conhecimento

especializado (por exemplo, um método heurístico, para resolver uma equação de

segundo grau, não usaria, necessariamente, a fórmula de Báscara, mas buscaria, por

outros métodos, uma solução que atendesse à equação). Por este motivo, muitas vezes,

esses métodos são classificados como “busca cega”.

Uma solução ótima de um problema nem sempre é o alvo dos métodos heurísticos,

uma vez que, tendo como ponto de partida uma solução viável, baseiam-se em

sucessivas aproximações direcionadas a um ponto ótimo. Logo, estes métodos costumam

encontrar as melhores soluções possíveis para problemas, e não soluções exatas,

perfeitas, definitivas.

Esta subjetividade, ou falta de precisão dos métodos heurísticos, não se trata de

uma deficiência, mas uma particularidade análoga à inteligência humana. Muitas vezes,

no cotidiano, resolvemos diversos problemas sem conhecê-los com precisão. Alguns

exemplos: ao estacionarmos um veículo, não nos preocupamos com o tamanho exato do

mesmo e das vagas disponíveis; ao adoçarmos uma bebida, pouco conhecemos as

propriedades do soluto e do solvente; ao tentarmos mover ou levantar um objeto, pouco

nos preocupamos com leis da física que possam auxiliar ou comprometer a ação. Nestas

e em diversas outras situações, a melhor solução imediata é encontrada e adotada, em

detrimento de soluções comprovadamente ótimas e precisas.

Em (Colin, 2007), há uma ótima analogia entre os métodos heurísticos e o

problema de localizar, empiricamente, o ponto mais alto da Terra. Para resolver este

1 Heurística é um conjunto de regras e métodos que conduzem à descoberta, à invenção e à resolução de problemas.

1

problema, partiria-se de um ponto viável, ou seja, de qualquer lugar na superfície

terrestre, em busca das montanhas mais altas. Neste processo, várias montanhas seriam

escaladas e suas alturas comparadas. O ponto mais alto iria progressivamente

aumentando com as novas descobertas (os chamados ótimos locais). Até que em

determinado momento as buscas se dessem por encerradas por algum motivo (a não

descoberta de pontos mais altos por um longo período, falta de segurança, restrições de

tempo ou financeiras) e o ponto mais alto fosse definido, mesmo sem uma comprovação

científica, mesmo que outro mais alto possa ainda estar oculto.

Assim são os métodos heurísticos. Uma busca contínua e empírica, com vários

ótimos locais, cujo resultado é o melhor que se pode encontrar sob determinadas

condições.

Estudaremos neste capítulo os métodos: algoritmos genéticos e simulated

annealing.

1 Algoritmos Genéticos

Este método é baseado na genética (Colin, 2007), como o próprio nome já diz, e na

seleção natural. É uma simulação computacional iterativa que faz analogia a um processo

evolutivo de várias gerações de uma população (Santos, 2002), onde cada indivíduo é

uma representação abstrata de uma solução do problema, a seleção natural é um critério

de escolha das melhores soluções e eliminação das ruins, o cruzamento e a mutação são

meios para a obtenção de novas soluções.

Os algoritmos genéticos têm características bastante peculiares em relação a

outros métodos de busca:

● São baseados em um conjunto de soluções possíveis;

2

● Não envolvem modelagem do problema (a modelagem é restrita às

soluções);

● O algoritmo apresenta como resultado uma população de soluções

(classificadas qualitativamente pela seleção natural) e não apenas uma;

● Trata-se de um método probabilístico e não determinístico. Em outras

palavras, uma mesma população dificilmente apresentará os mesmos

resultados para um mesmo problema.

1.1 Terminologia

Os algoritmos genéticos tomam emprestado vários termos da genética, com a qual

mantêm conceitos análogos. Os termos principais são:

● População: conjunto de cromossomos ou soluções;

● Cromossomo: conjunto de genes. Cada cromossomo representa uma

solução do problema. Muitas vezes é tomado como sinônimo de indivíduo;

● Gene: menor unidade de informação em um cromossomo. Cada gene

representa uma variável da solução do problema;

● Locus: posição de um gene em um cromossomo. Alguns genes podem ter

seu locus alterado em processos de cruzamento ou mutação;

● Cruzamento (ou crossover): processo de reprodução sexuada em que há

combinação de genes dos cromossomos originando um ou mais

descendentes. O cruzamento é o principal responsável pela variabilidade

genética;

3

● Mutação: anomalias que causam a alteração aleatória de genes, seja na sua

localização, seja no seu conteúdo;

● Seleção natural: processo que elimina os indivíduos menos adaptados (ou

aptos) em relação à cada geração da população;

● Geração: iteração do algoritmo genético;

● Aptidão (ou fitness): indicador qualitativo de um indivíduo. O grau de aptidão

de um indivíduo é obtido a partir de uma função objetivo;

● Função objetivo: função matemática que avalia as soluções (indivíduos) em

relação ao problema.

1.2 Passos do algoritmo

Embora haja uma grande variedade e implementações, a estrutura geral de um

algoritmo genético é basicamente a mesma. Dado que a representação de soluções dos

problemas devem ser modeladas em forma de cromossomos, temos os seguintes passos:

4

Criar população inicial: que pode ser gerada aleatoriamente com m cromossomos;

Nova Geração: criar uma nova geração (de tamanho fixo (m) ou variável)

1 – Selecionar n cromossomos para reprodução;

2 – Realizar cruzamentos de forma aleatória;

3 – Permitir que mutações aleatórias ocorram em alguns dos cromossomos

 gerados;

4 – Selecionar os cromossomos melhores adaptados para a próxima geração e

 eliminar os menos adaptados (análogo à seleção natural);

5 – Substituir os indivíduos eliminados por novos indivíduos;

Critério de Parada: Caso a solução atenda a um critério de parada, ou caso seja

detectada convergência da população, PARE. Caso contrário vá para o passo NOVA

GERAÇÃO.

Para melhor compreensão, estes passos podem ser visualizados na Figura 1.

As maiores variações que se pode encontrar em algoritmos genéticos envolvem,

normalmente, a seleção de indivíduos, cruzamento e mutação, e critérios de parada.

Estas variações são baseadas em particularidades dos problemas a serem resolvidos.

Nas próximas subseções veremos em mais detalhes os métodos de seleção,

cruzamento e mutação.

1.2.1 Seleção

Os métodos de seleção podem ser usados tanto na escolha de quais indivíduos

serão progenitores, quanto na escolha dos melhores adaptados para passar à próxima

geração (Santos, 2002). A seleção é baseada em um método de avaliação de aptidão de

indivíduos.

Quanto mais apto um indivíduo, maior sua probabilidade de realizar cruzamentos

(uma vez que indivíduos bem adaptados tendem a criar descendentes também aptos) e

5

Figura 1: Fluxograma geral de um algoritmo genético

População Inicial

Critério
 de
Parada atendido

não atendido

Nova Geração

FIM

melhor é sua resposta em relação ao problema (se um algoritmo genético chegar a uma

solução ótima, o cromossomo que representa esta solução terá aptidão máxima).

A aptidão de um indivíduo pode ser obtida pela equação:

Onde i é o índice que identifica um indivíduo na população, m é o tamanho da

população e f i uma função objetivo relacionada ao problema. O resultado desta

equação consiste em uma probabilidade, logo um indivíduo com aptidão alta tem maior

probabilidade de ser escolhido.

1.2.2 Cruzamento

Os métodos de cruzamento são responsáveis pela reprodução de cromossomos e

a mistura de genes, o que garante a diversidade e a constante evolução populacional.

Basicamente, este mecanismo consiste em selecionar os pontos de cruzamento nos

progenitores, separar os cromossomos, e trocar as partes destes cromossomos (Goldbarg

e Luna, 2000). Este mecanismo também é chamado de crossover (Santos, 2002).

A Figura 2 ilustra o um cruzamento de dois cromossomos, cujos genes, a título de

exemplo, consistem em números binários. Note que foi selecionado apenas um ponto de

cruzamento, entre o quinto e sexto gene, ou locus, e os descendentes receberam as

cargas genéticas trocadas com base neste ponto.

6

Aptidãoi=
f i

∑
i

m

f i

Este mecanismo pode sofrer uma série de variações. Uma delas é a definição de

vários pontos de cruzamento, podendo gerar um número crescente de descendentes por

cruzamento. Muitas vezes, ao processo de cruzamento é associado o método de

mutação.

1.2.3 Mutação

A mutação consiste em selecionar um ou mais locus cujos genes devem ser

alterados. Geralmente ocorre na criação do cromossomo, ou seja, durante ou logo após o

cruzamento. A mutação, de forma análoga à biologia evolutiva, é um importante

fenômeno para a diversidade e evolução, podendo ser benéfica, tornando o indivíduo

mais apto, ou maléficas, condenando o indivíduo a não sobreviver à seleção natural.

Portanto, ela pode desencadear o surgimento de soluções melhores, bem como soluções

inferiores ou inviáveis.

A Figura 3 ilustra duas diferentes mutações em um mesmo cromossomo. Note que

em negrito estão nos locus escolhidos para a troca de genes (o terceiro gene passou para

o lugar do oitavo gene, e este passou a ocupar o terceiro locus). Já o locus sublinhado

teve seu gene alterado de 0 para 1.

7

Figura 2: Cruzamento entre dois cromossomos

100110001 110001010

Progenitores

110000001 100111010

Descendentes

Apesar de sua importância para a diversidade e evolução, a mutação excessiva em

uma população pode acarretar várias soluções anômalas, impedindo a evolução da

população.

1.3 Variações das Etapas dos Algoritmos Genéticos

Baseado nos conceitos apresentados, passaremos a analisar variantes das etapas

dos algoritmos genéticos. Inicialmente trataremos das variações dos operadores

cruzamento. A seguir serão tratadas outras possibilidades de seleção e codificação. Por

fim, serão analisadas algumas alternativas para a formação de populações.

1.3.1 Outras Estratégias de Crossover

Dentre as várias alternativas existentes, nesta seção analisaremos o crossover de

dois pontos e o crossover uniforme.

Crossover de dois pontos

No crossover de dois pontos, apenas o material genético entre os locus escolhidos

são trocados. Na Figura 4, os locus escolhidos foram o terceiro e o sexto. Pode-se notar

8

Figura 3: Mutação de genes em um cromossomo.

101001001

Cromossomo antes da mutação Cromossomo após a mutação

100011011

que os genes à esquerda e à direita do intervalo escolhido permanecem inalterados, ao

contrário dos genes dentro do intervalo.

Esta variação do crossover tende a tornar o algoritmo genético mais eficiente, uma

vez que contribui para a variabilidade genética (Linden, 2006). Este método abrange

também o crossover de um ponto, visto anteriormente, caso o primeiro ou último gene

sejam escolhidos.

Crossover uniforme

O crossover uniforme consiste em um sorteio binário para cada gene, definindo

como os genes de cada progenitor serão distribuídos entre os descendentes. Por

exemplo, caso seja sorteado 1 para um determinado gene, o primeiro descendente

recebe o gene do primeiro progenitor e o segundo descendente recebe o gene do

segundo progenitor. Caso seja sorteado 0, o processo se inverte. Este sorteio é realizado

para cada um dos genes dos cromossomos.

Esta estratégia de crossover tende a prover maior diversidade, porém tem um

9

Figura 4: Crossover de dois pontos

100110001 110001010

Progenitores

100001001 110110010

Descendentes

custo de processamento mais alto, uma vez que há um sorteio para cada gene de cada

indivíduo.

1.3.2 Outras Estratégias de Seleção

As estratégias de seleção podem acelerar ou retardar tanto a busca pela solução

ótima, quanto a convergência, uma vez que definem os cromossomos que irão gerar e

participar da próxima geração. Dada a importância da seleção analisaremos algumas

variações.

Seleção por Torneio

Neste método, há um torneio entre indivíduos selecionados aleatoriamente, sem

qualquer favorecimento aos melhores adaptados (Linden, 2006). Uma vez selecionados

os indivíduos, os mais aptos vencerão o torneio. Devem ser definidos previamente o

número de indivíduos a participarem de cada torneio e quantos torneios serão realizados.

A vantagem deste método é a impossibilidade de alguns cromossomos dominarem

a população, o que levaria a uma rápida convergência.

Seleção por Vizinhança

Neste método, também chamado de seleção local, são definidas vizinhanças

aleatórias, ou seja, intervalos aleatórios de indivíduos. Os indivíduos destas vizinhanças

10

poderão realizar crossover entre si. Caso haja interseção entre vizinhanças (indivíduos

em mais de uma vizinhança), os indivíduos destas poderão interagir entre si. As

interseções são bastante desejáveis, uma vez que impede que o crossover seja

segmentado em pedaços pequenos da população, o que acarretaria em baixa

variabilidade.

1.3.3 Outras Estratégias de codificação

O método de codificação de soluções apresentado foi a representação binária.

Porém, esta representação apresenta algumas limitações(Linden, 2006):

● Variáveis contínuas e de alta precisão podem resultar em cromossomos

excessivamente grandes;

● O número de soluções codificadas é sempre uma potência de dois: 2k ,

onde k é o número de genes de um cromossomo. Caso a variável

representada descreva um número finito de estados que não seja uma

potência de dois, várias soluções possíveis serão inválidas2;

Portanto podemos fazer uso de outras estratégias de codificação.

2 Por exemplo: uma variável pode ter apenas cinco estados; neste caso serão necessários dois genes, pois 23 = 8. Logo,
três soluções serão inválidas, o que exige um certo tratamento, tornando o algoritmo mais complexo e menos
eficiente.

11

Representação numérica

Em muitos problemas pode ser mais conveniente o uso cromossomos com

números reais ao invés de binários. A representação numérica não traz limitações quanto

a precisão e permite que os cromossomos tenham tamanho mínimo.

Utilizando representação numérica, o cromossomo do problema da equação de 2º

grau teria apenas dois genes, um para cada solução. A Figura 5 apresenta algumas

soluções codificadas em números reais.

As vantagens desta estratégia de codificação são: a possibilidade de representar

casas decimais, números negativos e o tamanho reduzido dos cromossomos. Entretanto

os operadores genéticos devem ser adaptados:

● O crossover será mais simples, permitindo apenas a permuta dos pares de

genes de cada cromossomo;

12

Figura 5: Codificação de soluções usando números reais

1 5

20 3

8,5 2

0 -15

2,5 3

4 1

● A mutação envolverá a inversão dos genes ou a alteração do valor contido

neles;

A representação numérica é flexível e abrangente, podendo se utilizada em vários

tipos de problemas que envolvam variáveis quantitativas. Porém, quando se trabalha com

variáveis categóricas, um outro tipo de representação é necessária.

Representação categórica

Na representação categórica, são codificados conjuntos valores predefinidos. São

exemplos de variáveis categóricas:

● Direções: esquerda, direita, frente e trás; ou norte, sul, leste e oeste;

● Bases de DNA: A, C, G e T;

● Substâncias químicas: Na, Cl, O, N, H e outros.

Esta representação pode codificar soluções de problemas como:

● Caminho para sair de um labirinto;

● Busca de um genoma;

● Identificação ou composição de uma substância química;

O operador genético que necessitaria de uma maior adaptação seria a mutação,

uma vez que, ao alterar o conteúdo de um gene, há um conjunto limitado de

13

possibilidades para mutação.

1.3.4 Outras Estratégias de Formação de Populações

Visando tirar o melhor proveito das qualidades de cada geração, pode-se adotar

diferentes alternativas para se compor uma população.

O tamanho é um importante critério na formação e evolução de uma população,

pois uma população muito pequena dificilmente alcançará uma grande variedade

genética. Já uma população muito grande (embora tenha maior diversidade) tornará a

execução bastante pesada, afetando a eficiência do algoritmo genético. Infelizmente não

existe um tamanho padrão indicado para todos os tipos de problema. Modelagens com

pequenos cromossomos podem ter grandes populações sem perda de eficiência. Já

modelagens com grandes cromossomos devem ter populações de tamanho limitado

devido ao custo de processamento. Portanto, deve-se obter empiricamente o tamanho

ideal para cada problema, podendo-se adotar um valor inicial para testes, valor este

baseado no tamanho do cromossomo. Por exemplo: 20 * Tamanho do Cromossomo.

Outra alternativa é adotar populações de tamanho variável. Isto pode ser feito

associando uma idade a cada indivíduo. A medida que a idade vai aumentando, a cada

geração, aumenta a probabilidade de “morte” dos indivíduos. Portanto, o tamanho da

população varia com a “taxa de natalidade” (baseada nos critérios de seleção e

crossover) e com a “taxa de mortalidade”.

Além das definições de tamanho, pode-se adotar a técnica de elitismo. Nesta

técnica, normalmente integrada ao processo de seleção, determinado número de

melhores indivíduos deve passar a próxima geração, garantindo que boas soluções

14

permaneçam na população e possam gerar soluções melhores nas próximas gerações.

1.4 Exemplo: Algoritmo genético para resolver equações de 1º grau.

Uma equação de 1º grau completa é dada no seguinte formato:

Uma equação do 1º grau pode ser facilmente resolvida por operações matemáticas

simples. Mas vamos desenvolver um exemplo didático de algoritmo genético para

introduzir o leitor à implementação deste método.

Equação utilizada

Para este exemplo foi usada a equação abaixo, cuja cuja solução é 5.

Modelagem da solução

As soluções serão representadas por números binários de seis bits. Logo, cada

cromossomo será constituído por seis genes, cujos valores podem ser 1 ou 0. Estes

números binários são convertidos para números inteiros e posteriormente para números

15

bx−c=0

2x−10=0

reais. Apesar da solução desta equação ser inteira, é interessante trabalhar com números

reais, pois vários problemas trabalham com variáveis contínuas.

Criação da população inicial

A população inicial foi criada com o uso funções geradoras de números aleatórios.

Sendo cada gene de cada indivíduo definido aleatoriamente, é bastante provável que haja

uma significativa variabilidade populacional na primeira geração. O tamanho da população

foi fixado em cinquenta indivíduos.

Seleção

A seleção foi baseada na função objetivo:

Esta função será aplicada a cada cromossomo. Quanto mais próximo a solução

representada estiver de uma da solução ótima, mais próximo de 1 será o resultado desta

função. Portanto, quando um cromossomo representar uma das soluções ótimas, o

resultado da função será exatamente 1.

A aptidão de cada cromossomo será obtida a partir da fórmula geral:

16

f i=
1

22x−10

Evidentemente, quanto mais próximo das soluções ótimas, maior será a aptidão.

Há duas situações em que um indivíduo pode ser escolhido:

● A primeira é determinística: O indivíduo cuja aptidão for maior que a

probabilidade de seleção (parâmetro pré-definido que se tornará cada vez

mais restritivo a cada geração, “forçando” a evolução da população) será

selecionado;

● A segunda é probabilística: Para o indivíduo de aptidão menor que a

probabilidade de seleção, será gerado um número aleatório. Se este

número for maior que a aptidão do indivíduo, ele será selecionado. Este

critério tende a selecionar indivíduos menos adaptados (uma vez que é

menor a probabilidade de um número aleatório ser maior que a aptidão de

indivíduos bem adaptados), visando garantir a diversidade genética e evitar

a convergência da população.

Cruzamento

Para cada cruzamento são escolhidos, aleatoriamente, dois indivíduos já

previamente selecionados. Em seguida, são definidos, também aleatoriamente, dois locus

para então as cargas genéticas serem trocadas gerando dois novos indivíduos, conforme

exibido na Figura 4.

17

Aptidãoi=
f i

∑
i

m

f i

Mutação

Neste exemplo, foi definida a taxa, ou porcentagem, de mutação na população, ou

seja, um número fixo de mutações irá ocorrer a cada geração. Com base nesta taxa é

dada a probabilidade de um indivíduo sofrer ou não mutação. Por exemplo, uma taxa de

10% indica que cada indivíduo possui probabilidade 0,1 de sofrer uma mutação. Já o

locus de mutação é definido aleatoriamente e os bits nestes locais são invertidos,

conforme exibido na Figura 3.

Em boa parte das publicações, a mutação é totalmente aleatória, tando quanto à

taxa de ocorrência a cada geração, quanto à probabilidade individual. Porém, a

parametrização deste operador genético permite um maior controle sobre a diversidade e

evolução da população, o que pode ser desejável quando se está adaptando um

algoritmo genético para diferentes problemas, ou quando se busca estabelecer

parâmetros otimizados de busca.

Substituição

Os indivíduos não selecionados para o cruzamento são substituídos pelos novos

cromossomos. Desta forma, a população mantém tamanho constante e permite que

indivíduos com alta aptidão sobrevivam a várias gerações3.

Critério de parada

3 A aptidão é relativa, ou seja, ela varia de acordo com a evolução de uma população. Logo, um indivíduo bem
adaptado em uma determinada geração, pode vir a ter uma baixa aptidão em gerações futuras.

18

O critério de parada é baseado em soluções quase ótimas. Quando uma solução

se mantém como a melhor durante dez gerações o algoritmo é encerrado. Este critério

não garante solução ótima, tampouco garante que um ótimo local seja encontrado. Como

ocorre em qualquer implementação de algoritmos genéticos, há risco de a população

convergir para um ótimo local, o que pode ser evitado com a variabilidade populacional.

19

Performance do Algoritmo

Foram criadas quinze populações, ou seja, o algoritmo genético foi executado 15

vezes para coleta e análise dos dados exibidos na Tabela 1.

Tabela 1: Resultados de 15 populações para o problema da equação de 1º grau

População Número de
Gerações

Tempo de
Execução (s)

1 25 11,94
2 21 9,82
3 17 7,98
4 19 8,78
5 31 14,33
6 19 8,65
7 29 13,01
8 29 13,27
9 31 14,61
10 16 7,22
11 21 10,1
12 21 9,69
13 30 13,78
14 16 7,4
15 13 6,17

Máximo 31 14,61
Mínimo 13 7,22
Média 22,53 10,45
Coeficiente de
Variação 0,27 0,27

Todos as populações encontraram uma solução ótima ou quase ótima, havendo

aproximação nestes casos apenas na terceira casa decimal. Houve variação apenas no

20

número de gerações e tempo de execução de cada população. Em outras palavras, todas

as populações foram eficazes, porém nem todas foram eficientes.

Em relação ao número de gerações, houve valores extremos de 13 e 31, com

média de aproximadamente 22 gerações. Já os tempos de execução variaram entre os

extremos 7,22 e 14,61 segundos. A média de tempo foi de 10,45 segundos.

Os diagramas de dispersão destes dados são exibidos na Figura 6 e Figura 7.

Tanto a análise destes diagramas, quanto a análise dos coeficientes de variação(Vieira,

1999) da Tabela 1, mostram a mesma dispersão do tempo de execução e número de

gerações4. Entretanto é bastante óbvio que o número de gerações e o tempo de execução

são variáveis com forte correlação5.

4 Ao contrário do número de gerações, os tempos de execução podem variar de acordo com a capacidade de
processamento dos recursos computacionais utilizados. Quanto maior o poder de processamento, menor será a
variação dos tempos de execução. Este algoritmo genético foi executado em um Pentium 4 de 3GHz e 512MB de
RAM.

5 A correlação destas variáveis, para o recurso computacional utilizado, foi 1, o que indica uma forte correlação.

21

Figura 6: Diagrama de dispersão do número de gerações

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

2

4

6

8

10

12

14

16

12

10

8
9

14

9

13 13
15

7

10 10

14

7
6

Dispersão de Tempos de Execução

População

Te
m

po
s

de
 E

xe
cu

çã
o

O código fonte (em Octave®) deste algoritmo genético está disponível no Apêndice

A.

22

Figura 7: Diagrama de dispersão dos tempos de execução

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0

5

10

15

20

25

30

35

25

21

17
19

31

19

29 29
31

16

21 21

30

16
13

Dispersão de Número de Gerações

População

N
úm

er
o

de
 G

er
aç

õe
s

2 Simulated Annealing

A metalurgia utiliza um processo de tratamento térmico visando alterar a estrutura

cristalina de metais conferindo-lhes características mecânicas e estruturais desejadas.

Este processo, chamado de recozimento, consiste em aquecer continuamente metais até

determinada temperatura, e, posteriormente, resfriá-los em um forno com resfriamento

controlado. Diferentes velocidades de resfriamento levam a diferentes propriedades nos

metais. Um resfriamento muito rápido acarreta em imperfeições nos cristais metálicos. Já

um resfriamento muito lento leva à formação de cristais muito grandes.

Baseado neste processo, foi criado o método heurístico chamado simulated

annealing (SA), ou recozimento simulado, em português. Neste método, parte-se de uma

solução viável de um problema e passa-se a aceitar soluções vizinhas. A princípio, nas

altas temperaturas (analogamente falando), há grande probabilidade de qualquer solução

vizinha ser aceita. Mas, a medida que ocorre o resfriamento, há maior probabilidade de

soluções melhores serem aceitas.

Como vantagens do SA pode-se citar tanto a sua capacidade de resolver

problemas de diversos níveis de complexidade em várias áreas específicas, quanto a sua

relativa previsibilidade e simplicidade, uma vez que trabalha com poucos parâmetros e

envolve operações matemáticas e computacionais simples.

2.1 Passos do Algoritmo

Antes de iniciar um algoritmo de SA, é necessário definir os parâmetros:

23

● t: temperatura inicial;

● r: fator de resfriamento, que determina a velocidade de “resfriamento” do

algoritmo. O fator de resfriamento deve estar no intervalo: 0<r<1;

● k: número de soluções vizinhas a serem testadas a cada nível de

temperatura;

Além destes parâmetros, deve ser definido o critério de parada, podendo se tratar

de um número máximo de iterações, uma temperatura mínima ou uma solução ótima ou

quase ótima.

Os passos do SA são dados a seguir.

24

Criar conjunto de soluções iniciais

Inicialização dos parâmetros: t, r e k

Escolher uma solução inicial: x

Iteração:

Repita de 1 até k

1 – Escolher aleatoriamente uma solução vizinha: x*

2 – Comparar o custo da solução atual e da nova solução:

 Δ = custo(x*)-custo(x)

3 – Se Δ≤0 (função objetivo diminui)

 então x=x*

 senão se probabilidade > exp(-Δ/t)

 então x=x*

Reduza a temperatura: t=t*r

Critério de Parada: Caso a solução atenda a um critério de parada, PARE. Caso

contrário realize uma nova iteração.

O algoritmo acima exposto é aplicavel a um problema de minimização, uma vez que Δ será

menor ou igual a zero se o custo da nova solução (x*) for menor ou igual ao custo da solução atual

(x). Mesmo que a nova solução não minimize o custo, ela ainda assim pode ser aceita. Para tanto,

deve-se gerar um número aleatório (ou seja uma probabilidade), e, se este for maior que exp(-Δ/

t) , a solução será aceita. Note que à medida que a temperatura t diminui, o valor de exp(-Δ/t)

aumenta, consequentemente haverá menor chance de se gerar um número aleatório maior que este

valor e, portanto, menor probabilidade de uma solução ruim ser aceita. É exatamente esta a essência

do SA.

Caso o valor de r seja muito pequeno, haverá um resfriamento rápido, fazendo com que

o algoritmo se limite a uma busca local (Colin, 2007). Entretanto, um r muito grande (próximo de

1) faz com que o algoritmo possa gastar muitas iterações com soluções ruins.

Para um problema de maximização, este algoritmo pode ser facilmente adaptado. Basta

considerar aceitáveis as soluções com Δ≥0, ou com probabilidade < exp(Δ/t).

2.2 Exemplo: Um SA para resolver equações de 1º Grau

Uma equação de 1º grau completa é dada no seguinte formato:

Uma equação do 1º grau pode ser facilmente resolvida por operações matemáticas

simples. Porém, vamos desenvolver um exemplo didático de SA para resolver uma

equação de 1º grau , afim de introduzir o leitor à implementação deste algoritmo.

25

bx−c=0

Equação utilizada

Para este exemplo também foi usada a equação:

A solução desta equação é x=5, e sua modelagem para SA não envolve nenhuma

adaptação, ao contrário da implementação em Algoritmos Genéticos.

Criação das soluções iniciais

As soluções iniciais foram criadas com o uso funções geradoras de números

aleatórios em torno de uma solução inicial. O número de soluções foi fixado em dez.

Critério de parada

Como critério de parada foi definida a temperatura de 10-6. Temperaturas mais

baixas demonstraram pouco contribuir com um melhor resultado.

Performance do Algoritmo

26

2x−10=0

O algoritmo foi executado 15 vezes para coleta e análise dos dados exibidos na

Tabela 2.

Tabela 2: Resultados de 15 execuções do SA para o problema da equação de 1º grau

Execução Resultado
Tempo de
Execução

(s)
1 4,99 0,11
2 5,01 0,12
3 5,02 0,11
4 5,00 0,12
5 5,06 0,12
6 4,97 0,13
7 5,02 0,12
8 4,97 0,12
9 5,02 0,13
10 4,98 0,12
11 5,01 0,12
12 4,97 0,12
13 5,02 0,12
14 5,17 0,12
15 5,04 0,11

Máximo 5,17 0,13
Mínimo 4,97 0,11
Média 5,02 0,12
Coeficiente de
Variação 0,01 0,05

Esta implementação de SA se mostrou tanto eficiente quanto eficaz (embora a

implementação em Algoritmos Genéticos tenha tido resultados mais precisos), uma vez

que as execuções exigiram pouco tempo de processamento e retornaram valores

27

bastante próximos do resultado ótimo. São estas características, nas suas devidas

proporções, que tornam o SA atraente para problemas mais complexos.

Os diagramas de dispersão destes dados são exibidos na Figura 8 e Figura 9.

Ficam evidenciados nestes diagramas a baixa dispersão das execuções do SA. Esta é

outra característica bastante desejável do SA, a previsibilidade.

O código fonte (em Octave®) deste exemplo está disponível no Apêndice B.

28

Figura 8: Diagrama de dispersão de tempos de execução do SA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0,10

0,11

0,11

0,12

0,12

0,13

0,13

0,14

0,11

0,12

0,11

0,12 0,12

0,13

0,12 0,12

0,13

0,12 0,12 0,12 0,12 0,12

0,11

Dispersão de Tempos de Execução

População

Te
m

po
s

de
 E

xe
cu

çã
o

Figura 9: Diagrama de dispersão dos resultados do SA

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
4,85

4,9

4,95

5

5,05

5,1

5,15

5,2

4,99
5,01 5,02

5

5,06

4,97

5,02

4,97

5,02

4,98
5,01

4,97

5,02

5,17

5,04

Dispersão dos Resultados

Execução

R
es

ul
ta

do

1.5 Exercícios

1. Utilizando o exemplo estudado na seção 1.4, experimente variar os parâmetros

tamanho da população, tamanho do cromossomo, probabilidade inicial de seleção

e probabilidade de mutação, verifique como a eficácia e eficiência do algoritmo são

afetadas.

2. Implemente a estratégia de crossover uniforme no algoritmo da seção 1.4.

Verifique os ganhos ou perdas de performance obtidos.

3. Implemente as estratégias de seleção por torneio e por vizinhança no algoritmo da

seção 1.4. Verifique, para cada uma destas estratégias, os ganhos ou perdas de

performance obtidos.

4. Modifique o algoritmo da seção 1.4 para que o tamanho da população seja

variável. Verifique os ganhos ou perdas de performance obtidos.

5. Altere os parâmetros do algoritmo SA da seção 2.2 e verifique as variações dos

resultados e tempos de execução.

29

Apêndice A – Código Fonte do Algoritmo Genético para
Resolução de Equações de 1º Grau

clc

tempo_inicial=clock();
tempo_inicial=tempo_inicial(6);
%%%%%parametros%%%%%%

sup=100;
inf=0;

%tamanho da população
m=50
%tamanho do cromossomo
n=4;
%probabilidade inicial de selecao
ps=0.1;

%probabilidade de mutação
pm=0.5;

%inicia vetor de soluções
solucoes=[];

%%%%%%%%%%criação da primeira geração

%%%%%primeiro cromossomo é formado por uma sequencia de 1
cromossomos=ones(1,n);

melhor=-1;
cont_melhor=0;
x_melhor=[];

%inicia contador
i=1;

b=2;
c=-10;

%repetir até atingir tamanho da população
while (i<=m-1)

 %insere primeiro gene
 if rand>0.5
 novo_cromossomo=1;
 else
 novo_cromossomo=0;
 endif
 %cria um indivíduo (repete até que seja atingido o tamanho do cromossomo)
 for j=1:n-1
 if rand>0.5
 novo_cromossomo=[novo_cromossomo 1];
 else

30

 novo_cromossomo=[novo_cromossomo 0];
 endif
 endfor

 cromossomos=[cromossomos; novo_cromossomo];

 i++;
endwhile

geracoes=1;

% início do processo iterativo
while (1)

%%%%%%%%%%criação de nova geração

%%%%%%%%%%%%%%%%%%%%%%%%%%% seleção

 %inicia vetor de resultados da funcao objetivo e aptidoes
 funcao=zeros(m,1);
 aptidao=zeros(m,1);

 individuos_reais=[];

 %realiza teste de aptidao para cada cromossomo
 for i=1:m
 %valor de x para cromossomo
 %cromossomos(i,:)
 %cromossomos(i,1:n)
 x=bin2dec(num2str(cromossomos(i,1:n)));

 %converte o número inteiro para real
 x=inf+((sup-inf)/2^n-1)*x -rand;

 %armazena individuos convertidos para numeros reais
 individuos_reais=[individuos_reais; x];

 %obtem resultado da equacao
 teste=b*x+c;
 %funçãoo objetivo. Quanto mais próximo o resultado da equação estiver de zero, melhor será o
valor de x, mais próximo funcao estará de 1
 funcao(i)=1/(2^abs(teste));
 %funcao(i) = teste;
 endfor

%[individuos_reais funcao]

 %soma todo vetor funcao
 soma=sum(funcao);
 %média das funcoes
 media=soma/m;

 selecionados=[];

31

 i=1;
 num_selecionados=0;
 while num_selecionados<=ps*m

 %cada individuo é escolhido de forma determinística
 if (funcao(i)>=max(funcao)-abs(media)/2)
 selecionados=[selecionados i];
 num_selecionados++;
 endif
 i++;
 if(i>m)
 break;
 endif
 endwhile

 %caso nenhum indivíduo tenha sido selecionado, metade da população é escolhida
 if(size(selecionados,1)==0)
 for(i=1:m/2)
 selecionados(i)=i;
 endfor
 endif

 %a probabilidade deve ir decrescendo à medida que a população converge (no início muitos podem
ser selecionados, mas gradativamente
 %a seleção vai se tornando mais restritiva)
 ps=ps+(1/m^1);

 %%%%%%%%%%%%%%%%%%%%%%%%%%% fim de seleção

 %%%%%%%%%%%%%%%%%%%%%%%% critério de parada

 %verifica se há solução melhor que a atual
 if(melhor<max(funcao))
 %nova solução passa a ser a melhor e sua posição é armazenada
 [melhor posicao]=max(funcao);
 cont_melhor=0;
 %novo melhor x é armazenado
 x_melhor=individuos_reais(posicao,:) ;
 else %caso não haja solução melhor que a atual, contador é incrementado
 cont_melhor=cont_melhor+1;
 %se uma mesmo solução for a melhor durante 10 gerações, então programa se encerra
 if((cont_melhor==10) & (melhor!=-1))
 x_melhor
 melhor
 break;

 endif
 endif

 %%%%%%%%%%%%%%%%%%%%%%%% fim do critério de parada

32

 %%%%%%%%%%%%%%%%%%%%%%%%%%% cruzamento

 if(m==num_selecionados)
 novos_individuos=round(num_selecionados/2);
 else
 novos_individuos=round(m-num_selecionados);
 endif
 if(mod(novos_individuos,2)!=0)
 round(novos_individuos++);
 endif
 num_selecionados;

 novos_cromossomos=[];
 i=1;

 while i<=novos_individuos
 %seleciona individuos aleatoriamente
 individuo1=round(rand*10);
 if(individuo1>num_selecionados | individuo1==0)
 individuo1=num_selecionados;
 endif

 individuo2=round(rand*10);
 if(individuo2>num_selecionados | individuo2==0)
 individuo2=1;
 endif

 %seleciona pontos de crossover aleatoriamente
 crossover1=round(rand*10);
 while(crossover1>=n/2 | crossover1==0)
 crossover1=round(rand*10);
 endwhile

 crossover2=crossover1+n/2;

 % crossover2=round(rand*10);
 %while(crossover2>=2*n | crossover2==0 | crossover2<=crossover1)
 % crossover2=round(rand*10);
 %endwhile

 %operação de crossover de dois pontos
 novos_cromossomos=[novos_cromossomos;
cromossomos(selecionados(individuo1),1:crossover1)
cromossomos(selecionados(individuo2),(crossover1+1):crossover2)
cromossomos(selecionados(individuo1),(crossover2+1):n)];
 novos_cromossomos=[novos_cromossomos;
cromossomos(selecionados(individuo2),1:crossover1)
cromossomos(selecionados(individuo1),(crossover1+1):crossover2)
cromossomos(selecionados(individuo2),(crossover2+1):n)];

 %soma a quantidade de indivíduos criados ao índice i
 i=i+2;

33

 endwhile

 %inclusão cromossomos selecionados para próxima geração
 novos_cromossomos=[novos_cromossomos ; cromossomos(selecionados,:)];

 %%%%%%%%%%%%%%%%%%%%%%%%%%% mutação

 %obtém número de mutações
 num_mutacoes=m*pm;

 for i=1:num_mutacoes
 %escolha de indivíduo para mutação
 individuo=round(rand*100);
 while(individuo>m | individuo==0)
 individuo=round(rand*100);
 endwhile

 %escolha de locus para mutação
 locus=round(rand*10);
 while(locus>n | locus==0)
 locus=round(rand*10);
 endwhile

 %efetua inversão do bit na posição selecionada
 novos_cromossomos(individuo,locus)=not(novos_cromossomos(individuo,locus)
);

 %escolha de locus para mutação
 locus=round(rand*10);
 while(locus>n | locus==0)
 locus=round(rand*10);
 endwhile

 %efetua inversão do bit na posição selecionada
 novos_cromossomos(individuo,locus)=not(novos_cromossomos(individuo,locus)
);

 %escolha de locus para mutação
 locus=round(rand*10);
 while(locus>n | locus==0)
 locus=round(rand*10);
 endwhile

 %efetua inversão do bit na posição selecionada
 novos_cromossomos(individuo,locus)=not(novos_cromossomos(individuo,locus)
);

 endfor

 %geração anterior é substituída pela atual
 cromossomos=novos_cromossomos;

34

 geracoes++;
 ps
 geracoes

 %se probabilidade de seleção for negativa, ela é resetada e a probabilidade de mutação dobrada
 if(ps<0)
 ps=0.1;
 pm=pm*2;
 endif
 endwhile

 %obtém tempo de execução
 tempo_final=clock();
 tempo_final=tempo_final(6);

 %exibe tempos
 tempo_inicial
 tempo_final
 tempo_final-tempo_inicial

35

Apêndice B – Código Fonte do SA para Resolução de

Equações de 1º Grau

tempo_inicial=clock();

tempo_inicial=tempo_inicial(6);

%temperatura inicial
t=5;
%repetições
k=5;
%fator de resfriamento
r=0.8;
%número de iterações
num_iter=50;
%solução inicial
x=0;
%solução atual
x_atual=x;

%número de soluções
num_solucoes=10;

i=1;
while(t>10^-6)

 %cria vizinhança de soluções
 x_maximo=x_atual+10;
 x_minimo=x_atual-10;
 solucoes=rand(num_solucoes,1)*(x_maximo-x_minimo)+x_minimo;
 solucoes=[x;solucoes];

 for(m=1:k)

 %escolhe vizinho aleatoriamente
 vizinho=int32(rand*(num_solucoes-1)+1);

 %cálculo de custos
 custo_atual=abs(2*x_atual-10);
 x=solucoes(vizinho);
 custo=abs(2*x-10);
 delta=custo-custo_atual;

 %teste de aceitação da solução escolhida
 if(delta<=0)
 x_atual=x
 else
 probabilidade=exp(-delta/t);
 teste=rand;

36

 if probabilidade>teste
 x_atual=x
 endif
 endif

 endfor

 %redução da temperatura
 t=r*t;
 i=i+1;
endwhile
x_atual
t
i

%obtém tempo de execução
 tempo_final=clock();
 tempo_final=tempo_final(6);

 %exibe tempos
 tempo_inicial;
 tempo_final;
 tempo_final-tempo_inicial

37

Bibliografia
COLIN, Emerson Carlos. Pesquisa Operacional: 170 aplicações em estratégia, finanças,
logística, produção, marketing e vendas.Rio de Janeiro: LTC, 2007
SANTOS, Fabríco B. B.. Implementação Eficiente de Busca em Plataforma Paralela. In: XXII
Congresso da Sociedade Brasileira de Computação, Florianópolis, 2002. Anais. Florianópolis, SBC,
2002.
GOLDBARG, M. C. LUNA, H. P . Otimização Combinatória e Programação Linear: modelos
e algoritmos.Rio de Janeiro: Campus, 2000
LINDEN, Ricardo. Algoritmos Genéticos.Rio de Janeiro: Brasport, 2006
VIEIRA, Sônia. Estatística para a Qualidade.Rio de Janeiro: Campus, 1999

38

	Métodos Heurísticos
	1 Algoritmos Genéticos
	1.1 Terminologia
	1.2 Passos do algoritmo
	1.2.1 Seleção
	1.2.2 Cruzamento
	1.2.3 Mutação

	1.3 Variações das Etapas dos Algoritmos Genéticos
	1.3.1 Outras Estratégias de Crossover
	1.3.2 Outras Estratégias de Seleção
	1.3.3 Outras Estratégias de codificação
	1.3.4 Outras Estratégias de Formação de Populações

	1.4 Exemplo: Algoritmo genético para resolver equações de 1º grau.

	2 Simulated Annealing
	2.1 Passos do Algoritmo
	2.2 Exemplo: Um SA para resolver equações de 1º Grau
	1.5 Exercícios

