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Cadeias de Markov

1 Introdugao

Em atividades industriais, comerciais e humanas, bem como em fendmenos
naturais, uma alto grau de incerteza estd sempre presente. Portanto, modelos
matematicos probabilisticos, como o processo de Markov', que permitam uma previsdo
estimada do futuro, s&o bastante uteis na tomada de decis&o(Boldrini, 1980).

Da-se o nome de processo de Markov a um dado fenbmeno que possa ser
classificado em estados finitos e discretos, e cuja probabilidade de transicdo entre tais
estados, num intervalo de tempo também discreto, dependa apenas do estado corrente e
do estado seguinte?. A seqiiéncia de estados seguindo este processo da-se o nome de
cadeia de Markov(Shamblin, 1979).

Estas definicbes podem ser exemplificadas por fendmenos sociais. Suponha a
existéncia de trés possiveis classificagdes sociais para um individuo de uma populagéo:
classes A, B e C. Tém-se ai trés estados discretos, ou seja, ndo ha meio termo entre as
classes. A probabilidade de um individuo sair da classe C e ir para a classe B pode ser
determinada por estudos estatisticos que observem a taxa de individuos que, ao longo de
um determinado periodo, migram entre estas classes. Tém-se ai um Processo de Markov.

Logo, a transi¢céo destes individuos entre as classes constitui uma Cadeia de Markov.

'Andrei Andrejevitch Marckov (1856-1922) — matematico russo
*Definigdo relativa a cadeia de Markov de primeira ordem. Em cadeias de Markov de segunda ordem, ha dependéncia
de dois estados correntes.



Para o entendimento de cadeias de Markov e suas aplicagdes, € essencial o
conhecimento dos conceitos: diagrama de transi¢cdo, vetor de probabilidade, matriz de

transicédo, cadeia ergdtica, cadeia regular, e regime estacionario.

2 Diagrama de transigcdo

O diagrama de transi¢cdo € uma representacado grafica de uma Cadeia de Markov.
Neste diagrama sao visualizados os estados (representado por circulos), as transi¢coes
(representadas por arcos) e as probabilidades das transicbes. Generalizando, pode-se
representar os estados e as probabilidades de transicdo, respectivamente, por E; e pj,
onde i e j sdo um indices que identificam os varios estados possiveis (logo p; é a
probabilidade de haver uma transicdo do estado E; para o estado E)). A partir desta

generalizagao, pode-se desenhar um diagrama, conforme a Figura 1:

p33

Figura 1: Diagrama de Transicio



3 Vetor de probabilidade

O vetor de probabilidade contém as probabilidades de transicdo de um estado para
outros estados em um intervalo de tempo discreto. A generalizacdo do vetor de

probabilidade é dada por:

Vi:[pij Pik pil]

Onde pj indica a probabilidade de haver transicao do estado E; para o estado E;, pi
indica a probabilidade de haver transicdo do estado E; para o estado Ei, e piindica a
probabilidade de haver transicao do estado E; para o estado E,.. A soma dos elementos de
um vetor de probabilidade sempre sera igual a 1.

Utilizando o exemplo das classes sécio-econdmicas, um estudo estatistico pode ter
determinado que é nula a probabilidade de um individuo na classe C ir diretamente para a
classe A, a probabilidade de ir para a classe B ser 0,1, e a de continuar na classe C ser

0,9. Logo, o vetor de probabilidade de um individuo na classe C sera:

V.=[0 0,1 0,9]

A Figura 2 ilustra estas o diagrama de transi¢ao para estas probabilidades.
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Figura 2: Diagrama de Transiciio parcial do exemplo de classes
socio-econdmicas

Este diagrama apresenta apenas as transicbes cujas probabilidades séao
conhecidas. Note que nao ha um arco representando a transicdo de C para A, uma vez
que ha probabilidade nula de esta transicdo ocorrer.

Uma vez que todas as probabilidades sejam conhecidas, € possivel montar um
diagrama completo para este exemplo. Considerando os vetores de probabilidade dos
estados A e B exibidos a seguir, ttm-se o diagrama de transi¢gdes completo, conforme a

Figura 3:

7 ,=[03 0,5 02]

V,=[0,3 0,2 0,5]
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Figura 3: Diagrama de Transicio completo do exemplo de classes
socio-econdmicas

0,3

4 Matriz de Transicao

Para cada estado deve haver um vetor de probabilidade. A unido de todos os
vetores de probabilidade em uma matriz da-se o0 nome de matriz de transi¢do. Esta matriz
sempre sera quadrada(Boldrini, 1980) ou seja, o numero de linhas e colunas sera sempre

equivalente. A seguir & exibido um modelo genérico desta matriz:

Pu P Pis
M=p, p, Dy
P31 Py Ps3



Onde o elemento p;, conforme ja citado anteriormente, indica a probabilidade de
haver transicdo do estado E; para o estado E;.

No exemplo das classes sociais, considerando os vetores de probabilidade das
classes A, B e C respectivamente, [0,3 0,5 0,2], [0,2 0,3 0,5] e [0 0,1 0,9] tém-se a

seguinte matriz de transigao.

0,3 0,5 0,2
M=|0,2 03 05
0 0,1 09

Nesta matriz, o elemento pz;, que equivale a 0,5, indica a probabilidade 0,5 de
haver transicdo do estado E; para o estado Ec. Outra interpretagao possivel é transformar
estas probabilidades em percentagens e considera-las como taxas de transicdo da
populagdo em estudo. Por exemplo, p.; = 0,5= 50%, indica que, em um dado momento,

50% da populagéo no estado Eg pode passar para o estado Ec,

5 Determinagao de probabilidades futuras

O vetor de probabilidade e a matriz de transicdo sédo uteis na determinacao de
probabilidades ao longo do tempo (Shamblin, 1979). Para tanto, temos a seguinte

equacao:



Vi=VxM"™'

onde
e V é um vetor de probabilidade;
e [ é o periodo para o qual se quer obter a probabilidade;
e |/ é indice do estado a partir do qual se quer fazer a previsao;

e M é a matriz de probabilidade.

O vetor resultante desta equagédo ( V; ) contera as probabilidades de transigéo
de um estado E; apds um periodo t.
Por exemplo, caso se queira obter a probabilidade de um individuo na classe B ir

para a classe A em trés anos, tém-se a seguinte equagéao e sua resolugio:

Vi=VgxM’
03 05 02[
73=[0,2 03 05]%[02 03 05
0 0,1 09
3 0,19 032 0,49
V=002 0,3 0,5]*0,12 024 0,64
0,02 012 0,86

V3=[0,084 0,196 0,72]

O vetor 73,=[0,084 0,196 0,72] indica que um individuo na classe B tém uma

probabilidade de 0,084 de estar na classe A apds trés anos. Assim como tem a
probabilidade de 0,196 de continuar na classe B, e uma probabilidade de 0,72 de estar na

classe C.



Uma alternativa para esta equacao é utilizar um vetor identidade (Boldrini, 1980),

cujo elemento nao nulo sera a posigao i, conforme exibido a seguir:

Vi=VisM'

Logo, podemos resolver o exemplo anterior com esta equagado alternativa,
chegando ao mesmo resultado.
V=VyxM’
03 0,5 02

Vi=[0 1 0]*x[02 03 05
0 01 09

3 0,121 0,24 0,639
V=[0 1 0]%0,084 0,196 0,72
0,03 0,132 0,83

73=[0,084 0,196 0,72]

Adotaremos esta equagao ao longo do texto devido a sua maior praticidade.

6 Cadeias ergoéticas

Um fendbmeno em que haja probabilidade ndo nula de qualquer estado poder ser
alcancado através de uma ou mais transicdes a partir de qualquer outro estado constitui
uma cadeia ergética. Esta definicdo pode ser melhor entendida através de diagramas de
transicao.

A Figura 4, assim como a Figura 3, exibe uma cadeia ergética, pois qualquer
estado pode ser alcangado a partir de outro estado qualquer. A Ja na Figura 5 trata-se de
uma cadeia ndo-ergdtica, uma vez que o estado Es; ndo pode ser alcangado de modo

algum. A Figura 6 também traz uma cadeia nao-ergética, pois, uma vez no estado Es, nao

8



se pode ir para nenhum outro estado. Este ultimo caso é chamado de cadeia

absorvente(Shamblin, 1979).

t

Figura 4: Diagrama de Transicio de uma cadeia ergotica

t

Figura 5: Diagrama de Transicio de uma cadeia ndo-ergotica



t

Figura 6: Diagrama de Transicio de uma cadeia nio-ergética

A partir de uma matriz de transicdo, também pode-se determinar se uma cadeia é
ergotica. Para tanto, basta verificar se ha probabilidades nulas e se estas tornam algum
estado inalcancavel. Se nao houver nenhuma probabilidade nula, certamente trata-se de
uma cadeia ergotica.

Por exemplo, a seguinte matriz de transicéo é ergotica, pois, apesar de haver duas
probabilidades nulas, é possivel chegar a estado em uma ou mais transigdes. Isto pode

ser verificado na Figura 7.

0,1 05 04
M=|02 0,8 0
0 0,1 09

10
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0,2 B
~_ 7
U 0,4 0,1 U
0,1 0,8
.

Figura 7: Diagrama de Transicio de cadeia ergética

Ja a préoxima matriz apresenta uma cadeia nao-ergotica. Conforme pode ser

verificado na Figura 8 que, uma vez no estado B, € impossivel chegar a outro estado.

0,1 05 04

M=l0 1 0

0 01 09

0,5
>
B
~—_ 7

‘ 0.4 0,1 ‘
0,1 1

=
£ -

Figura 8: Diagrama de Transicio de cadeia ergotica
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7 Cadeias Regulares

Em fenbmenos cuja matriz de transi¢ao, em alguma poténcia, ndo tenha elementos
nulos, trata-se de uma cadeia regular. Toda cadeia regular € também ergética, conforme
podera ser verificado adiante.

A matriz a seguir possui um elemento nulo na primeira linha. Porém, a poténcia M?

nao possui nenhum elemento nulo. Logo, trata-se de uma cadeia regular.

0 05 05
M={0,2 0,3 0,5
0,3 0,1 0,6

025 02 055
M’=|021 024 0,55
02 024 0,56

Conforme foi verificado na secao “Determinacdo de probabilidades futuras”, uma
poténcia da matriz de transicdo indica todas as probabilidades de transicdo em um
momento futuro (por exemplo: M?® pode indicar uma matriz de transigdo no terceiro ano do
fendbmeno estudado). Logo, se em uma poténcia (ou seja, em um momento futuro) a
matriz de transicdo ndo possui elementos nulos, isto indica que, em algum momento,
todas as transigdes seréo possiveis, logo a cadeia é ergotica.

Ja as poténcias das proximas matrizes formam padrées em que as probabilidades

nulas ndo desaparecem. Logo, estas matrizes representam cadeias nao regulares.

12



0,5 05 0
M=01 0 09
0 0 1

03 0,25 045
M?=|0,05 0,05 0,9
0 0 1

0,175 0,15 0,675
M’=| 0,03 0,025 0,945
0 0 1

0,102 0,0875 0,81
M'= 0,0175 0,015 0,9675
0 0 1

(0.1 0 09]

0,1 0 09

Como estes padrbes se repetem indefinidamente, tais matrizes de transicdo nunca
deixardo de ter elementos nulos, porém, isso ndo indica que se trata obrigatoriamente de

uma cadeia n&o-ergotica, uma vez que ha cadeias ergoticas ndo-regulares.

13



8 Regime estacionario

Para toda cadeia ergdtica regular existe um regime estacionario, onde as
probabilidades de transi¢cao se tornam constantes ao longo do tempo. Em uma cadeia em
regime estacionario, a probabilidade de transi¢do € baseada apenas no proximo estado, e
nao mais no par estado corrente/proximo estado.

Seja m o vetor de probabilidades de uma cadeia em regime estacionario, tém-se a

equacao:

Tr:["'ﬁ T, "3]

1

Onde Z m,=1, sendo | o nimero de estados. O valor de T, , por exemplo, é a
i=1

probabilidade, em regime estacionario, de haver uma transigcdo para o estado E;. Este

vetor pode ser obtido atraveés da resolugédo do seguinte sistema.

T=1%M
1

an:l
i=1

Considerando a representacédo genérica de M e a representagao do vetor 1, pode

ser reescrito da seguinte forma:

TPt Ty pyt ¥ py = 1y
M ¥Pot Ty Pyt T3*py =T,
M ¥yt My pyt M% py = 1y
m+m,+my=1

14



A partir da resolugéo deste sistema, através de métodos lineares (Boldrini, 1980), &
possivel obter as probabilidades em regime estacionario. Voltando ao exemplo das
classes sociais, pode-se encontrar o vetor de transicdo do regime estacionario a partir do

sistema a seguir:

0,3m,+0,2m,+0mm,=0
0,5m,+0,3m,+0,1m7,=0
0,2m,+0,5m,+0,9m,=0
m +m,+m,=1

Resolvendo este sistema, tém-se como resultado o vetor de probabilidade:

w=[0,04 0,146 0,812]

A partir destes resultados, pode-se fazer as afirmacgoes:

1. Alongo prazo, a probabilidade de um determinado individuo estar na classe
A é de 0,04. A probabilidade de estar na classe B € 0,146 e 0,812 de estar
na classe C;

2. Alongo prazo, 4% da populacdo estara na classe A, 14,6% na classe B e

81,2% na classe C.

Estas afirmacdes, referentes ao regime estacionario, s6 podem ser feitas se o
fendbmeno estudado se tratar de uma cadeia ergoética regular. Caso se trate de uma
cadeia ergética nao-regular, a primeira afirmagao nao pode ser feita com seguranga, uma

vez que havera elementos nulos ciclicos na matriz de transicao (Shamblin, 1979).

15



9 Exercicios

1.

Em um censo populacional de uma cidade de médio porte, foi constatado que a
cada ano 7% da populagao rural migra para a zona urbana e que 2% da populagao
urbana migra para a zona rural. Supondo que este fenbmeno social seja estavel,

nao havendo mudancgas nestas taxas, temos os seguintes itens:

a) Represente o diagrama de transigao.
b) Monte a matriz de transigao.

c) Em 5 anos, qual a probabilidade de um individuo, atualmente na zona urbana,

ter migrado para a zona rural?

d) Em 10 anos, qual a probabilidade de um individuo, atualmente na zona rural, ter

migrado para a zona urbana?
e) A longo prazo, qual a probabilidade de um individuo migre para a zona urbana?

f) A longo prazo, qual sera a taxa de migragcdo da populagao para a zona urbana
e para a zona rural desta cidade (desconsiderando o crescimento populacional

da cidade)?

16



2. Uma pesquisa de mercado de um produto comercializado em trés diferentes

marcas constatou as seguintes probabilidades:

e Um consumidor da marca W deste produto, a cada compra, tem
probabilidade 0,8 de manter-se fiel a marca, probabilidade 0,05 de escolher

a marca G e probabilidade 0,15 de escolher a marca R;

e Um consumidor da marca G deste produto, a cada compra, tem
probabilidade 0,9 de manter-se fiel a marca, probabilidade 0,01 de escolher

a marca W e probabilidade 0,09 de escolher a marca R;

e Um consumidor da marca R deste produto, a cada compra, tem
probabilidade 0,5 de manter-se fiel a marca, probabilidade 0,3 de escolher a

marca G e probabilidade 0,2 de escolher a marca W;
Com base nestas informacgdes, responda aos itens:
a) Represente o diagrama de transigao.
b) Monte a matriz de transigéo.

c) Em 6 compras, qual a probabilidade de um consumidor da marca G optar pela

marca W?

d) Em 8 compras, qual a probabilidade de um consumidor da marca R optar pela

marca G?
e) A longo prazo, qual a probabilidade de um individuo optar pela marca G?

f) Alongo prazo, qual taxa de individuos que tera optado pela marca R?

17



3.

Um determinado fruto tem sua safra classificada como superior, média e pobre.
Estudos revelam que, apds uma safra pobre, ha probabilidades 0,6 e 0,3 de a safra
no ano posterior ser classificada como média ou superior, respectivamente. Apés
uma safra média, ha probabilidades 0,4 e 0,1 de a préxima safra ser classificada
como superior ou pobre, respectivamente. E apdés uma safra superior, ha
probabilidades 0,5 e 0,1 de a proxima safra ser classificada como média ou pobre,

respectivamente.

Com base nestas informacgdes, responda aos itens:
a) Represente o diagrama de transigao.

b) Monte a matriz de transigéo.

c) Em 4 anos, qual a probabilidade de uma safra vir a ser classificada como

superior, dado que a safra atual € pobre?

d) Em 10 anos, qual a probabilidade de uma safra vir a ser classificada como

média, dado que a safra atual € média?

e) A longo prazo, qual a probabilidade de se ter uma safra superior?

Uma maquina tem pode estar em trés estados: operando, estragada e em
manutengcdo corretiva. Em levantamentos estatisticos anteriormente feitos
verificou-se que, mensalmente, uma maquina, quando colocada em
funcionamento, tem probabilidade 0,9 de continuar funcionando e 0,1 de vir a
apresentar algum defeito. Uma maquina em manutencgao, tem probabilidade 0,4 de
voltar a operar em um més e 0,6 de continuar em manutencdo. Ja uma maquina
estragada, tem probabilidade 0,8 de entrar em manutengdo e 0,2 de continuar

estragada aguardando manutencgao.

18



Com base nestas informacgdes, responda aos itens:
a) Represente o diagrama de transigao.
b) Monte a matriz de transigéo.

c) Em 3 meses, qual a probabilidade de uma maquina continuar funcionando sem

problemas?
d) Qual a probabilidade de uma maquina permanecer 2 meses em manutengao?
e) A longo prazo, qual a probabilidade de uma maquina apresentar defeito?

f) Para garantir uma probabilidade de pelo menos 0,73 de uma maquina continuar
em operacao, de quanto em quanto tempo deve-se realizar uma manutengao

preditiva?

19



Apéndice A — Resposta dos exercicios

0,07
Zona < 0.02 Zona
Urbana ’ > Rural

0,98 0,93

_10,98 0,02
b) M‘[om 0,93]

c) Aproximadamente 0,083.
d) Aproximadamente 0,475.
e) Aproximadamente 0,77.

f) A taxa de migragédo da populagdo para a zona urbana sera aproximadamente

77,78% e para a zona rural sera 22,22%.

20



a) 0,01
08 [ Y- ! 0,9
E— >
0,2 0,3
0,15 0,09
0,5
0.8 005 0,15
b) M=|0,01 09 0,09
02 03 05

c) Aproximadamente 0,125.
d) Aproximadamente 0,58.
e) Aproximadamente 0,62.

f) Aproximadamente 17,33%.

21




Apéndice B — Modelagem dos exercicios no Octave®

%criagdo da matriz de transigdo do exercicio 1

M1=[0.98 0.02; 0.07 0.93]

%vetor probabilidade da zona urbana apés 5 anos
V_zona_urbana=[1 0]*M1A5

%vetor probabilidade da zona rural apés 5 anos
V_zona_rural=[0 1]*M12~10

%probabilidades em regime estaciondrio
M1/10000

%criacdo da matriz de transicdo do exercicio 2

M2=[0.8 0.05 0.15; 0.01 0.9 0.09; 0.2 0.3 0.5]

%vetor probabilidade da marca 6 pds 6 anos
V_marca_w=[0 1 0]*M226

%vetor probabilidade da marca R pés 8 anos
V_marca_R=[0 0 1]*M2/8

%probabilidades em regime estaciondrio
M2210000

3GNU Octave ¢ uma linguagem de alto nivel inicialmente desenvolvida para algoritmos numéricos. E compativel com o
Matlab e pode ser obtida gratuitamente no site: www.octave.org.
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Apéndice C — Exemplo de aplicacao de Cadeias de Markov

Cadeias de Markov aplicadas a Genética

A genética permite a previsdo probabilistica de caracteristicas em uma populacéo.
Devido a estas caracteristicas poderem ser representadas em estados discretos e a
probabilidade de transicdo destas caracteristicas, em periodos também discretos,
dependam do estado inicial da populagdo (ndo abordaremos aqui fenbmenos como
migragdo, mutacado e selegcdo natural), pode-se utilizar Cadeias de Markov para uma
modelagem probabilistica.

Tomaremos como base alguns conceitos da genética classica, criada por Gregor
Mendel (1822 — 1884). De acordo com a genética classica, as caracteristicas de plantas e
animais sao determinadas por um par de genes, que podem ser dominantes (A) ou
recessivos (a). Ha trés possiveis combinagdes destes genes: AA, Aa (que equivale a aA)
e aa. Estas combinagdes podem gerar, respectivamente, gendtipos dominantes (D),
heterozigotos (H) ou recessivos (R). Em alguns casos, estes trés gendtipos resultam em
trés caracteristicas diferentes, e em outros AA e Aa resultam na mesma caracteristica.

Nas proximas seg¢des serdo tratados alguns casos de aplicagdo de cadeias de

Markov, e suas variagdes, a genética.

23



Previsado de genétipos com cruzamentos controlados

A previsao de gendtipos em uma populagdo pode ser bastante util quando se faz
necessaria a monitoracdo e possivel controle (por selegcdo artificial) de algumas
caracteristicas, sejam elas desejaveis ou ndo (como doengas genéticas, por exemplo).

As cadeias de Markov podem ser uteis neste tipo de previsdo. O primeiro passo,
para o exemplo a ser desenvolvido nesta sec¢do, sera definir os estados (que no caso
serao os gendtipos D, H e R) e obter a probabilidade de cada gendétipo para cruzamentos
entre individuos DxD, DxH, DxR DxR, HxH, HxR, e RxR. As probabilidades destes

cruzamentos sdo exibidos na Tabela 1.

Tabela 1: Cruzamento entre gendtipos

Gendtipo/cruzamento  D(AA) H(Aa) R(aa)

DxD 1 0 0
DxH 0,5 0,5 0
DxR 0 1 0
HxH 0,25 0,5 0,25
HxR 0 0,5 0,5
RxR 0 0 1

Com base nas probabilidades, pode-se construir uma cadeia de Markov
para, por exemplo, fazer uma previsao de genotipos para trés periodos, ou seja, apos trés
geracoes. Neste exemplo, os individuos da populagéo fardo cruzamento com individuos
de gendtipo H*. A matriz de transicdo a seguir é formada pelos vetores de probabilidade

dos cruzamentos DxH, HxH e RxH, respectivamente.

* Em processos de selego artificial, pode-se, em uma populagdo de variados genotipos de mesmo sexo, introduzir um
determinado genétipo do sexo oposto, de forma que as combinagdes génicas sejam controladas e, conseqiientemente,
seus resultados previsiveis. Esta pratica ¢ bastante comum na agropecuaria (Campos, 2002).

24



00,5 0,5 0,00

0 {
|]0,25 0,5 0,25D

50 05 058

M =

Considerando que, no processo de selecdo artificial, a primeira geragao a cruzar
com o gendtipo H seja formada exclusivamente por individuos homozigotos dominantes

(D), a previsao para o periodo de trés geragdes é dada pela equacéo:

00,5 05 0,00
iz veMP=[1 0 0¥ 025 05 0255 0]0.31 05 0,19
50 05 057

O vetor de probabilidade resultante indica que, apds trés geragdes (sendo a
geragao inicial de gendtipos D, e os cruzamentos sempre envolvendo um genaétipo H) traz

as seguintes informacgoes:

* Ha probabilidade de, aproximadamente, 0,31 de um individuo da terceira geragao
ter gendtipo D, 0,5 de ter gendtipo H, e 0,19 de ter gendtipo R;

» Pode-se estimar que: 31% da terceira geragéo tera gendtipo D, 50% tera gendtipo
H, e 19% gendtipo R.

A este método de previsao utilizado, deve-se fazer algumas observacgoes:

* Apés a primeira geragao, é bastante provavel que surjam genétipos diferentes dos

inicialmente adotados (neste exemplo, D e H);
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* Embora a matriz de transicdo permita que todos os gendtipos sejam
representados, ela traz apenas as probabilidades de cruzamento com o gendtipo
pré-determinado;

 Para que o resultado encontrado seja valido, é preciso que haja controle dos
cruzamentos, de forma que um dos gendtipos, em cada cruzamento, seja do tipo
pré-determinado, ou seja, gendtipo H. Porém, nem sempre o controle absoluto dos
cruzamentos € possivel. Na proxima secdo sera exibido um exemplo sem esta

limitagao.

O calculo de probabilidade envolvendo cruzamentos exclusivamente com genétipos
D, considerando a mesma geracao inicial, segue 0 mesmo raciocinio, porém a matriz de

probabilidade ira representar os cruzamentos DxD, DxH e DxR:

01 0 0f

_ 0 0
M= 305 05 0
A0 1 0f

A equacéo a seguir exibe o calculo do vetor de probabilidade apds trés geragoes.

11 0 o7
vyzvem®=[1 0 0*05 05 0] 0[10 0]
70 1 0f

Este resultado pode parecer bastante estranho a primeira vista, porém, deve ser
levado em conta o fato de o cruzamento de dois gendtipos D s6 poder originar gendtipos
D, uma vez que os genes envolvidos sdo DD. E como os cruzamentos serdo controlados,

estes genes estarao integralmente presentes, geracdo apos geracgao.
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Portanto, € desnecessario qualquer método de previsdo quando se realiza
cruzamento exclusivamente entre gendtipos homogéneos. Caso a geragao inicial
consistisse nos genadtipos H ou R, a previsdo poderia trazer resultados mais relevantes.

Supondo, por exemplo, a geragao inicial de gendtipos H, a equagao seguinte exibe

a previsao apos trés geragdes.

o1 o0 o
vi=vem®=[010*05 05 07 0[087 0130
70 1 0F

Interpretando o resultado, pode-se afirmar:

 Ha probabilidade de, aproximadamente, 0,87 de que um individuo da terceira
geragao seja do gendtipo D, 0,13 que seja do gendtipo H, e 0 que seja do gendtipo
R;
» Pode-se estimar que: 87% da terceira geragao tera gendtipo D, 13% tera gendtipo
H, e 0% gendtipo R.
Por fim, o calculo de previsdo para trés geracbes, considerando que o0s
cruzamentos envolvam o gendtipo R e a geracgao inicial seja de gendtipos H (lembrando

que uma populagao de gendtipos R dispensaria qualquer previsao), é dado pela equagao.

o 1 or0
vizviMi=[0 1 0% 05 05] 00 0125 0875
0 0 18

Interpretando-se o resultado, pode-se afirmar:
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* Na&o ha probabilidade de que um individuo da terceira geragao seja do gendtipo D,
ha probabilidade aproximada de 0,125 de que seja do gendtipo H, e 0,875 que seja
do gendtipo R;

» Pode-se estimar que: 0% da terceira geragao tera gendtipo D, 12,5% tera gendtipo

H, e 87,5% genotipo R.

Previsao de tendéncia de genétipos ao longo do tempo

Os exemplos da seg&o anterior servem como base para previsao de gendtipos em
varias geracgdes, sendo predefinidos o gendtipo inicial da populagéo e o gendtipo utilizado
nos cruzamentos. Porém esta abordagem traz algumas limitagdes: ela ndo permite a facil
identificacdo de uma tendéncia a longo prazo, e nem sempre € possivel dispor de uma
populagdo inicial com gendtipos idénticos. Portanto, faz-se necessario aplicar as
propriedades do regime estacionario de cadeias de Markov.

A partir da matriz de transigdo para cruzamentos com o genétipo H pode-se obter o

vetor de transigdo em regime estacionario:

0,5m, + 0,251, + O, = m,
0,5m,+ 0,5m,+ 0,51, =1,
Om, + 0,251, + 0,51, = 1,4
m+mn,+my=1

m=10,25 0,5 0,25
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O resultado exibido na equacgao traz as seguintes informacoes:

* Alongo prazo, ha probabilidade aproximada de 0,25 de que um dado individuo seja
do gendtipo D, 0,5 do gendtipo H e 0,25 que seja do gendtipo R;
* A longo prazo, pode-se estimar que: 25% da populagéo tera gendétipo D, 50% tera

gendtipo H, e 0,25% gendtipo R.

Estas informagdes sao validas uma vez que a cadeia expressa na matriz € ergotica
regular. E interessante observar que, no regime estacionario, o estado corrente ndo influi
no calculo da probabilidade. Neste exemplo, isto equivale a dizer que nao importa o
genotipo da populagao inicial, basta determinar qual gendétipo estara presente em todos
os cruzamentos (neste caso, genoétipo H) para se obter a matriz de transigao, e, a partir
dela, calcular o vetor de probabilidade em regime estacionario.

Para a previsao de tendéncias de gendtipos para cruzamentos com gendétipos D,
deve-se obter o vetor de probabilidades em regime estacionario.

m,+05m,+0m,=m,
Or +05m,+1m,=m,

Om, +0m,+0m,=m,
mt+m,+my=1

m=[10 0

Este vetor indica que, a longo prazo, a tendéncia da populagdo, submetida a
sucessivos cruzamentos com genotipos D, é ser composta apenas de gendtipos D.

Matematicamente este resultado se deve ao fato de a matriz de transicdo representar
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uma cadeia absorvente (Shamblin, 1979). Do ponto de vista da genética, pode-se
comprovar o resultado obtido simulando os sucessivos cruzamentos em cada geragao. Na
décima geragdo, aproximadamente 0,1% dos individuos tera gendtipo H (percentual que

tende a se anular nas proximas geragdes) e nenhum individuo tera gendtipo R.

Previsao de tendéncia de genétipos utilizando matrizes aumentadas

As secdes anteriores apresentaram modelagens com limitagdes, seja quanto a
populagao inicial, seja quanto a cruzamentos controlados. Nesta se¢cdo sera apresentada
uma modelagem (baseada nos processos de Markov, mas com algumas
modificagdes(Boldrini, 1980)) livre destas restricdes (Haetinger e Dullius,2006).

Nesta modelagem, € necessario um estudo prévio da populagcao, de forma que se
possa estimar as porcentagens de cada gendétipo na geracao corrente. Os gendtipos D, H
e R, terdo esta porcentagem dada por p), p, e p., respectivamente.

Logo, a probabilidade de cruzamento entre individuos dominantes é dada por
pu* py . A probabilidade de cruzamento entre individuos recessivos é dada por pl*p.. O

mesmo raciocinio se aplica para o cruzamento entre individuos hibridos: p,* p,

Ja a probabilidade de cruzamento entre individuos dominante e um recessivo deve
levar em conta as duas probabilidades: p)* p. e plxp) (resultando na probabilidade
2(pi*p.)). Da mesma forma, o cruzamento entre hibridos e dominantes, e entre

recessivos e hibridos é dada, respectivamente, por: 2(pi* p,) € 2(pi*p,) .
Estas probabilidades sdo apresentadas na Tabela 2:
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Tabela 2: Probabilidades de cruzamento entre genotipos

Cruzamento Probabilidade
DxD Pa* P
DxH 2(pa*pi)
DxR 2(pa*py)
HxH Pi* i
HXR 2(py*pi)
RxR P D

A partir das probabilidades exibidas na Tabela 1 e na Tabela 2, pode-se calcular a

porcentagem de cada um dos gendtipos na segunda geragao.

Pu* Dy

1'[1 05 0 025 0 o 2pxpi)
pd ) 3 2 ]* 1
21=[0 05 1 05 05 o (Ps*p,)
2| [0 0 0025 051 Phl*Phl
' 2(pr*ph)
pr*p,

Uma vez obtidas as porcentagens da segunda geragdo, pode-se obter as
porcentagens da terceira geragao, e, sucessivamente, das préximas geragoes.

Esta modelagem pode ser bastante util para Agricultura na previsao de resisténcias
genéticas a certos tipos de doencas e e pesticidas. Porém, ela também apresenta

algumas limitacdes:

31



Deve-se levar em consideragédo que individuos de uma geragao anterior ndo mais
realizem cruzamentos (0 que é bastante comum em populagdes de insetos)
(Haetinger e Dullius,2006);

Deve-se desconsiderar migragdo, mutagdes e selegédo natural, e considerar que os
dois sexos aparecem em quantidades iguais(Boldrini, 1980);

Estas matrizes ndo representam cadeias de Markov, logo, o regime estacionario
nao pode ser obtido. Portanto, os calculos de geragdes futuras tendem a ser cada
vez mais demorados, uma vez que ndo podem ser obtidos diretamente (Haetinger

e Dullius,2006);
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