ESTRUTURAS DE DADOS EM
LINGUAGEM C

Profa. Fernanda Argoud
Fev., 2010




| Tipos de Dados




Tipos de Dados

= Primitivos —inteiro, real, l[06gico, caracter,
ponteiro.
» Estrutura de Dados — modo especifico de

armazenamento e organiza¢ao de dados na
memoria do computador.

* Implementa grafos abstratos na memoria.




Tipos de Dados

Um elemento de estrutura é chamado de NO.

Os tipos de nos podem ser tambem
classificados como :

Homogéneos —todos os nos da estrutura sao
de um mesmo tipo. Ex: vetores e matrizes.

Heterogéneos — 0s nos sao compostos de
campos de tipos diferentes. Ex: registros.




Tipos de Estruturas de Dados

» Estrutura de Dados — sua estrutura
permanece a mesma (numero de nos e posi¢ao dos
mesmos, na memoria). Ex: vetores.

» Estrutura de Dados — sofrem alteragoes

estruturais (inser¢cao, remoc¢ao e variagao do
numero de nos), a medida que sao manipulados.




Operag¢oes sobre Dados

CRIACAO — momento de alocagdo de memoria para
0 no da estrutura de dados;

PERCURSO — acesso a todos os nos da estrutura, ao
mesmo tempo;

BUSCA — por um no especifico na estrutura;

ALTERACAO - no conteudo de um no especifico da
estrutura;




Operag¢oes sobre Dados

- REI\/IO(;AO:
Dados Estaticos — apenas o conteudo dono é
deletado;

Dados Dinamicos — o no e eliminado completamente
da estrutura.

= INSERCAO:
Dados Estaticos — nao e possivel;

Dados Dinamicos —um no é adicionado a estrutura,
aumentando o numero de elementos da mesma.




Listas Lineares

= Estrutura caracterizada por uma sequéncia
ordenada de nos, no sentido de sua posicao
relativa:

Eq,E ., E , ..., E.
Na memoria:

Lista Linear




Listas Lineares

= Regras:

1. Existem (n+1) elementos na seqiéncia;
2. Eo e o primeiro elemento da seqiéncia;
3. Enéoultimo elemento da sequéncia;

4. Para
/0 <
ej/0 < |
Seij = E antecede E

<N
<N

i eE; sucedeE ;
5. Sel=] -1 = E éoantecessorde E e E e

o sucessor de E




Listas lLineares

= Exemplos de lista linear em C:

Acesso Sequencial, dado homogéneo. Ex:
/l declara lista de 20 nds, contendo words de 4 bits

int Lista_words [20][4];

Lista_wordsJi][
Lista_wordsJi][
Lista_wordsJi][
Lista_wordsJi][

I++;

] =1;// deu valor 1011
]=1;//paraondi

] =0; // que € uma palavra
] =1; // de 4 bits




Listas Lineares

Acesso Sequencial, dado heterogéneo. Ex:
/[ declara lista de 20 nds, contendo words de 4 bits
struct words
{ char BO;
char B1;
char B2;
char B3;
} Lista_words[20];

Lista_words[i].BO = 1; // deu valor 1011
Lista_words[i].B1 = 1; //paraono i
Lista_wordsJi].B2 = 0O; // que é uma palavra
Lista_wordsJ[i].B3 = 1; // de 4 bits

I++:




Listas lLineares

Acesso Encadeado, dado homogéneo. Ex:
/l declara lista de 20 nds, contendo words de 4 hits

Int Lista_words [20][4], *ptr=
&Lista_words|[0][0];

ptr +=i*4; //lacessa 0 | -ésimo no
*ptr++ = 1; // deu valor 1011

*ptr++ =1, /[parao nO |

*ptr++ = 0; // que € uma palavra

*ptr = 1; // de 4 bits

ptr++;




Listas Lineares

Acesso Encadeado, dado heterogéneo. Ex:
// declara lista de 20 nds, contendo words de 4 bits

struct words
{ char BO;

char B1;

char B2;

char B3;

struct words * ptr ;

}* prim, * atual;
... cont=0;
atual = prim;
while(cont <)
{ atual = atual->ptr;

cont++; }

atual->B0O = 1; // deu valor 1011
atual->B1 =1; //[parao nd i
atual->B2 = 0; // que € uma palavra
atual->B3 = 1; // de 4 bits




Listas Lineares

" Percurso na Lista Linear:

O primeiro elemento a ser acessado € o primeiro
elemento da lista (E);

Para acessar-se o elemento E , todos os elementos
de E, ate E; _ | ja foram acessados;

O vUltimo elemento a ser acessado e o ultimo
elemento da lista linear.

= Buscanalista Linear:

A identificacao do elemento na lista pode ser feita
pela sua posicao relativa na lista (indice), ou

Por seu valor/conteudo.




Listas Lineares

= Algoritmo de Busca — Alocagao Sequencial:
#define N 50

struct x1

{ Int chave; //[campo que define a busca

...} Lista[N], *PtrIni, *PrtAtual,
*PtrFim =Ptrini

struct x1* buscal(int num)
{ PtrAtual = Ptrini;

while((PtrAtual->chave = num)&&(PtrAtual <=
PtrFim)) PtrAtual++;

If(PtrAtual <= PtrFim) return PtrAtual;
else return NULL,;




Listas Lineares

= Algoritmo de Busca — Alocacao Encadeada:

struct x2

{ Int chave; //[campo que define a busca
struct x2 * PProx;

} *Ptrini, *PrtAtual,

struct x2* busca(int num)
{ PtrAtual = Ptrini;

while((PtrAtual->chave !'= num)&&(PtrAtual->PProx
1= NULL)) PtrAtual=PtrAtual->PProx;

If(PtrAtual->PProx != NULL) return PtrAtual,
else return NULL,;

}




Listas Lineares

= Algoritmo de Busca — Aloca

struct x2

{ Int chave; //[campo que define a
struct x2 * PProx;

} *Ptrini, *PrtAtual,

struct x2* busca(int
{ PtrAtual = Ptrini;

while((PtrAtual->chave !=
1= NULL)) PtrAtual=PtrAtu

If(PtrAtual->PProx != NULL) return
else return NULL,;

}




Listas Lineares

* |nsercao na Lista Linear (dinamica):

Se o elemento X for inserido na posicao i da lista
(com0 < I < n), Xparaaseroi-esimoelemento

da lista linear.
A lista passa a ter (n+2) elementos.

Insercao em uma Lista Linear .




Listas Lineares

= Algoritmo de Inser¢cao— Alocagao Sequencial:
void Inserel(struct x1* novodado, int posicao)
{if((PtrFim+1)< &Lista[N])
PtrAtual = PtrFim + 1;
while(PtrAtual > (Ptrini + posicao))
{ PtrAtual->chave = (PtrAtual-1)->chave;
PtrAtual->... = (PtrAtual-1)->...;
PtrAtual--;

}

PtrAtual->chave = novodado->chave;
PtrAtual->... = novodado->...;
PtrFim++;




Listas Lineares

= Algoritmo de Insercao — Aloca¢ao Encadeada:

void Insere2 (struct x2* Ptrnovo,int posicao)
{int i=1;
PtrAtual = Ptrini ;
while(i++ < (posicao-1))
PtrAtual = PtrAtual->Prox;
Ptrnovo->Prox = PtrAtual->Prox;
PtrAtual->Prox = Ptrnovo;

}




Listas Lineares

» Remocgao da Lista Linear (dinamica):

Se o0 elemento X for removido da posicao i da lista,
Seu sucessor para a ser o sucessor do seu antecessor.
IStO e: EO’ = 11 ey = i-1 = i+1 1 *es = N

A lista passa a ter (n+1) elementos.

EE E

Remog¢ao em uma Lista Linear




Listas Lineares

= Algoritmo de Remoc¢ao—Alocagao Sequencial:
void removel(struct x1* PtrRemov)

PtrAtual = PtrRemov:;

{while(PtrAtual <= PtrFim)

{ PtrAtual ->chave=( PtrAtual +1)->chave;
PtrAtual->... = (PtrAtual+1)->...;
PtrAtual++;

}
PtrFim--;




Listas Lineares

= Algoritmo de Remoc¢ao — Alocagao Encadeada:
void removeZ2 (struct x2* PtrRemov)
{int I=1;
PtrAtual = Ptrini;
while(PtrAtual->Prox != PtrRemov)
PtrAtual = PtrAtual->Prox;
PtrAtual->Prox = PtrRemov->Prox;




Pilhas

/4

= Uma pilha, ou “stack”, e um tipo particular de
lista linear no qual as operagoes de insercao e
remoc¢ao somente sao efetuadas no final, ou
"Topo”, da lista.




Pilhas

= Pilhas sao estruturas do tipo LIFO (*last in, first
out”)

||
NEE EER

PtrBase ude]ele PtrFim

Lista Linear do tipo Pilha




Pilhas

= Algoritmo de Insercao — Alocagao Sequencial:

void empilha(struct x1* novodado)
{ iIf(PtrTopo < PtrFim) //ou < &Lista[N]
{ PtrTopo++;
PrTopo->chave = novodado->chave,;
PtrTopo->... = novodado->...;

}

else printf(\nOverflow!”);




Pilhas

= Algoritmo de Remoc¢ao — Alocagao Sequencial:

void desempilha()
{ if(PtrTopo >= PtrBase) //ou >= &Lista[0]
{ PrTopo->chave = 0; // opcional
PtrTopo->... =0; // opcional
PtrTopo--;
}

else printf("\nUnderflow!”);




Pilhas

= Algoritmo de Inser¢ao — Alocacao Encadeada:

void empilha2 (struct x2* Ptrnovo)

{ struct x2 * Ptrtemp;
PtrTopo->Prox = Ptrnovo;
PtrTopo = Ptrnovo;




Pilhas

= Algoritmo de Remoc¢ao — Aloca¢ao Encadeada:

void desempilha2 ()
{ PtrAtual = PtrBase;
while(PtrAtual->Prox != PtrTopo)
PtrAtual = PtrAtual->Prox;
PtrTopo = PtrAtual,
PtrTopo->Prox = NIL;




Filas

= Uma fila, ou “"queue”, € um tipo de lista linear
no qual a operacao de insergao é efetuada no
final e aremocao, no inicio da lista.

= [sto e:

A insercao do elemento X na lista torna-o o ultimo
da lista linear;

A remocao e efetuada sobre o elemento E;




Filas

= Filas sao estruturas do tipo FIFO (“first in, first
out”)

HEE EEE

PtrTras

Lista Linear do tipo Fila




Filas

= Algoritmo de Insercao — Alocagao Sequencial:

void enfileira(struct x1* novodado)
{if(PtrTras < &Lista[N])
{ PtrTras++;
PrTras->chave = novodado->chave;
PtrTras->... = novodado->...;

}

else printf(\nOverflow!”);




Filas

= Algoritmo de Remoc¢ao — Alocagao Sequencial:

void desenfileira()
{ if(PtrFrente !'= NULL)
{ PtrAtual = PtrFrente;
while(PtrAtual < PtrTras) //adianta os nos
{ PtrAtual ->chave =( PtrAtual +1)->chave;
PtrAtual->... = (PtrAtual+1)->...;
PtrAtual++;

}
PtrTras--;

}

else printf(\nUnderflow!”);




Filas

= Algoritmo de Inser¢ao — Alocacao Encadeada:

void enfileira2 (struct x2* Ptrnovo)

{

PtrTras->Prox = Ptrnovo;
PtrTras = Ptrnovo;




Filas

= Algoritmo de Remoc¢ao — Aloca¢ao Encadeada:

void desenfileira2 ()
{ If(PtrFrente!=PtrTras)
PtrFrente= PtrFrente->Prox;
else printf("\nUnderflow!”);




Deque

= Um deque, ou “double-ended queue”, € um
tipo de lista linear no qual as operagdes de e
remocao podem ser efetuadas tanto no inicio
quanto no final da lista linear.

= |sto e:

Ainsercao do elemento X na lista torna-o o primeiro
ou ultimo da lista linear — fungodes insereesq() e
inseredir();

A remocao e sempre efetuada sobre o elemento E,
ou sobreo E, - fungdes removeesq() e removedir();




Deque

= Deques sao o caso mais geral das filas e pilhas.

HEEE EEN

PtrEsq PtrDir

Lista Linear do tipo Deque




Deque

= Algoritmo de Inser¢ao a Esquerda —Alocacgao
Sequencial:
void Insereesq(struct x1* novodado)
{if( PtrEsg > &Lista[0])
{ PtrEsq -- ;
PtrEsg->chave = novodado->chave;
PtrEsg->... = novodado->...;
} else printf("\nOverflow!™);




Deque

= Algoritmo de Inser¢ao a Direita — Alocacao
Sequencial :

void Inseredir (struct x1* novodado)
{ if (PtrDir < &Lista[N])
{ PtrDir++;
PtrDir->chave = novodado->chave;
PtrDir->... = novodado->...;
} else printf("\nOverflow!™);




Deque

= Algoritmo de Remoc¢ao a esquerda —Alocagao
Sequencial:
void removeesq()
{if(PtrDir >= PtrEsQq)
{ while (PtrAtual <= PtrDir )

{ PtrAtual->chave = (PtrAtual+1)->chave;
PtrAtual->... = (PtrAtual+1)->...;

PtrAtual++;

}
PtrDir--;
else printf(\nUnderflow!”);

}




Deque

= Algoritmo de Remocao a direita —Alocagao
Sequencial:
void removedir()
{ if(PtrDir >= PtrEsq)
{ PtrAtual = PtrDir;
while ( PtrAtual > PtrEsq ) //atrasa os nos
{ PtrAtual->chave = (PtrAtual-1)->chave;
PtrAtual->... = (PtrAtual-1)->...;
PtrAtual--;

}
PtrEsq++;

}

else printf(\nUnderflow!”);




Deque

= Algoritmo de Inser¢ao a Esquerda —Alocacgao
Encadeada:




Deque

= Algoritmo de Inser¢ao a Direita — Alocacao
Encadeada:




Deque

= Algoritmo de Remoc¢ao a esquerda —Alocagao
Encadeada:




Deque

= Algoritmo de Remocao a direita —Alocagao
Encadeada:




Lista duplamente encadeada

Percebe-se que, para ter acesso ao no anterior ao no
atual (para remocgao ou inser¢ao), temos que usar
um ponteiro rastreador (PtrAtual).

Como ter acesso imediato a cada no anterior?

Para solucionar o problema: mais um link em cada
no, de forma que, alem de apontar para o sucessor,
0 N0 aponte também para seu antecessor

4

LISTADUPLAMENTE ENCADEADA




Lista duplamente encadeada

PtrEsq PtrDir

PProx
w J

Lista duplamente encadeada




TRABALHO 1:

= Implemente o programa que encapsula todas as
funcionalidades de uma lista linear duplamente
encadeada, quais sejam:
1) Inicializar a lista;
2) Inserir nd com a chave NOME ordenada alfabeticamente;
3) Buscar no pela chave NOME(devolve enderec¢o do no);
%) Remover no do endereco x;

)
5) Alterar no do endereco x;
)

6) Listar todos os nos.
Data de Entrega: 21/05/10




Tabelas

= Ao contrario das listas lineares, tabelas sao
estruturas 2D.

= Qu seja, para acessar-se um determinado no, sao
necessarios duas posi¢oes, dois ponteiros externos —

um para a “"Linha” e outro para a "Coluna” onde esta
localizado o no.

= Cada no sera entao:




n
gV
—
()
O
gV
T




Arvores

Estruturas de dados nao-lineares e que incluem
informacao de hierarquia e ordenacgao.

Pode ser definida como conjunto finito, de um ou
mais nos, tais que:
Existe um no definido como raiz da arvore;

Os demais nos formam M >= 0 conjuntos
disjuntos S1, S2, ..., Sm, onde cada um desses
subconjuntos € uma arvore, ou “subarvore”.




Arvores

= Ex: arvore genealogica

BENRIE

Andre Marcelo Marcos

D N AN

Rodrigo Thabata Pedro Viviane Aide

Claudio




Arvores

= Qutro conceito importante em estruturas de
arvore € o de nivel — distancia do no a raiz.

Nivel O

Nivel 1




Arvores

* Quanto a ordenacgao dos filhos de um no, uma
arvore e:
Nao-ordenada — onde a ordem dos filhos e irrelevante

para a aplicacao. Neste caso, apenas a hierarquia que
a estrutura proporciona € relevante;

Ordenada — a ordem dos filhos é relevante.




Arvores




