
ESTRUTURAS DE DADOS EM

LINGUAGEM C

Profa. Fernanda Argoud
Fev., 2010

Tipos de Dados

� Primitivos – inteiro, real, lógico, caracter,
ponteiro.

� Estrutura de Dados – modo específico de
armazenamento e organização de dados na armazenamento e organização de dados na
memória do computador.

� Implementa grafos abstratos na memória.

Tipos de Dados

� Primitivos – inteiro, real, lógico, caracter,
ponteiro.

� Estrutura de Dados – modo específico de
armazenamento e organização de dados na armazenamento e organização de dados na
memória do computador.

� Implementa grafos abstratos na memória.

Tipos de Dados

� Um elemento de estrutura é chamado de NÓ.

� Os tipos de nós podem ser também
classificados como :

� Homogêneos – todos os nós da estrutura são � Homogêneos – todos os nós da estrutura são
de um mesmo tipo. Ex: vetores e matrizes.

� Heterogêneos – os nós são compostos de
campos de tipos diferentes. Ex: registros.

Tipos de Estruturas de Dados

� Estrutura de Dados estática – sua estrutura
permanece a mesma (número de nós e posição dos
mesmos, na memória). Ex: vetores.

� Estrutura de Dados dinâmica – sofrem alterações � Estrutura de Dados dinâmica – sofrem alterações
estruturais (inserção, remoção e variação do
número de nós), à medida que são manipulados.

Operações sobre Dados

� CRIAÇÃO – momento de alocação de memória para
o nó da estrutura de dados;

� PERCURSO – acesso a todos os nós da estrutura, ao
mesmo tempo;mesmo tempo;

� BUSCA – por um nó específico na estrutura;

� ALTERAÇÃO – no conteúdo de um nó específico da
estrutura;

Operações sobre Dados

� REMOÇÃO:
� Dados Estáticos – apenas o conteúdo do nó é

deletado;

� Dados Dinâmicos – o nó é eliminado completamente
da estrutura.da estrutura.

� INSERÇÃO:
� Dados Estáticos – não é possível;

� Dados Dinâmicos – um nó é adicionado à estrutura,
aumentando o número de elementos da mesma.

Listas Lineares

� Estrutura caracterizada por uma seqüência
ordenada de nós, no sentido de sua posição
relativa:

E0, E 1, E 2, ..., En

Na memória:Na memória:

E0 E1 E2 En

Lista Linear

...

Listas Lineares

� Regras:

1. Existem (n+1) elementos na seqüência;

2. E0 é o primeiro elemento da seqüência;

3. En é o último elemento da seqüência;3. En é o último elemento da seqüência;

4. Para
∀ i/ 0 ≤ i ≤ n
e j/ 0 ≤ j ≤ n
Se i<j ⇒ Ei antecede E j e E j sucede E i

5. Se i=j -1 ⇒ Ei é o antecessor de Ej e Ej é
o sucessor de Ei.

Listas Lineares

� Exemplos de lista linear em C:
� Acesso Sequencial, dado homogêneo. Ex:
// declara lista de 20 nós, contendo words de 4 bits

int Lista_words [20][4];

...

1 inteiro

...

Lista_words[i][0] = 1; // deu valor 1011

Lista_words[i][1] = 1; //para o nó i

Lista_words[i][2] = 0; // que é uma palavra

Lista_words[i][3] = 1; // de 4 bits

i++;

�

Listas Lineares
� Acesso Sequencial, dado heterogêneo. Ex:
// declara lista de 20 nós, contendo words de 4 bits

struct words

{ char B0;

char B1;

char B2;char B2;

char B3;

} Lista_words[20];

...

Lista_words[i].B0 = 1; // deu valor 1011

Lista_words[i].B1 = 1; //para o nó i

Lista_words[i].B2 = 0; // que é uma palavra

Lista_words[i].B3 = 1; // de 4 bits

i++;

Listas Lineares

� Acesso Encadeado, dado homogêneo. Ex:
// declara lista de 20 nós, contendo words de 4 bits

int Lista_words [20][4], *ptr=
&Lista_words[0][0];

...

ptr +=i*4; //acessa o i - ésimo nó

1 inteiro

ptr +=i*4; //acessa o i - ésimo nó

*ptr++ = 1; // deu valor 1011

*ptr++ = 1; //para o nó i

*ptr++ = 0; // que é uma palavra

*ptr = 1; // de 4 bits

ptr++;

�

Listas Lineares
� Acesso Encadeado, dado heterogêneo. Ex:
// declara lista de 20 nós, contendo words de 4 bits

struct words
{ char B0;

char B1;
char B2;
char B3;
struct words * ptr ;struct words * ptr ;
} * prim, * atual;

... cont=0;
atual = prim;
while(cont < i)
{ atual = atual->ptr;

cont++; }
atual->B0 = 1; // deu valor 1011
atual->B1 = 1; //para o nó i
atual->B2 = 0; // que é uma palavra
atual->B3 = 1; // de 4 bits

Listas Lineares

� Percurso na Lista Linear:
� O primeiro elemento a ser acessado é o primeiro

elemento da lista (E0);

� Para acessar-se o elemento Ei , todos os elementos
de E0 até Ei - 1 já foram acessados;de E0 até Ei - 1 já foram acessados;

� O último elemento a ser acessado é o último
elemento da lista linear.

� Busca na Lista Linear:
� A identificação do elemento na lista pode ser feita

pela sua posição relativa na lista (índice), ou

� Por seu valor/conteúdo.

Listas Lineares

� Algoritmo de Busca – Alocação Sequencial:
#define N 50

struct x1

{ int chave; //campo que define a busca

...} Lista[N], *PtrIni, *PrtAtual,
* PtrFim =PtrIni ;* PtrFim =PtrIni ;

...

struct x1* busca1(int num)

{ PtrAtual = PtrIni;

while((PtrAtual->chave != num)&&(PtrAtual <=
PtrFim)) PtrAtual++;

if(PtrAtual <= PtrFim) return PtrAtual;

else return NULL;

Listas Lineares

� Algoritmo de Busca – Alocação Encadeada:
struct x2

{ int chave; //campo que define a busca

struct x2 * PProx;

} *PtrIni, *PrtAtual;

......

struct x2* busca(int num)

{ PtrAtual = PtrIni;

while((PtrAtual->chave != num)&&(PtrAtual->PProx
!= NULL)) PtrAtual=PtrAtual->PProx;

if(PtrAtual->PProx != NULL) return PtrAtual;

else return NULL;

}

Listas Lineares

� Algoritmo de Busca – Alocação Encadeada:
struct x2

{ int chave; //campo que define a busca

struct x2 * PProx;

} *PtrIni, *PrtAtual;

...
Expanda o algoritmo

...

struct x2* busca(int num)

{ PtrAtual = PtrIni;

while((PtrAtual->chave != num)&&(PtrAtual->PProx
!= NULL)) PtrAtual=PtrAtual->PProx;

if(PtrAtual->PProx != NULL) return PtrAtual;

else return NULL;

}

Expanda o algoritmo
da Livraria para fazer

busca de um livro pela
chave “Titulo”

Listas Lineares

� Inserção na Lista Linear (dinâmica):
� Se o elemento X for inserido na posição i da lista

(com 0 ≤ i ≤ n), X para a ser o i-ésimo elemento
da lista linear.

� A lista passa a ter (n+2) elementos.� A lista passa a ter (n+2) elementos.

E0 E1 E2 En

Inserção em uma Lista Linear

......

Ei

Listas Lineares

� Algoritmo de Inserção– Alocação Sequencial:
void insere1(struct x1* novodado, int posicao)

{ if((PtrFim+1)< &Lista[N])

PtrAtual = PtrFim + 1;

while(PtrAtual > (PtrIni + posicao))

{ PtrAtual->chave = (PtrAtual-1)->chave;

PtrAtual->... = (PtrAtual-1)->...;

PtrAtual--;

}

PtrAtual->chave = novodado->chave;

PtrAtual->... = novodado->...;

PtrFim++;

}

Listas Lineares

� Algoritmo de Inserção – Alocação Encadeada:

void insere2 (struct x2* Ptrnovo,int posicao)

{ int i=1;

PtrAtual = PtrIni ;PtrAtual = PtrIni ;

while(i++ < (posicao-1))

PtrAtual = PtrAtual->Prox;

Ptrnovo->Prox = PtrAtual->Prox;

PtrAtual->Prox = Ptrnovo;

}

Listas Lineares

� Remoção da Lista Linear (dinâmica):
� Se o elemento X for removido da posição i da lista,

seu sucessor para a ser o sucessor do seu antecessor.
Isto é: E0, E 1, ..., E i-1 , E i+1 , ..., E n

� A lista passa a ter (n+1) elementos.� A lista passa a ter (n+1) elementos.

E0 E1 En

Remoção em uma Lista Linear

...

Listas Lineares

� Algoritmo de Remoção– Alocação Sequencial:
void remove1(struct x1* PtrRemov)

PtrAtual = PtrRemov;

{while(PtrAtual <= PtrFim)

{ PtrAtual - >chave = (PtrAtual +1) - >chave;{ PtrAtual - >chave = (PtrAtual +1) - >chave;

PtrAtual->... = (PtrAtual+1)->...;

PtrAtual++;

}

PtrFim--;

}

Listas Lineares

� Algoritmo de Remoção – Alocação Encadeada:
void remove2 (struct x2* PtrRemov)

{ int i=1;

PtrAtual = PtrIni;

while(PtrAtual->Prox != PtrRemov)

PtrAtual = PtrAtual->Prox;

PtrAtual->Prox = PtrRemov->Prox;

}

Pilhas

� Uma pilha, ou “stack”, é um tipo particular de
lista linear no qual as operações de inserção e
remoção somente são efetuadas no final, ou
“Topo”, da lista.

PtrTopoPtrTopo

PtrBase

Pilhas

� Pilhas são estruturas do tipo LIFO (“last in, first
out”)

E0 E1 E2 En

Lista Linear do tipo Pilha

...

PtrBase PtrTopo PtrFim

Pilhas

� Algoritmo de Inserção – Alocação Sequencial:

void empilha(struct x1* novodado)

{ if(PtrTopo < PtrFim) //ou < &Lista[N]

{ PtrTopo++;

PrTopo->chave = novodado->chave;

PtrTopo->... = novodado->...;

}

else printf(“\nOverflow!”);

}

Pilhas

� Algoritmo de Remoção – Alocação Sequencial:

void desempilha()

{ if(PtrTopo >= PtrBase) //ou >= &Lista[0]

{ PrTopo->chave = 0; // opcional

PtrTopo->... = 0; // opcional

PtrTopo--;

}

else printf(“\nUnderflow!”);

}

Pilhas

� Algoritmo de Inserção – Alocação Encadeada:

void empilha2 (struct x2* Ptrnovo)

{ struct x2 * Ptrtemp;

PtrTopo->Prox = Ptrnovo;

PtrTopo = Ptrnovo;

}

Pilhas

� Algoritmo de Remoção – Alocação Encadeada:

void desempilha2 ()

{ PtrAtual = PtrBase;

while(PtrAtual->Prox != PtrTopo)

PtrAtual = PtrAtual->Prox;

PtrTopo = PtrAtual;

PtrTopo->Prox = NIL;

}

Filas

� Uma fila, ou “queue”, é um tipo de lista linear
no qual a operação de inserção é efetuada no
final e a remoção, no início da lista.

� Isto é:
A inserção do elemento X na lista torna-o o último � A inserção do elemento X na lista torna-o o último
da lista linear;

� A remoção é efetuada sobre o elemento E0.

Filas

� Filas são estruturas do tipo FIFO (“first in, first
out”)

E0 E1 E2 En...

Lista Linear do tipo Fila

...

PtrTras

Filas

� Algoritmo de Inserção – Alocação Sequencial:

void enfileira(struct x1* novodado)

{ if(PtrTras < &Lista[N])

{ PtrTras++;

PrTras->chave = novodado->chave;

PtrTras->... = novodado->...;

}

else printf(“\nOverflow!”);

}

Filas
� Algoritmo de Remoção – Alocação Sequencial:
void desenfileira()

{ if(PtrFrente != NULL)
{ PtrAtual = PtrFrente;

while(PtrAtual < PtrTras) //adianta os nós
{ PtrAtual - >chave = (PtrAtual +1) - >chave;{ PtrAtual - >chave = (PtrAtual +1) - >chave;

PtrAtual->... = (PtrAtual+1)->...;
PtrAtual++;

}
PtrTras--;

}
else printf(“\nUnderflow!”);

}

Filas

� Algoritmo de Inserção – Alocação Encadeada:

void enfileira2 (struct x2* Ptrnovo)

{

PtrTras->Prox = Ptrnovo;

PtrTras = Ptrnovo;

}

Filas

� Algoritmo de Remoção – Alocação Encadeada:

void desenfileira2 ()

{ if(PtrFrente!=PtrTras)

PtrFrente= PtrFrente->Prox;

else printf(“\nUnderflow!”);

}

Deque

� Um deque, ou “double-ended queue”, é um
tipo de lista linear no qual as operações de e
remoção podem ser efetuadas tanto no início
quanto no final da lista linear.

� Isto é:� Isto é:
� A inserção do elemento X na lista torna-o o primeiro

ou último da lista linear – funções insereesq() e
inseredir();

� A remoção é sempre efetuada sobre o elemento E0

ou sobre o Em - funções removeesq() e removedir();

Deque

� Deques são o caso mais geral das filas e pilhas.

E0 E1 E2 En...

Lista Linear do tipo Deque

...

PtrEsq PtrDir

Deque

� Algoritmo de Inserção à Esquerda – Alocação
Sequencial:

void insereesq(struct x1* novodado)

{ if(PtrEsq > &Lista[0])

{ PtrEsq -- ;{ PtrEsq -- ;

PtrEsq->chave = novodado->chave;

PtrEsq->... = novodado->...;

} else printf(“\nOverflow!”);

}

Deque

� Algoritmo de Inserção à Direita – Alocação
Sequencial :

void inseredir (struct x1* novodado)

{ if (PtrDir < &Lista[N]){ if (PtrDir < &Lista[N])

{ PtrDir++;

PtrDir->chave = novodado->chave;

PtrDir->... = novodado->...;

} else printf(“\nOverflow!”);

}

Deque

� Algoritmo de Remoção à esquerda – Alocação
Sequencial:

void removeesq()

{if(PtrDir >= PtrEsq)

{ while (PtrAtual <= PtrDir){ while (PtrAtual <= PtrDir)

{ PtrAtual->chave = (PtrAtual+1)->chave;

PtrAtual->... = (PtrAtual+1)->...;

PtrAtual++;

}

PtrDir--;

else printf(“\nUnderflow!”);

}

Deque
� Algoritmo de Remoção à direita – Alocação

Sequencial:
void removedir()

{ if(PtrDir >= PtrEsq)
{ PtrAtual = PtrDir;

while (PtrAtual > PtrEsq) //atrasa os nóswhile (PtrAtual > PtrEsq) //atrasa os nós
{ PtrAtual->chave = (PtrAtual-1)->chave;

PtrAtual->... = (PtrAtual-1)->...;
PtrAtual--;

}
PtrEsq++;

}
else printf(“\nUnderflow!”);

}

Deque

� Algoritmo de Inserção à Esquerda – Alocação
Encadeada:

void insereesq2(struct x2* Ptrnovo)

{

Ptrnovo - >Prox = PtrEsq ;Ptrnovo - >Prox = PtrEsq ;

PtrEsq = Ptrnovo;

}

Deque

� Algoritmo de Inserção à Direita – Alocação
Encadeada:

void inseredir (struct x2* Ptrnovo)

{ PtrDir - >Prox = Ptrnovo ;}{ PtrDir - >Prox = Ptrnovo ;}

Deque

� Algoritmo de Remoção à esquerda – Alocação
Encadeada:

void removeesq()

{if(PtrEsq != NULL)

PtrEsq = PtrEsq - >Prox ;PtrEsq = PtrEsq - >Prox ;

else printf(“\nUnderflow!”);

}

Deque

� Algoritmo de Remoção à direita – Alocação
Encadeada:

void removedir()

{ if(PtrEsq !=NULL)

{ PtrAtual = PtrEsq;

while(PtrAtual->Prox != PtrDir)

PtrAtual = PtrAtual->Prox;

PtrDir = PtrAtual;

PtrAtual->Prox = NULL;

}

else printf(“\nUnderflow!”);

}

Lista duplamente encadeada

� Percebe-se que, para ter acesso ao nó anterior ao nó
atual (para remoção ou inserção), temos que usar
um ponteiro rastreador (PtrAtual).

� Como ter acesso imediato a cada nó anterior?

� Para solucionar o problema: mais um link em cada
nó, de forma que, além de apontar para o sucessor,
o nó aponte também para seu antecessor

� LISTA DUPLAMENTE ENCADEADA

Lista duplamente encadeada

PtrEsq PtrDir

PProx

E0 E1 E2 En

Lista duplamente encadeada

...
E3

PProx

PAnt

TRABALHO 1:

� Implemente o programa que encapsula todas as
funcionalidades de uma lista linear duplamente
encadeada, quais sejam:
1) Inicializar a lista;

2) Inserir nó com a chave NOME ordenada alfabeticamente;2) Inserir nó com a chave NOME ordenada alfabeticamente;

3) Buscar nó pela chave NOME(devolve endereço do nó);

4) Remover nó do endereço x;

5) Alterar nó do endereço x;

6) Listar todos os nós.

� Data de Entrega: 21/05/10

{String NOME}

String Telefone

int idade

Tabelas

� Ao contrário das listas lineares, tabelas são
estruturas 2D.

� Ou seja, para acessar-se um determinado nó, são
necessários duas posições, dois ponteiros externos –
um para a “Linha” e outro para a “Coluna” onde está um para a “Linha” e outro para a “Coluna” onde está
localizado o nó.

� Cada nó será então:
Valor

xi yi
PtrLinha PtrColuna

Tabelas

1 1 1 2 1 3 1 n
...

L1

C1 C2 C3 ... Cn

2 1 2 2 2 3 2 n
...

m 1 m 2 m 3 m n
...

L2

...

Lm

Árvores

� Estruturas de dados não-lineares e que incluem
informação de hierarquia e ordenação.

� Pode ser definida como conjunto finito, de um ou
mais nós, tais que:

1. Existe um nó definido como raiz da árvore;

2. Os demais nós formam M >= 0 conjuntos
disjuntos S1, S2, ... , Sm, onde cada um desses
subconjuntos é uma árvore, ou “subárvore”.

Árvores

� Ex: árvore genealógica

Daniel

André Marcelo Marcos

Rodrigo Thabata Pedro Viviane Aide

Cláudio

Árvores

� Outro conceito importante em estruturas de
árvore é o de nível – distância do nó à raiz.

A Nível 0

B C D

E F G H
I

Nível 1

Nível 2

Árvores

� Quanto à ordenação dos filhos de um nó, uma
árvore é:
� Não-ordenada – onde a ordem dos filhos é irrelevante

para a aplicação. Neste caso, apenas a hierarquia que
a estrutura proporciona é relevante;a estrutura proporciona é relevante;

� Ordenada – a ordem dos filhos é relevante.

Árvores

A ≠ A

B C D
Nível 2

D C B

