
Microcontroladores

1. Introdução

Atualmente  um  grande  número  de  microcontroladores,  integrados  em  diversos 

equipamentos, exercem um papel importante no dia a dia das pessoas. Despertar ao som 

de  um CD  Player programável,  tomar  café  da  manhã  preparado  por  um microondas 

digital,  e  ir  ao  trabalho  de  carro,  cuja  injeção de combustível  é  microcontrolada,  são 

apenas alguns exemplos.

O mercado de microcontroladores apresenta-se em franca expansão, ampliando 

seu  alcance  principalmente  em  aplicações  residenciais,  industriais,  automotivas  e  de 

telecomunicações.  Segundo dados da  National  Semiconductor (1997),  uma residência 

típica americana possui 35 produtos baseados em microcontrolador.  Estima-se que, em 

2010,  em média uma pessoa interagirá  com 250 dispositivos  com microcontroladores 

diariamente.

Em um passado recente, o alto custo dos dispositivos eletrônicos limitou o uso dos 

microcontroladores  apenas  aos  produtos  domésticos  considerados  de  alta  tecnologia 

(televisão,  vídeo  e  som).  Porém,  com  a  constante  queda  nos  preços  dos  circuitos 

integrados,  os  microcontroladores  passaram  a  ser  utilizados  em  produtos  menos 

sofisticados do ponto de vista da tecnologia, como máquinas de lavar, microondas, fogões 

e  refrigeradores.  Assim,  a  introdução  do  microcontrolador  nestes  produtos  cria  uma 

diferenciação e permite a inclusão de melhorias de segurança e de funcionalidade. Alguns 

mercados  chegaram ao  ponto  de  tornar  obrigatório  o  uso  de  microcontroladores  em 

determinados tipos de equipamentos, impondo um pré-requisito tecnológico.

Muitos produtos que temos disponíveis hoje em dia, simplesmente não existiriam, 

ou  não  teriam  as  mesmas  funcionalidades  sem  um  microcontrolador.  É  o  caso,  por 

exemplo, de vários instrumentos biomédicos, instrumentos de navegação por satélites, 

detetores de radar, equipamentos de áudio e vídeo, eletrodomésticos, entre outros.

Entretanto,  o  alcance  dos  microcontroladores  vai  além  de  oferecer  algumas 

facilidades.  Uma  aplicação  crucial,  onde  os  microcontroladores  são  utilizados,  é  na 

redução de consumo de recursos naturais. Existem sistemas de aquecimento modernos 

que  captam  a  luz  solar  e,  de  acordo  com  a  demanda  dos  usuários,  controlam  a 

temperatura de forma a minimizar perdas. Um outro exemplo, de maior impacto, é o uso 
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de microcontroladores na redução do consumo de energia em motores elétricos, que são 

responsáveis pelo consumo de, aproximadamente, 50% de toda eletricidade produzida no 

planeta. Portanto, o alcance dessa tecnologia tem influência muito mais importante em 

nossas vidas, do que se possa imaginar.

O universo de aplicações dos microcontroladores, como já mencionado, está em 

grande  expansão,  sendo  que  a  maior  parcela  dessas  aplicações  é  em  sistemas 

embarcados. A expressão “sistema embarcado” (do inglês  embedded system) se refere 

ao fato  do  microcontrolador  ser  inserido  nas aplicações (produtos)  e  usado de forma 

exclusiva por elas. Como a complexidade desses sistemas cresce vertiginosamente, o 

software tem  sido  fundamental  para  oferecer  as  respostas  às  necessidades  desse 

mercado.  Tanto  é,  que  o  software para  microcontroladores  representa  uma  fatia 

considerável do mercado de  software mundial. Segundo Edward Yourdon (consultor na 

área  de  computação,  pioneiro  nas  metodologias  de  engenharia  do  software  e 

programação estruturada) a proliferação dos sistemas embarcados, juntamente com o 

advento da Microsoft, são os responsáveis pela retomada do crescimento da indústria de 

software nos Estados Unidos da América.

2. Definição de Microcontrolador

Um  microcontrolador  é  um  sistema  computacional  completo,  no  qual  estão 

incluídos uma CPU (Central Processor Unit), memória de dados e programa, um sistema 

de clock, portas de I/O (Input/Output),  além de outros possíveis periféricos, tais como, 

módulos de  temporização e  conversores A/D entre  outros,  integrados em um mesmo 

componente.  As  partes  integrantes  de  qualquer  computador,  e  que  também  estão 

presentes, em menor escala, nos microcontroladores são:

● Unidade Central de Processamento (CPU)

● Sistema de clock para dar seqüência às atividades da CPU

● Memória para armazenamento de instruções e para manipulação de dados

● Entradas para interiorizar na CPU informações do mundo externo

● Saídas para exteriorizar informações processadas pela CPU para o mundo externo

● Programa (firmware) para definir um objetivo ao sistema
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2.1 Unidade Central de Processamento (CPU)

A unidade central de processamento é composta por uma unidade lógica aritmética 

(ULA), por uma unidade de controle e por unidades de memória especiais conhecidas por 

registradores. Para que a CPU possa realizar tarefas é necessário que se agregue outros 

componentes, como unidades de memória, unidades de entrada e unidades de saída. A 

figura a seguir apresenta um diagrama de blocos com uma possível interface entre a CPU 

e outros dispositivos.

A unidade de memória permite armazenar grupos de dígitos binários que podem 

representar instruções que o processador irá executar ou dados que serão manipulados 

pelo processador. A unidade de entrada consiste em todos os dispositivos utilizados para 

obter informações e dados externos ao processador.  A unidade de saída consiste em 

dispositivos capazes de transferir dados e informações do processador para o exterior.

A ULA é a área de uma CPU na qual as operações lógicas e aritméticas  são 

realizadas sobre os dados. O tipo de operação realizada é determinada pelos sinais da 

unidade de controle. Os dados a serem operados pela ULA podem ser oriundos de uma 

memória ou de uma unidade de entrada. Os resultados das operações realizadas na ULA 

podem ser transferidos tanto para uma memória de dados como para uma unidade de 

saída.
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A função da unidade de controle é comandar as operações da ULA e de todas as 

outras unidades conectadas a CPU, fornecendo sinais de controle e temporização. De 

certa maneira, a unidade de controle é como um maestro que é responsável por manter 

cada um dos  membros  da  orquestra  em sincronismo.  Essa  unidade contém circuitos 

lógicos e de temporização que geram os sinais apropriados necessários para executar 

cada instrução de um programa.

A unidade de controle busca uma instrução na memória enviando um endereço e 

um comando de leitura para a unidade de memória. A palavra da instrução armazenada 

na posição de memória é transferida para um registrador conhecido por registrador de 

instruções (RI) da unidade de controle. Essa palavra de instrução, que está de alguma 

forma  de  código  binário,  é  então  decodificada  pelos  circuitos  lógicos  na  unidade  de 

controle para determinar a instrução que está sendo invocada. A unidade de controle usa 

essa informação para enviar os sinais apropriados para as unidades restantes a fim de 

executar a operação específica.

Essa seqüência de busca de um código de instrução e de execução da operação 

indicada é repetida indefinidamente pela unidade de controle. Essa seqüência repetitiva 

de busca/execução continua até que a CPU seja desligada ou até que o RESET seja 

ativado. O RESET sempre faz a CPU buscar sua primeira instrução no programa.

Uma CPU, também conhecida por processador, repete indefinidamente as mesmas 

operações básicas de busca e execução. Naturalmente, os diversos ciclos de execução 

serão diferentes para cada tipo de instrução à medida que a unidade de controle envia 

sinais diferentes para as outras unidades de execução de uma instrução em particular.

Um registrador é um tipo de memória de pequena capacidade porém muito rápida, 

contida  na  CPU,  utilizado  no  armazenamento  temporário  de  dados  durante  o 

processamento. Os registradores estão no topo da hierarquia de memória, sendo desta 

forma o meio mais rápido e de maior custo para armazenar um dado.

Cada registrador de um processador possui uma função especial. Um dos mais 

importantes  é  o  contador  de  programa  (program  counter –  PC),  que  armazena  os 

endereços dos códigos das instruções à medida que são buscadas da memória. Outros 

registradores são utilizados para realizar funções como: armazenamento de códigos de 

instrução (RI), manutenção dos dados operados pela ULA (acumulador), armazenamento 

de endereços de dados a serem lidos na memória (ponteiro de dados), além de outras 

funções  de  armazenamento  e  contagem.  Todos  os  processadores  possuem  um 

registrador  em especial  muito  utilizado chamado de acumulador  ou registrador  A.  Ele 
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armazena um operando para quaisquer instruções, lógica ou matemática. O resultado da 

operação é armazenado no acumulador após a instrução ser executada.

Para  que  exista  comunicação  entre  as  unidades  que  formam  um  processador 

devemos  definir  uma  forma  de  conexão  entre  estas  unidades.  Em  um  processador 

tradicional com arquitetura Von Neuman este meio é o barramento de dados. A largura do 

barramento  de  dados  em  bits  é  o  que  determina  o  número  de  bits  para  um  dado 

processador.  A figura  a  seguir  apresenta  a  interface  dos  principais  dispositivos  que 

compõem um sistema microprocessado através de um barramento de dados.

A CPU é o centro de todo sistema computacional, e não é diferente quando se trata 

de microcontroladores. O trabalho da CPU é executar rigorosamente as instruções de um 

programa,  na  seqüência  programada,  para  uma  aplicação  específica.  Um  programa 

computacional  (software)  instrui  a  CPU a ler  informações de entradas,  ler  e  escrever 

informações na memória de dados, e escrever informações nas saídas. O diagrama de 

blocos simplificado da CPU presente nos microcontroladores da família HC08, também 

denominado de CPU08, é apresentado na figura a seguir. Esta arquitetura de processador 

será utilizada como modelo neste documento.
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As principais funções de cada um dos componentes da CPU08 serão apresentadas 

a seguir.

Unidade  Lógica/Aritmética  (ULA):  A ULA é  utilizada  para  realizar  operações 

lógicas  e  aritméticas  definidas  no  conjunto  de  instruções  da  CPU.  Vários  circuitos 

implementam as operações aritméticas binárias decodificas pelas instruções e fornecem 

dados  para  a  execução  da  operação  na  ULA.  A maioria  das  operações  aritméticas 

binárias  são  baseadas  em  algoritmos  de  adição  e  subtração  (adição  com  o  valor 

negativo). A multiplicação é realizada através de uma série de adições e deslocamentos 

com a ULA sob controle lógico da CPU.

Controle da CPU: O circuito de controle da CPU implementa o sequeciamento de 

elementos lógicos necessários para a ULA realizar as operações requisitadas durante a 

execução  do  programa.  O  elemento  central  da  seção  de  controle  da  CPU  é  o 

decodificador de instruções.  Cada  opcode (código de instrução)  é decodificado para 

determinar  quantos  operandos  são  necessários  e  qual  seqüência  de  passos  será 

necessária  para completar  a  instrução em curso.  Quando uma instrução é executada 

completamente, o próximo opcode é lido e decodificado.
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Registradores da CPU: A CPU08 contém 5 registradores como apresentado na 

figura anterior. Os registradores da CPU são memórias especiais que não fazem parte do 

mapa de memória. O conjunto de registradores da CPU é freqüentemente chamado de 

modelo de programação.

O acumulador, também chamado de registrador A, é freqüentemente utilizado para 

armazenar um dos operandos ou o resultado de operações.

O registrador H:X é um registrador de 16 bits de índice que possibilita ao usuário 

endereçar indiretamente o espaço de memória de 64Kbytes. O byte mais significativo do 

registrador de índice é denominado H, e o byte menos significativo denominado X. Sua 

principal  função  é  servir  de  apontador  para  uma  área  na  memória  onde  a  CPU  irá 

carregar (ler) ou armazenar (escrever) informação. Quando não estiver sendo utilizado 

para apontar um endereço na memória, ele pode ser utilizado como registrador genérico.

O registrador Program Counter (PC) é usado pela CPU para controlar e conduzir 

ordenadamente a busca do endereço da próxima instrução a ser executada. Quando a 

CPU é energizada ou passa por um processo de reset, o PC é carregado com o conteúdo 

de um par de endereços específicos denominados vetor de reset (reset vector). O vetor 

de reset contém o endereço da primeira instrução a ser executada pela CPU. Assim que 

as instruções são executadas, uma lógica interna a CPU incrementa o PC, de tal forma 

que ele sempre aponte para o próximo pedaço de informação que a CPU vai precisar. O 

número de bits do PC coincide exatamente com o número de linhas do barramento de 

endereços, que por sua vez determina o espaço total disponível de memória que pode ser 

acessada pela CPU.
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O registrador Condition Code (CCR) é um registrador de 8 bits que armazena os 

bits  de  estado  (flags)  que  refletem  o  resultado  de  algumas  operações  da  CPU.  A 

instruções de desvio usam estes bits de estado para tomar suas decisões.

A descrição dos bits do registrador de condição é apresentada abaixo:

V (Bit de Overflow) - A CPU leva o bit de  overflow  para nível lógico alto quando 

houver estouro no resultado de uma operação em complemento de 2. O bit V é utilizado 

pelas instruções de desvios condicionais BGT, BGE, BLE, e BLT.

H (Bit de Half-carry) - A CPU leva o bit de half-carry para nível lógico alto quando 

ocorrer estouro entre os bits 3 e 4 do acumulador durante as operações ADD e ADC. O bit 

H é importante nas operações aritméticas codificadas em binário (BCD). A instrução DAA 

utiliza o estado dos bits H e C para determinar o fator de correção apropriado.

I  (Máscara de Interrupções) -  Quando o bit I está em nível lógico alto, todas as 

interrupções são mascaradas (desabilitadas). As interrupções são habitadas quando o bit 

I é levado a nível lógico baixo. Quando ocorre uma interrupção, o bit que mascara as 

interrupções é automaticamente levado a nível lógico alto. Depois que os registradores da 

CPU são armazenados na pilha este bit volta ao nível lógico baixo. Se uma interrupção 

ocorrer enquanto o bit I estiver setado, seu estado será guardado. As interrupções são 

atendidas, em ordem de prioridade, assim que o bit  I  for a nível lógico 0. A instrução 

retorno da interrupção (RTI) retorna os registradores da CPU da pilha, e restaura o bit I no 

seu estado de nível lógico 0. Após qualquer reset, o bit I é colocado em nível lógico alto e 

só pode ser limpo por uma instrução de software (CLI).

N (Bit Negativo) - A CPU coloca o bit N em nível lógico alto quando uma operação 

aritmética,  lógica  ou  de  manipulação  de  dados  produzir  um  resultado  negativo. 

Corresponde ao 8o bit do registrador que contém o resultado.

Z  (Bit  Zero)  -  A CPU leva o bit  Z para nível  lógico alto quando uma operação 

aritmética, lógica ou de manipulação de dados produzir um resultado igual a 0.

C  (Bit Carry/Borrow)  -  A CPU coloca o bit  C em nível  lógico alto  quando uma 

operação  de  adição  produzir  um  valor  superior  a  8  bits  ou  quando  uma  subtração 
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necessitar um empréstimo. Algumas operações lógicas e as instruções de manipulação 

de dados também podem modificar o estado do bit C.

O  Stack Pointer  (SP)  é  um registrador  cuja  função é  apontar  para  a  próxima 

localização disponível (endereço livre) de uma pilha (lista de endereços contíguos). A pilha 

pode ser vista como um monte de cartas empilhadas, onde cada carta armazena um byte 

de informação. A qualquer hora, a CPU pode colocar uma carta nova no topo da pilha ou 

retirar uma carta do topo da pilha. As cartas que estão no meio da pilha não podem ser 

retiradas  até  que  todas  que  estejam  acima  dela  sejam  removidas  primeiro.  A CPU 

acompanha o efeito da pilha através do valor armazenado no SP. O SP sempre aponta 

para a localização de memória disponível para se colocar a próxima carta (byte).

Normalmente,  a  CPU  usa  a  pilha  para  guardar  os  endereços  de  retorno  e  o 

contexto, isto é, os registradores da CPU, na ocorrência de uma exceção (interrupção ou 

reset).

Durante um reset, o  Stack Pointer contém o endereço 0x00FF. A instrução RSP 

(Reset  Stack  Pointer)  carrega  o  byte  menos  significativo  com  0xFF  e  o  byte  mais 

significativo não é afetado.

Quando  a  CPU  insere  um  novo  dado  na  pilha,  automaticamente  o  SP  é 

decrementado para o próximo endereço livre. Quando a CPU retira um dado da pilha, o 

SP é incrementado para apontar para o dado mais recente, e o valor do dado é lido nesta 

posição. Quando a CPU é energizada ou passa por um processo de reset, o SP aponta 

para um endereço específico na memória RAM (no caso dos microcontroladores HC08 e 

HCS08 = 0x00FF).

A CPU08 possui modos de endereçamento indexado com offsets de 8 ou 16 bits do 

SP para acesso de variáveis temporárias inseridas na pilha. A CPU utiliza o conteúdo do

registrador SP para determinar o endereço efetivo do operando.

OBS:  Embora  o  endereço  inicial  do  SP seja  0x00FF,  a  localização  da  pilha  é 

arbitrária e pode ser realocada pelo usuário em qualquer lugar na RAM. Movimentar o SP 

para fora da página de acesso direto (0x0000 a 0x00FF) permitirá que este espaço de 

memória seja utilizado para modos de endereçamento mais eficientes.
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2.2. Sistema de Clock

Todo sistema computacional utiliza um clock para fornecer a CPU uma maneira de 

se mover de instrução em instrução, em uma seqüência pré-determinada.

Uma  fonte  de  clock  de  alta  freqüência  (normalmente  derivada  de  um  cristal 

ressonador conectado a CPU) é utilizada para controlar o sequeciamento das instruções 

da CPU. Normalmente as CPUs dividem a freqüência básica do cristal por 2 ou mais para 

chegar  ao clock do barramento interno.  Cada ciclo  de leitura ou escrita a  memória  é 

executado em um ciclo de clock do barramento interno, também denominado  ciclo de 

barramento (bus cycle).

2.3. Memória

Podemos pensar na memória como sendo uma lista de endereços postais, onde o 

conteúdo de cada endereço é um valor fixo de 8 bits (para CPU de 8 bits). Se um sistema 

computacional  tem  n  linhas  (bits)  de  endereços,  ele  pode  endereçar  2n posições  de 

memória (p.ex.: um sistema com 14 linhas pode acessar 214 = 16384 endereços). Entre os 

diversos tipos de memória encontram-se:

RAM (Random Access Memory)– Memória de acesso aleatório. Pode ser lida ou 

escrita pela execução de instruções da CPU e, normalmente é utilizada para manipulação 

de dados pela CPU. O conteúdo é perdido na ausência de energia (memória volátil).

ROM (Read Only Memory) – Memória apenas de leitura. Pode ser lida, mas não é 

alterável. O conteúdo deve ser determinado antes que o circuito integrado seja fabricado. 

O conteúdo é mantido na ausência de energia (memória não volátil).

EPROM (Erasable  and  Programmable  Read-Only  Memory)  –  Memória  ROM 

programável  e  apagável.  O  conteúdo  dessa  memória  pode  ser  apagado  com  luz 

ultravioleta,  e  posteriormente,  reprogramado  com  novos  valores.  As  operações  de 

apagamento e programação podem ser realizadas um número limitado de vezes depois 

que o circuito integrado for fabricado. Da mesma forma que a ROM, o conteúdo é mantido 

na ausência de energia (memória não volátil).

OTP (One  Time  Programmable)  –  Memória  programável  uma  única  vez. 

Semelhante à EPROM quanto a programação, mas que não pode ser apagada.

EEPROM (Electrically Erasable and Programmable Read-Only Memory) – Memória 

ROM programável e apagável eletricamente. Pode ter seu conteúdo alterado através da 
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utilização de sinais elétricos convenientes. Tipicamente, um endereço de uma EEPROM 

pode ser apagada e reprogramada até 100.000 vezes.

FLASH – Memória funcionalmente semelhante a EEPROM, porém com ciclos de 

escrita bem mais rápidos.

I/O (Input/Output) – Registradores de controle, estado e sinais de I/O são um tipo 

especial de memória porque a informação pode ser sentida (lida) e/ou alterada (escrita) 

por dispositivo diferentes da CPU.

2.4. Sinais de Entrada

Dispositivos de entrada fornecem informação para a CPU processar,  vindas do 

mundo  externo.  A  maioria  das  entradas  que  os  microcontroladores  processam  são 

denominadas  sinais de entrada digitais, e utilizam níveis de tensão compatíveis com a 

fonte de alimentação do sistema. O sinal de 0V (GND ou VSS ) indica o nível lógico 0 e o 

sinal  de  fonte  positiva,  que  tipicamente  é  +5VDC  (VDD  )  indica  o  nível  lógico  1 

(atualmente os microcontroladores começaram a reduzir a tensão de VDD para valores na 

faixa dos 3V).

Naturalmente que no mundo real existem sinais puramente analógicos (com uma 

infinidade de valores) ou sinais que utilizam outros níveis de tensão. Alguns dispositivos 

de entrada traduzem as tensões do sinal para níveis compatíveis com VDD e VSS. Outros 

dispositivos de entrada convertem os sinais analógicos em sinais digitais (valores binários 

formados por 0s e 1s) que a CPU pode entender e manipular. Alguns microcontroladores 

incluem  circuitos  conversores  analógicos/digitais  (ADC)  encapsulados  no  mesmo 

componente.

2.5. Sinais de Saída

Dispositivos de saída são usados para informar ou agir no mundo exterior através 

do processamento de informações realizados pela CPU. Circuitos eletrônicos (algumas 

vezes construídos no próprio microcontrolador) podem converter sinais digitais em níveis 

de tensão analógicos. Se necessário, outros circuitos podem alterar os níveis de tensão 

VDD e VSS nativos da CPU em outros níveis.
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2.6. Códigos de operação (opcodes)

Os programas usam códigos para fornecer instruções para a CPU. Estes códigos 

são  chamados  de  códigos  de  operação  ou  opcodes.  Cada  opcode instrui  a  CPU  a 

executar uma seqüência específica para realizar sua operação.  Microcontroladores de 

diferentes fabricantes usam diferentes conjuntos de opcodes porque são implementados 

internamente por hardware na lógica da CPU. O  conjunto de instruções  de uma CPU 

especifica  todas  as  operações  que  podem  ser  realizadas.  Opcodes são  uma 

representação das instruções que são entendidas pela máquina, isto é, uma codificação 

em representação binária a ser utilizada pela CPU. Mnemônicos são outra representação 

para as instruções, só que agora, para serem entendidas pelo programador.

2.7. Mnemônicos das instruções e assembler

Um  opcode como 0x4C é entendido pela CPU, mas não é significativo para nós 

humanos.  Para  resolver  esse  problema,  um  sistema  de  instruções  mnemônicas 

equivalentes  foram  criadas  (Linguagem  Assembly).  O  opcode 0x4C  corresponde  ao 

mnemônico INCA, lê-se “incrementa o acumulador”, que é muito mais inteligível.  Para 

realizar  a  tradução  de  mnemônicos  em  códigos  de  máquina  (opcodes e  outras 

informações)  utilizados pela  CPU é necessário  um programa computacional  chamado 

assembler (compilador para linguagem Assembly). Um programador utiliza um conjunto 

de instruções na forma de mnemônicos para desenvolver uma determinada aplicação, e 

posteriormente, usa um  assembler  para traduzir  estas instruções para  opcodes que a 

CPU pode entender.

Após a descrição da unidade central de processamento de um microcontrolador 

podemos  partir  para  o  aprendizado  da  linguagem  de  programação  Assembly. 

Recomenda-se a leitura da folha de dados (principalmente a seção que trata do conjunto 

de instruções)  do microcontrolador,  bem como da apostila  do microcontrolador  HC08, 

família QT/QY. O próximo capítulo deste documento irá descrever diversos periféricos que 

podem compor um microcontrolador, como portas de entrada/saída, temporizadores, entre 

outros.
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3. Periféricos

Os microcontroladores normalmente são classificados em famílias, dependendo 

da aplicação a que se destinam. A partir da aplicação que a família de microcontroladores 

se  destina,  um  conjunto  de  periféricos  específicos  é  escolhido  e  integrado  a  um 

determinado  microprocessador.  Estes  microprocessadores  normalmente  operam  com 

barramentos de 8, 16 ou 32 bits, e apresentam arquiteturas RISC (Reduced Instruction 

Set  Computer)  ou  CISC  (Complex  Instruction  Set  Computer).  Alguns  exemplos  de 

microcontroladores  que utilizam microprocessadores  com arquitetura  RISC são o  PIC 

(Microchip) e o MSP430 (Texas Instruments). Já o MC68HC08 e HCS08 (Freescale) e o 

8051 (Intel) são exemplos de microcontroladores que utilizam arquitetura CISC.

Apesar da classificação dos microcontroladores em famílias, existem periféricos 

necessários  a  praticamente  todas  as  aplicações,  que  são  a  memória  de  dados  e  a 

memória de programa. A memória de dados mais utilizada é a RAM (Random Access 

Memory), que é uma memória volátil, ou seja, não  preserva o seu conteúdo sem uma 

fonte de alimentação.

Recentemente  as  memórias  de  programa  sofreram  uma  grande  mudança.  A 

alguns anos atrás as memórias de programa mais utilizadas eram a ROM (Ready-Only 

Memory) e a EPROM (Erasable Programmable Read-Only Memory). O grande problema 

da utilização de tais memórias era a falta de praticidade durante o desenvolvimento de um 

sistema  embarcado.  Com  a  popularização  das  memórias  FLASH  e,  ainda,  devido  a 

facilidade de utilização, cada vez mais os microcontroladores tendem a ser produzidos 

com  esta  memória,  em substituição  a  ROM  e  a  EPROM.  Importante  lembrar  que  a 

praticidade da memória FLASH se deve a esta memória ser uma variação das EEPROM 

(Electrically-Erasable  Programmable  Read-Only  Memory)  que  permitem  que  múltiplos 

endereços sejam apagados ou escritos com sinais elétricos.

A  seguir  serão  apresentadas  as  características  e  aplicações  dos  principais 

periféricos encontrados em microcontroladores,  tais  como: portas de entrada e saída, 

temporizadores, portas de comunicação serial e conversores Analógico-digitais (A/D).
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3.1 Temporizadores

Um microprocessador deve possuir um relógio. O relógio pode ser implementado 

por  um  cristal  oscilador  que  sincroniza  todo  o  funcionamento  do  microprocessador, 

controlando o tempo de cada um dos eventos relacionados aos dispositivos integrados a 

ele.

Os temporizadores utilizam a base de tempo do relógio para poder implementar 

contagens  de  tempo  bem  específicas  e  configuráveis.  Estes  utilizam  contadores, 

incrementados na mesma base de tempo do relógio. Desta forma é possível descrever 

tempo em número de ciclos de um relógio. Por exemplo, imagine um microprocessador 

utilizando um relógio de 20 MHz. O período relativo a esta freqüência é 50 ns. Podemos 

representar então um tempo de 1ms através de períodos de 50ns, obtendo o valor de 

20000. Ou seja, se incrementarmos um contador a cada ciclo de relógio, no caso 50ns, 

quando este contador atingir o valor de 20000, teremos atingido a contagem de 1ms.

Para que este método seja aplicado, existe a necessidade da utilização de pelo menos 2 

registradores. O registrador que será incrementado e o registrador que conterá o valor a 

ser atingido. No entanto, existe um problema relacionado a este método. Imagine que 

precisemos  de  um  tempo  na  ordem  de  segundos,  por  exemplo,  1  segundos.  Se 

estivermos utilizando um relógio de 4 MHz, seria necessário registradores de 24 bits para 

representar o valor de 4x106. Com o intuito de reduzir o tamanho destes contadores, os 

temporizadores  apresentam  a  possibilidade  de  divisão  do  relógio,  normalmente  por 

valores múltiplos de 2. No caso do exemplo acima, poderíamos dividir o relógio por 128, 

obtendo uma freqüência de 31,250 KHz. Então, para representarmos 1 segundo, seria 

necessário uma contagem de 31250 períodos de 32μs, ou seja, um valor que pode ser 

representado em 16 bits.

Devemos  lembrar  que  a  divisão  terá  influência  somente  no  tempo  de 

incrementação do contador,  continuando o barramento interno  do microprocessador  a 

operar com o relógio original.

Para exemplificar a configuração dos registradores relativos a um temporizador 

em um microcontrolador será utilizado o microcontrolador MC68HC908QY4. O processo 

de configuração é apresentado a seguir.

Os  microcontroladores  da  linha  HC08  normalmente  possuem  1  ou  2 

temporizadores.  Os registradores  relativos  a estes temporizadores  apresentam nomes 

semelhantes,  tendo  apenas  o  número  no  temporizador  para  diferenciá-los.  Os  três 
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registradores de configuração do temporizador neste microcontrolador são: TSC, TCNT e 

TMOD.  Abaixo  é  apresentado  o  diagrama  de  blocos  do  temporizador  destes 

microcontroladores. É importante ressaltar que alguns dos registradores apresentados na 

figura são relativos ao módulo PWM e captura de entrada.

Figura – Diagrama de blocos do módulo temporizador de microcontrolador MC68HC908QY4

TSC (Timer Status and Control Register):

Possibilita habilitar a interrupção do temporizador, verificar o estado da  flag de 

interrupção, para-lo, reiniciar a contagem e dividir o relógio para obter a base de tempo.
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Figura – Registrador TSC

Abaixo serão descritos as funções de cada um dos bits deste registrador:

TOF (Timer Overflow Flag): Este bit de escrita/leitura torna-se é setado quando o 

registrador  contador  (TCNT)  atinge  o  valor  do  registrador  de  módulo  de  contagem 

(TMOD), condição essa que indica o estouro da contagem de tempo. O procedimento 

correto para limpar esta indicação é ler o registrador TSC e escrever um “0” lógico para o 

bit TOF;

1 = O módulo temporizador atingiu o valor desejado

0 = O módulo temporizador não atingiu o valor desejado

TOIE (Timer Overflow Interrupt Enable Bit):  Este bit  de escrita/leitura habilita a 

interrupção do temporizador quando o bit TOF for setado.

1 = Interrupção do temporizador ativa

0 = Interrupção do temporizador desabilitada

TSTOP (Timer Stop Bit): Este bit de escrita/leitura para o incremento do contador 

de tempo.

1 = Contador de tempo parado

0 = Contador de tempo ativo

TRST (Timer Reset Bit): Levar este bit de escrita para nível lógico 1 irá iniciar o 

contador de tempo com zero e colocar o divisor de base de tempo para o estado inicial, 

ou seja, divisão por 1.

1 = Pré-Escala de base de tempo e contador iniciados com o valor “0”;

0 = Sem efeito
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PS[2:0] (Prescaler Setect Bits) – Bits de pré-escala da base de tempo. Estes bits 

de escrita/leitura selecionam um dos sete possíveis valores de divisão da base de tempo 

do relógio para utilização como base de tempo do temporizador.

PS2 PS1 PS0 Base de tempo do temporizador
0 0 0 Clock de barramento interno / 1

0 0 1 Clock de barramento interno / 2

0 1 0 Clock de barramento interno / 4

0 1 1 Clock de barramento interno / 8

1 0 0 Clock de barramento interno / 16

1 0 1 Clock de barramento interno / 32

1 1 0 Clock de barramento interno / 64

1 1 1 Não disponível

TCNT (Timer Count Registers):

Estes registradores são somente de leitura e contém o valor mais significativo 

(TCNTH)  e  menos  significativo  (TCNTL)  do  contador  do  temporizador.  A  leitura  do 

registrador mais significativo deve ser realizada primeiro.

Figura – Registrador TCNTH e TCNTL.

TMOD (Timer Module Registers):

Estes registradores de escrita/leitura contém o valor do módulo da contagem do 

temporizador.  Quando  os  registradores  de  contagem  (TCNT)  atingem  o  valor  dos 

registradores de módulo (TMOD), o bit TOF torna-se nível lógico “1” e os registradores de 
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contagem resumem a contagem para $0000 até o próximo passo de clock. Escrever no 

registrador TMODH inibe o bit TOF até que o registrador TMODL seja escrito.

Figura – Registradores TMODH e TMODL

Estando os registradores a serem configurados apresentados pode-se demonstrar 

um exemplo de utilização. Abaixo será implementada a configuração de um temporizador 

utilizando um relógio de 3,2 MHz para obter a base de tempo de 10ms.

Período relativo a base de tempo: Período= 1
3,2×106

=312,5×10−9

Cálculo do valor de módulo de tempo: Módulo= 10×10−3

312,5×10−9
=32000

O valor 32000 deve ser escrito nos registradores TMODH e TMODL da seguinte 

maneira: O valor deve ser convertido para hexadecimal, sendo este igual a 7D00h. O 

valor obtido é um valor válido dentro dos 16 bits referentes aos registradores TMODH e 

TMODL, ou seja, a base de tempo do relógio foi dividida por 1. Desta forma, TMODH é 

igual a 7Dh e TMODL é igual a 00h. Abaixo o exemplo de configuração dos registradores 

para este caso é apresentado, tanto em assembly, quanto em linguagem “c”.
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Assembly:

MOV          #$7D,TMODH
CLR           TMODL
; Configuração do registrador TSC:
; Divisão por 1, timer ativo com interrupção do temporizador habilitada.
; TOF  TOIE  TSTOP  TRST  Reservado  PS2 PS1 PS0
;    0       1          0            0            0             0      0     0
MOV           #$40,TSC

“c”:

TMOD = 32000;
/*Configuração do registrador TSC:
Divisão por 1, timer ativo com interrupção do temporizador habilitada.
TOF  TOIE  TSTOP  TRST  Reservado  PS2 PS1 PS0
   0       1          0            0            0             0      0     0 */
TSC = 0x40;

Para demonstrar um caso onde se faz necessário a divisão da base de tempo, o 

temporizador  será configurado utilizando um relógio de 3,2 MHz para obter a base de 

tempo de 100ms.

Período relativo a base de tempo: Período= 1
3,2×106

=312,5×10−9

Cálculo do valor de módulo de tempo: Módulo= 100×10−3

312,5×10−9
=320000

Para representar 320000 é necessário mais do que os 16 bits disponíveis. Desta 

forma se faz necessário a divisão da base de tempo. Dividindo 320000 pelo maior valor 

possível  em 16  bits,  encontramos  4,88.  Assumimos  então  o  próximo valor  válido  de 

divisão, ou seja, oito, como fator de divisão da base de tempo.

Fator de divisão da base de tempo: Fator=320000
65535 =4,88

E, recalculando os valores de configuração:

Período relativo a base de tempo: 
Período= 1


3,2×106

8 
=2,5×10−6
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Cálculo do valor de módulo de tempo: Módulo= 100×10−3

2,5×10−6
=40000

Sendo 40000 um valor válido em 16 bits,  a configuração do temporizador em 

linguagem “c” é apresentada abaixo:

“c”:

TMOD = 40000;
/*Configuração do registrador TSC:
Divisão por 8, timer ativo com interrupção do temporizador habilitada.
TOF  TOIE  TSTOP  TRST  Reservado  PS2 PS1 PS0
   0       1          0            0            0             0      1     1 */
TSC = 0x43;

Obs: Devemos lembrar que o código contido nas interrupções deve ser o menor 

possível, com o intuito de evitar que o tempo de execução deste código seja superior ao 

tempo  da  próxima  interrupção.  Por  exemplo,  se  configurarmos  a  interrupção  do 

temporizador para ocorrer a cada 100μs, o tempo de execução do código contido nesta 

interrupção não deve ser superior a esta base de tempo.

Exemplo  de  utilização  da  interrupção  do  temporizador  (esta  interrupção  é 

conhecida como interrupção de estouro de tempo):

Assembly:

; Interrupção do temporizador.
TOVER:     BCLR     7,TSC               ; Limpa a flag da interrupção do temporizador
                    INC        I                        ; Incrementa uma variável qualquer
                    RTI                                  ; Retorna da interrupção

“c”:

// Interrupção do temporizador
interrupt void tover(void) {
     TSC_TOF = 0;                             // Limpa a flag da interrupção do temporizador
      i++;                                             // Incrementa uma variável qualquer
      }                                                 // Retorna da interrupção
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3.2 PWM (Pulse Width Modulation)

O módulo de geração de Modulação por Largura de Pulso (PWM) é um recurso 

muito utilizado para o controle de motores e conversores CC-CC em geral. A partir dele é 

possível gerar um sinal analógico, apesar de sua saída ser um sinal digital que assume 

apenas os níveis lógicos alto (um) e baixo (zero). A saída gerada é uma onda quadrada, 

com freqüência constante e largura de pulso variável. Estes conceitos estão diretamente 

relacionados com o período fixo e o ciclo ativo (duty cycle) respectivamente.

A freqüência de uma onda pode ser definida como a quantidade de vezes que ela 

se repete no tempo. E o período é cada pedaço dessa onda que irá se repetir.

O duty cycle define o tempo de sinal ativo (nível lógico alto) em um período fixo. 

Assim, quando temos um duty cycle de 100%, temos nível lógico alto por todo o período. 

Um duty cycle de 50% define a metade do período em nível lógico alto e a outra metade 

em nível lógico baixo. Se uma saída TTL for utilizada, a tensão média de saída em um 

duty  cycle de  50%  será  2,5V.  Estes  conceitos  são  demonstrados  na  figura  abaixo. 

Devemos lembrar que o PWM nem sempre possui estado inicial positivo, podendo iniciar 

o período com nível lógico baixo.

Figura – Sinais modulados por Largura de Pulso
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A base  de  tempo  dos  módulos  PWM normalmente  é  implementada  de  duas 

formas. Uma destas formas é utilizando o próprio módulo temporizador como base de 

tempo no PWM, ou seja, se o temporizador está configurado para um período de 1ms, a 

freqüência do PWM será de 1 KHz. A outra forma é utilizando um temporizador específico 

para  o  PWM,  que  deve  ser  configurado  para  a  freqüência  desejada.  Ainda,  um 

temporizador pode ser utilizado como base de tempo de várias saídas PWM, ou seja, 

vários PWM com a mesma freqüência, mas larguras de pulso diferentes.

A  figura  a  seguir  irá  exemplificar  o  funcionamento  de  um  PWM  em  um 

microcontrolador onde o registrador PTPER possui o valor referente ao período do PWM 

e os registradores PWM1H e PWM2H representam dois canais de saída PWM.

Figura – Sinais PWM com mesmo período e largura de pulso diferentes.

Para exemplificar a configuração de um módulo PWM será utilizado novamente o 

microcontrolador  MC68HC908QY4.  Este  microcontrolador  utiliza  o  temporizador  como 

base de tempo para o período do PWM. Desta forma, para configurar a freqüência do 

PWM deve-se utilizar a mesma metodologia adotada para o temporizador. Neste exemplo 

será configurado um PWM de 10 KHz com largura de pulso inicial do ciclo ativo de 40%, 

onde o relógio utilizado será de 3,2 MHz.
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Período da base de tempo do relógio: Período= 1
3,2×106

=312,5×10−9

Valor de módulo de tempo para 100μs: Módulo= 100×10−6

312,5×10−9
=320

Estando o módulo da base de tempo do PWM configurado, deve-se partir para a 

configuração da largura do pulso e do nível do ciclo inicial do PWM. Através do módulo 

PWM deste microcontrolador é possível obter duas saídas PWM para cada temporizador. 

Como o  microcontrolador  utilizado possui  somente  um temporizador,  é  possível  obter 

duas saídas PWM, conhecidas como canal 0 e canal 1. Os registradores de configuração 

do módulo PWM são: TSC0, TSC1, TCH0 e TCH1. Pode-se notar que os valores 0 e 1 

são relativos ao canal a que se destina a configuração.

Este microcontrolador apresenta duas maneiras de se utilizar estes canais.  As 

saídas PWM podem ser configuradas no modo com buffer ou sem buffer. No modo com 

buffer ambos os canais são aproveitados para gerar uma saída PWM. O modo com buffer 

opera da seguinte maneira: Ambos os canais são configurados para operar com buffer. A 

configuração da largura de pulso inicial  é realizada no canal zero. Quando se desejar 

alterar a largura de pulso da saída PWM, altera-se o valor da largura de pulso no canal 

um. Ou seja, toda vez que se desejar alterar o valor da largura de pulso é realizado um 

intercalamento entre os dois canais. A saída PWM ficará agregada ao pino de saída do 

canal zero.

Já no modo sem  buffer,  cada canal de tempo pode gerar uma saída PWM. O 

cuidado que deve ser tomado neste caso é que alterações de largura de pulso devem ser 

realizadas em locais  bem específicos.  A alteração da largura de pulso para um valor 

superior  deve  ser  realizada  na  interrupção  de  estouro  de  tempo  (temporizador).  A 

alteração da largura de pulso para um valor inferior deve ser realizada na interrupção de 

comparação do devido canal. Na figura a seguir é apresentado os locais referentes as 

interrupções supracitadas.
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Figura – Largura de pulso e período de um PWM

Abaixo temos a configuração de bits relativa aos registradores TSC0 e TSC1.

Figura – Timer Channel Status And Control Registers

A seguir serão descritos as funções de cada um dos bits deste registrador:

CHxF (Channel x Flag Bit): Quando o canal x está configurado para comparação 

de saída (modo que permite a implementação de um PWM), esta flag torna-se 1 quando o 

valor do registrador contador de tempo (TCNT) atinge a valor contido no registrador do 

canal x (TCHx). Para limpar esta flag deve-se ler o registrador TSCx e escrever um zero 

lógico para este bit.
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1 = Comparação de saída no canal x

0 = Sem comparação de saída no canal x

ChxIE (Channel x Interrupt Enable Bit): Este bit de escrita/leitura permite habilitar 

a interrupção de comparação de saída para o canal x.

1 = Interrupção do canal x habilitada

0 = Interrupção do canal x desabilitada

TOVx  (Toggle  On  Overflow  Bit):  Quando  o  canal  x  está  configurado  para 

comparação de saída, este bit de escrita/leitura controla o comportamento da saída do 

canal x quando ocorre um estouro de tempo no temporizador.

1 = Valor lógico no pino relativo ao canal x se altera no estouro de tempo

0 = Valor lógico no pino relativo ao canal x não se altera no estouro de tempo

ChxMAX (Channel x Maximum Duty Cycle Enable Bit): Quando o bit TOVx está 

em nível lógico 1, ao setar o bit ChxMAX irá forçar o  Duty Cycle do canal para 100%. 

Como a figura a seguir demonstra, o efeito relativo a este bit só é notado 1 ciclo após que 

este bit é alterado. O Duty Cycle permanece 100% até que este bit volte ao estado lógico 

zero.

Figura – Latência do bit CHxMAX

Os outros bits relativos a estes registradores são configurados a partir da tabela 

abaixo:
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Tabela – Seleção de modo, nível e borda

O registrador onde é realizada a configuração da largura de pulso é o TCHx, 

sendo TCHxH o registrador  de maior  significado e TCHxL o  de menor  significado na 

palavra de 16 bits que irá representar a largura do pulso. Abaixo estes registradores são 

apresentados.
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Figura – Registradores TCH0H, TCH0L, TCH1H e TCH1L.

Voltando ao exemplo onde deseja-se configurar um PWM de 10KHz com largura 

de pulso inicial igual a 40% e ciclo inicial ativo, utilizando um relógio de 3,2MHz. O módulo 

referente ao período do PWM já foi definido, sendo igual a 320. Para configurarmos a 

largura inicial para 40% deve-se utilizar 40% do valor do módulo do período encontrado, 

ou seja, TCH0 = 320 x 40% = 128.

A seguir será apresentado a configuração do PWM do exemplo acima, utilizando 

modo sem buffer com saída no canal zero, tanto para Assembly quanto para “c”.
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Assembly:

; Configuração do módulo de tempo
LHDX     #!320                 ; Valor relativo ao período de 100us
STHX     TMD                  ;  Move para o registrador de módulo do temporizador
LDHX     #!128                  ; Valor de 40% de largura de pulso (40% de 320)
STHX     TCH0                 ; Move para o registrador do canal 0
CLRH                               ; Limpa a parte alta do registrador de índice, utilizado anteriormente
; Saída PWM no canal 0, com alteração para nível lógico baixo na comparação
; CH0F  CH0IE  MS0B  MS0A  ELS0B  ELS0A  TOV0  CH0MAX
;    0           1          0          1           1          0           1           0
MOV       #$5A,TSC0
; Período do PWM igual a 100us
; TOF  TOIE  TSTOP  TRST  Reservado  PS2 PS1 PS0
;    0       1          0            0            0             0      0     0
MOV       #$40,TSC

“c”:

TMOD = 320;                     /* Perído do PWM*/
TCH0 = 128;                      /* 40% de PWM */

/*Saída PWM no canal 0, com alteração para nível lógico baixo na comparação
CH0F  CH0IE  MS0B  MS0A  ELS0B  ELS0A  TOV0  CH0MAX
    0           1          0          1           1          0           1           0           */
TSC0 = 0x5A;

/*Período do PWM igual a 100us
 TOF  TOIE  TSTOP  TRST  Reservado  PS2 PS1 PS0
    0       1          0            0            0             0      0     0     */
TSC = 0x40;                      /* Não divide o clock */

Apesar de termos definido as inicializações, se o modo sem  buffer está sendo 

utilizado,  precisamos  implementar  também  no  código  as  interrupções  de  estouro  de 

tempo e comparação de saída para ser possível alterar o valor da largura de pulso desta 

saída.

Assembly:
; Interrupção do temporizador.
TOVER:  BCLR     7,TSC                             ; Limpa a flag da interrupção do temporizador
                BRCLR   condição,SAIR_OVER  ; Verifica a necessidade de aumentar a largura
                                                                        ; Se a flag estiver com zero, não corrige        
                BCLR      AUM,FLAG                   ; Limpa a flag da necessidade de aumentar
                MOV       Valor_corrigido,TCH0   ; aumenta a largura de pulso
SAIR_OVER
                   RTI                                 ; Retorna da interrupção

28 Prof. Gustavo Weber Denardin



; Interrupção da comparação

COMP:    LDA       TSC0
                BCLR     7,TSC0                             ; Limpa a flag da interrupção da comparação
                BRCLR   condição,SAIR_COMP  ; Verifica a necessidade de diminuir a largura
                                                                         ; Se a flag estiver com zero, não corrige        
                BCLR      DIM,FLAG                     ; Limpa a flag da necessidade de diminuir
                MOV       Valor_corrigido,TCH0    ; diminui a largura de pulso
SAIR_COMP
                 RTI                                                  ; Retorna da interrupção
“c”:

// Interrupção do temporizador
interrupt void tover(void) {
     TSC_TOF = 0;                             // Limpa a flag da interrupção do temporizador
      if (condição){                               /* Indicação para aumenta largura do PWM*/
           flag_aum = 0;                        // Limpa flag de condição
           TCH0 = Valor_corrigido;       // Corrige a largura do pulso
      }  
}                                                       // Retorna da interrupção

// Interrupção da comparação
interrupt void comparacao(void){
  byte i;
  i = TSC0;                                      // Lê registrador de estado do PWM
  TSC0_CH0F = 0;                         // Limpa a flag
  if (condição) {                               // Verifica se é necessário diminuir a largura
    flag_dim = 0;                              // Limpa flag de condição
    TCH0 = Valor_corrigido;            // Corrige a largura do pulso
  }  
}

Em algumas aplicações é necessário a inserção de um tempo morto (dead time) 

devido ao tempo de comutação de certos tipos de componentes utilizados ou devido as 

topologias dos sistemas agregados a estas saídas PWM.

Normalmente estes tempos mortos são inseridos em pares complementares de 

saídas PWM, ou seja, quando uma das saídas comuta para nível lógico alto, a outra saída 

comuta  para  nível  lógico  baixo.  Abaixo  é  apresentado  um  exemplo  de  utilização  de 

tempos mortos.
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Figura – Exemplo de utilização de tempo morto

3.3 Conversores Analógico-Digital e Digital-Analógico

De um modo  geral,  os  sinais  encontrados  no  mundo  real  são  contínuos  (ou 

analógicos, pois variam no tempo de forma contínua), como, por exemplo: a intensidade 

luminosa de um ambiente que se modifica com a distância, a aceleração de um carro de 

corrida,  etc.  Os  sinais  manipulados  por  computadores  e  sistemas  embarcados  são 

digitais, como por exemplo, uma faixa de áudio lida de um compact disk.

A conversão analógico-digital (A/D) é o processo que possibilita a representação 

de sinais analógicos no mundo digital. Desta forma é possível utilizar os dados extraídos 

do mundo real para cálculos ou operar seus valores.

Em  geral,  o  conversor  A/D  está  presente  internamente  nos  processadores  e 

controladores  de  sinais  digitais  e  alguns  microcontroladores,  mas  também  existem 

circuitos integrados dedicados a este fim.

Basicamente é um bloco que apresenta portas de entrada e saída.  A entrada 

recebe  sinais  elétricos  de  forma  contínua  e  possui  uma  faixa  de  tensão  de  entrada 

máxima e mínima. Nos microcontroladores que possuem um conversor A/D e operam na 

faixa de 5V, geralmente a faixa de tensão aceita sinais elétricos entre -5V e +5V.
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Na saída o sinal é amostrado em um dado intervalo de tempo fixo (determinado 

pela  freqüência  de  amostragem).  Esta  amostra  disponibiliza  um  certo  valor  que 

representa  o  sinal  original  naquele  momento  (quantização).  As  características  de 

quantização estão relacionadas à precisão do conversor.

Para ilustrar esta situação, imagine que você queira mostrar a temperatura de um 

forno  em  um  display de  cristal  líquido  (LCD).  Para  isto  seriam  necessários  alguns 

componentes  eletrônicos.  Os  mais  expressivos  são:  um  transdutor  (sensor  de 

temperatura), um display de cristal líquido (LCD), um processador digital e um conversor 

analógico digital.

Figura - Diagrama de blocos de uma conversão A/D de um sinal de temperatura

A  temperatura  é  um  sinal  analógico.  O  sensor  de  temperatura  converte  a 

temperatura em um sinal de impulsos elétricos analógicos. O conversor A/D recebe esse 

sinal e o transforma em sinal digital, através de amostragem, entregando ao processador. 

Este, por sua vez, manipula esses dados e envia-os para o display, mostrando em graus a 

temperatura  do  forno.  A figura  abaixo  mostra  a  representação  do  sinal  analógico  de 

temperatura e seu equivalente na forma digital.

Figura – Representação de um sinal de temperatura analógico e digital.
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A informação digital é diferente de sua forma original contínua em dois aspectos 

fundamentais:

● É amostrada porque é baseada em amostragens, ou seja, são realizadas 

leituras em um intervalo fixo de tempo no sinal contínuo;

● É quantizada porque é atribuído um valor proporcional a cada amostra.

Explorando um pouco mais o caso do forno, a figura abaixo detalha um pouco 

mais  as  três  etapas  mais  importantes  do  processo:  a  aquisição,  a  amostragem  e  o 

processamento.

Neste diagrama de blocos, o sinal analógico é capturado pelo transdutor (sensor), 

em seguida passa por um filtro, denominado de anti-alias, a fim de diminuir os ruídos. A 

chave  representa  a  freqüência  de  amostragem  do  conversor  A/D,  entregando  ao 

processador o sinal digitalizado.

Figura – Diagrama de blocos da conversão A/D.

A freqüência  de  amostragem  é  o  número  de  amostras  capturadas  em  um 

segundo. Esta freqüência é dada em  Hertz (Hz) e é considerada adequada quando se 

pode reconstruir o sinal analógico razoável a partir de amostras obtidas na conversão.

A taxa de conversão ou freqüência de amostragem é de suma importância para o 

processamento de sinais reais. Para obter uma taxa de amostragem adequada pode-se 

utilizar  os  teoremas  de  Nyquist ou  Shannon.  Estes  teoremas  indicam  que  um  sinal 

contínuo x(t) pode ser amostrado adequadamente se tiver banda limitada, ou seja, seu 

espectro de freqüência não pode conter freqüências acima de um valor máximo (Fmáx – 

freqüência máxima). Ainda, outro ponto importante é que a taxa de amostragem (Fa – 

Freqüência de amostragem) deve ser escolhida para ser no mínimo duas vezes maior que 

a  freqüência  máxima (Fmáx).  Por  exemplo,  para  representar  um sinal  de  áudio  com 
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freqüências  até  10  KHz,  o  conversor  A/D  deve  amostrar  esses  sinais  utilizando uma 

freqüência de amostragem de no mínimo 20 KHz.

Para melhor entendimento, vamos ver como funciona um conversor A/D de 4 bits 

(Figura abaixo).

Figura – Conversão A/D de 4 bits.

Com 4 bits o máximo representável é o número 16. Isso quer dizer que temos 

uma faixa de 0 a 15 (não sinalizado) ou +7 a -8 (sinalizado). Nesse conversor fictício, 

teremos uma variação a cada 1 volt. A figura anterior mostra um sinal de áudio de 200 Hz 

variando de +7 a -8 volts, que pode ser capturado por um microfone. Conforme o teorema 

de Nyquist, seria necessário uma freqüência de amostragem de 400 Hz.

Lembrando  que,  se  o  sinal  de  áudio  possuísse  amplitude  maior  que  a  faixa 

representável do conversor A/D (7V a -8V), então não seria possível converter tal sinal.

O  conversor  D/A possui  todas  as  características  do  conversor  A/D,  as  quais 

diferem apenas porque o conversor D/A pega um sinal digital e transforma em analógico. 

Por exemplo, em uma aplicação de áudio, um microfone captura o áudio e envia a um 

conversor A/D, que entrega o sinal amostrado e quantizado a um processador digital. Este 

último efetua diversas operações com o sinal de áudio. Só então o processador envia ao 

conversor  D/A,  para  remontar  o  sinal  analógico  a  partir  do  sinal  digital,  para  ser 

reproduzido em um alto-falante. Um exemplo de conversor D/A de 16 bits é o DAC1221, 

da Texas Instruments.

Novamente  para  exemplificar  a  configuração  de  um  conversor  A/D  em  um 

microcontrolador  será  utilizado  o  microcontrolador  MC68HC908QY4.  Este 

microcontrolador possui um conversor A/D por aproximação sucessiva linear com quatro 

canais,  ou  seja,  existem  4  entradas  possíveis  para  sinais  analógicos  que  são 

multiplexadas  para  um  único  conversor  A/D.  Isto  implica  em  que  só  um  canal  será 

convertido em um determinado momento. A resolução deste A/D é de 8 bits, no entanto, a 

33 Prof. Gustavo Weber Denardin



Freescale disponibilizou uma nova versão com A/D de 10 bits, o MC68HC908QY4A. Na 

figura  a  seguir  é  apresentado  o  diagrama  de  blocos  do  conversor  A/D  deste 

microcontrolador.

Figura – Diagrama de blocos do conversor A/D do microcontrolador MC68HC908QY4
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