
Microcontroladores

1. Introdução

Atualmente um grande número de microcontroladores, integrados em diversos

equipamentos, exercem um papel importante no dia a dia das pessoas. Despertar ao som

de um CD Player programável, tomar café da manhã preparado por um microondas

digital, e ir ao trabalho de carro, cuja injeção de combustível é microcontrolada, são

apenas alguns exemplos.

O mercado de microcontroladores apresenta-se em franca expansão, ampliando

seu alcance principalmente em aplicações residenciais, industriais, automotivas e de

telecomunicações. Segundo dados da National Semiconductor (1997), uma residência

típica americana possui 35 produtos baseados em microcontrolador. Estima-se que, em

2010, em média uma pessoa interagirá com 250 dispositivos com microcontroladores

diariamente.

Em um passado recente, o alto custo dos dispositivos eletrônicos limitou o uso dos

microcontroladores apenas aos produtos domésticos considerados de alta tecnologia

(televisão, vídeo e som). Porém, com a constante queda nos preços dos circuitos

integrados, os microcontroladores passaram a ser utilizados em produtos menos

sofisticados do ponto de vista da tecnologia, como máquinas de lavar, microondas, fogões

e refrigeradores. Assim, a introdução do microcontrolador nestes produtos cria uma

diferenciação e permite a inclusão de melhorias de segurança e de funcionalidade. Alguns

mercados chegaram ao ponto de tornar obrigatório o uso de microcontroladores em

determinados tipos de equipamentos, impondo um pré-requisito tecnológico.

Muitos produtos que temos disponíveis hoje em dia, simplesmente não existiriam,

ou não teriam as mesmas funcionalidades sem um microcontrolador. É o caso, por

exemplo, de vários instrumentos biomédicos, instrumentos de navegação por satélites,

detetores de radar, equipamentos de áudio e vídeo, eletrodomésticos, entre outros.

Entretanto, o alcance dos microcontroladores vai além de oferecer algumas

facilidades. Uma aplicação crucial, onde os microcontroladores são utilizados, é na

redução de consumo de recursos naturais. Existem sistemas de aquecimento modernos

que captam a luz solar e, de acordo com a demanda dos usuários, controlam a

temperatura de forma a minimizar perdas. Um outro exemplo, de maior impacto, é o uso

1 Prof. Gustavo Weber Denardin

de microcontroladores na redução do consumo de energia em motores elétricos, que são

responsáveis pelo consumo de, aproximadamente, 50% de toda eletricidade produzida no

planeta. Portanto, o alcance dessa tecnologia tem influência muito mais importante em

nossas vidas, do que se possa imaginar.

O universo de aplicações dos microcontroladores, como já mencionado, está em

grande expansão, sendo que a maior parcela dessas aplicações é em sistemas

embarcados. A expressão “sistema embarcado” (do inglês embedded system) se refere

ao fato do microcontrolador ser inserido nas aplicações (produtos) e usado de forma

exclusiva por elas. Como a complexidade desses sistemas cresce vertiginosamente, o

software tem sido fundamental para oferecer as respostas às necessidades desse

mercado. Tanto é, que o software para microcontroladores representa uma fatia

considerável do mercado de software mundial. Segundo Edward Yourdon (consultor na

área de computação, pioneiro nas metodologias de engenharia do software e

programação estruturada) a proliferação dos sistemas embarcados, juntamente com o

advento da Microsoft, são os responsáveis pela retomada do crescimento da indústria de

software nos Estados Unidos da América.

2. Definição de Microcontrolador

Um microcontrolador é um sistema computacional completo, no qual estão

incluídos uma CPU (Central Processor Unit), memória de dados e programa, um sistema

de clock, portas de I/O (Input/Output), além de outros possíveis periféricos, tais como,

módulos de temporização e conversores A/D entre outros, integrados em um mesmo

componente. As partes integrantes de qualquer computador, e que também estão

presentes, em menor escala, nos microcontroladores são:

● Unidade Central de Processamento (CPU)

● Sistema de clock para dar seqüência às atividades da CPU

● Memória para armazenamento de instruções e para manipulação de dados

● Entradas para interiorizar na CPU informações do mundo externo

● Saídas para exteriorizar informações processadas pela CPU para o mundo externo

● Programa (firmware) para definir um objetivo ao sistema

2 Prof. Gustavo Weber Denardin

2.1 Unidade Central de Processamento (CPU)

A unidade central de processamento é composta por uma unidade lógica aritmética

(ULA), por uma unidade de controle e por unidades de memória especiais conhecidas por

registradores. Para que a CPU possa realizar tarefas é necessário que se agregue outros

componentes, como unidades de memória, unidades de entrada e unidades de saída. A

figura a seguir apresenta um diagrama de blocos com uma possível interface entre a CPU

e outros dispositivos.

A unidade de memória permite armazenar grupos de dígitos binários que podem

representar instruções que o processador irá executar ou dados que serão manipulados

pelo processador. A unidade de entrada consiste em todos os dispositivos utilizados para

obter informações e dados externos ao processador. A unidade de saída consiste em

dispositivos capazes de transferir dados e informações do processador para o exterior.

A ULA é a área de uma CPU na qual as operações lógicas e aritméticas são

realizadas sobre os dados. O tipo de operação realizada é determinada pelos sinais da

unidade de controle. Os dados a serem operados pela ULA podem ser oriundos de uma

memória ou de uma unidade de entrada. Os resultados das operações realizadas na ULA

podem ser transferidos tanto para uma memória de dados como para uma unidade de

saída.

3 Prof. Gustavo Weber Denardin

A função da unidade de controle é comandar as operações da ULA e de todas as

outras unidades conectadas a CPU, fornecendo sinais de controle e temporização. De

certa maneira, a unidade de controle é como um maestro que é responsável por manter

cada um dos membros da orquestra em sincronismo. Essa unidade contém circuitos

lógicos e de temporização que geram os sinais apropriados necessários para executar

cada instrução de um programa.

A unidade de controle busca uma instrução na memória enviando um endereço e

um comando de leitura para a unidade de memória. A palavra da instrução armazenada

na posição de memória é transferida para um registrador conhecido por registrador de

instruções (RI) da unidade de controle. Essa palavra de instrução, que está de alguma

forma de código binário, é então decodificada pelos circuitos lógicos na unidade de

controle para determinar a instrução que está sendo invocada. A unidade de controle usa

essa informação para enviar os sinais apropriados para as unidades restantes a fim de

executar a operação específica.

Essa seqüência de busca de um código de instrução e de execução da operação

indicada é repetida indefinidamente pela unidade de controle. Essa seqüência repetitiva

de busca/execução continua até que a CPU seja desligada ou até que o RESET seja

ativado. O RESET sempre faz a CPU buscar sua primeira instrução no programa.

Uma CPU, também conhecida por processador, repete indefinidamente as mesmas

operações básicas de busca e execução. Naturalmente, os diversos ciclos de execução

serão diferentes para cada tipo de instrução à medida que a unidade de controle envia

sinais diferentes para as outras unidades de execução de uma instrução em particular.

Um registrador é um tipo de memória de pequena capacidade porém muito rápida,

contida na CPU, utilizado no armazenamento temporário de dados durante o

processamento. Os registradores estão no topo da hierarquia de memória, sendo desta

forma o meio mais rápido e de maior custo para armazenar um dado.

Cada registrador de um processador possui uma função especial. Um dos mais

importantes é o contador de programa (program counter – PC), que armazena os

endereços dos códigos das instruções à medida que são buscadas da memória. Outros

registradores são utilizados para realizar funções como: armazenamento de códigos de

instrução (RI), manutenção dos dados operados pela ULA (acumulador), armazenamento

de endereços de dados a serem lidos na memória (ponteiro de dados), além de outras

funções de armazenamento e contagem. Todos os processadores possuem um

registrador em especial muito utilizado chamado de acumulador ou registrador A. Ele

4 Prof. Gustavo Weber Denardin

armazena um operando para quaisquer instruções, lógica ou matemática. O resultado da

operação é armazenado no acumulador após a instrução ser executada.

Para que exista comunicação entre as unidades que formam um processador

devemos definir uma forma de conexão entre estas unidades. Em um processador

tradicional com arquitetura Von Neuman este meio é o barramento de dados. A largura do

barramento de dados em bits é o que determina o número de bits para um dado

processador. A figura a seguir apresenta a interface dos principais dispositivos que

compõem um sistema microprocessado através de um barramento de dados.

A CPU é o centro de todo sistema computacional, e não é diferente quando se trata

de microcontroladores. O trabalho da CPU é executar rigorosamente as instruções de um

programa, na seqüência programada, para uma aplicação específica. Um programa

computacional (software) instrui a CPU a ler informações de entradas, ler e escrever

informações na memória de dados, e escrever informações nas saídas. O diagrama de

blocos simplificado da CPU presente nos microcontroladores da família HC08, também

denominado de CPU08, é apresentado na figura a seguir. Esta arquitetura de processador

será utilizada como modelo neste documento.

5 Prof. Gustavo Weber Denardin

As principais funções de cada um dos componentes da CPU08 serão apresentadas

a seguir.

Unidade Lógica/Aritmética (ULA): A ULA é utilizada para realizar operações

lógicas e aritméticas definidas no conjunto de instruções da CPU. Vários circuitos

implementam as operações aritméticas binárias decodificas pelas instruções e fornecem

dados para a execução da operação na ULA. A maioria das operações aritméticas

binárias são baseadas em algoritmos de adição e subtração (adição com o valor

negativo). A multiplicação é realizada através de uma série de adições e deslocamentos

com a ULA sob controle lógico da CPU.

Controle da CPU: O circuito de controle da CPU implementa o sequeciamento de

elementos lógicos necessários para a ULA realizar as operações requisitadas durante a

execução do programa. O elemento central da seção de controle da CPU é o

decodificador de instruções. Cada opcode (código de instrução) é decodificado para

determinar quantos operandos são necessários e qual seqüência de passos será

necessária para completar a instrução em curso. Quando uma instrução é executada

completamente, o próximo opcode é lido e decodificado.

6 Prof. Gustavo Weber Denardin

Registradores da CPU: A CPU08 contém 5 registradores como apresentado na

figura anterior. Os registradores da CPU são memórias especiais que não fazem parte do

mapa de memória. O conjunto de registradores da CPU é freqüentemente chamado de

modelo de programação.

O acumulador, também chamado de registrador A, é freqüentemente utilizado para

armazenar um dos operandos ou o resultado de operações.

O registrador H:X é um registrador de 16 bits de índice que possibilita ao usuário

endereçar indiretamente o espaço de memória de 64Kbytes. O byte mais significativo do

registrador de índice é denominado H, e o byte menos significativo denominado X. Sua

principal função é servir de apontador para uma área na memória onde a CPU irá

carregar (ler) ou armazenar (escrever) informação. Quando não estiver sendo utilizado

para apontar um endereço na memória, ele pode ser utilizado como registrador genérico.

O registrador Program Counter (PC) é usado pela CPU para controlar e conduzir

ordenadamente a busca do endereço da próxima instrução a ser executada. Quando a

CPU é energizada ou passa por um processo de reset, o PC é carregado com o conteúdo

de um par de endereços específicos denominados vetor de reset (reset vector). O vetor

de reset contém o endereço da primeira instrução a ser executada pela CPU. Assim que

as instruções são executadas, uma lógica interna a CPU incrementa o PC, de tal forma

que ele sempre aponte para o próximo pedaço de informação que a CPU vai precisar. O

número de bits do PC coincide exatamente com o número de linhas do barramento de

endereços, que por sua vez determina o espaço total disponível de memória que pode ser

acessada pela CPU.

7 Prof. Gustavo Weber Denardin

O registrador Condition Code (CCR) é um registrador de 8 bits que armazena os

bits de estado (flags) que refletem o resultado de algumas operações da CPU. A

instruções de desvio usam estes bits de estado para tomar suas decisões.

A descrição dos bits do registrador de condição é apresentada abaixo:

V (Bit de Overflow) - A CPU leva o bit de overflow para nível lógico alto quando

houver estouro no resultado de uma operação em complemento de 2. O bit V é utilizado

pelas instruções de desvios condicionais BGT, BGE, BLE, e BLT.

H (Bit de Half-carry) - A CPU leva o bit de half-carry para nível lógico alto quando

ocorrer estouro entre os bits 3 e 4 do acumulador durante as operações ADD e ADC. O bit

H é importante nas operações aritméticas codificadas em binário (BCD). A instrução DAA

utiliza o estado dos bits H e C para determinar o fator de correção apropriado.

I (Máscara de Interrupções) - Quando o bit I está em nível lógico alto, todas as

interrupções são mascaradas (desabilitadas). As interrupções são habitadas quando o bit

I é levado a nível lógico baixo. Quando ocorre uma interrupção, o bit que mascara as

interrupções é automaticamente levado a nível lógico alto. Depois que os registradores da

CPU são armazenados na pilha este bit volta ao nível lógico baixo. Se uma interrupção

ocorrer enquanto o bit I estiver setado, seu estado será guardado. As interrupções são

atendidas, em ordem de prioridade, assim que o bit I for a nível lógico 0. A instrução

retorno da interrupção (RTI) retorna os registradores da CPU da pilha, e restaura o bit I no

seu estado de nível lógico 0. Após qualquer reset, o bit I é colocado em nível lógico alto e

só pode ser limpo por uma instrução de software (CLI).

N (Bit Negativo) - A CPU coloca o bit N em nível lógico alto quando uma operação

aritmética, lógica ou de manipulação de dados produzir um resultado negativo.

Corresponde ao 8o bit do registrador que contém o resultado.

Z (Bit Zero) - A CPU leva o bit Z para nível lógico alto quando uma operação

aritmética, lógica ou de manipulação de dados produzir um resultado igual a 0.

C (Bit Carry/Borrow) - A CPU coloca o bit C em nível lógico alto quando uma

operação de adição produzir um valor superior a 8 bits ou quando uma subtração

8 Prof. Gustavo Weber Denardin

necessitar um empréstimo. Algumas operações lógicas e as instruções de manipulação

de dados também podem modificar o estado do bit C.

O Stack Pointer (SP) é um registrador cuja função é apontar para a próxima

localização disponível (endereço livre) de uma pilha (lista de endereços contíguos). A pilha

pode ser vista como um monte de cartas empilhadas, onde cada carta armazena um byte

de informação. A qualquer hora, a CPU pode colocar uma carta nova no topo da pilha ou

retirar uma carta do topo da pilha. As cartas que estão no meio da pilha não podem ser

retiradas até que todas que estejam acima dela sejam removidas primeiro. A CPU

acompanha o efeito da pilha através do valor armazenado no SP. O SP sempre aponta

para a localização de memória disponível para se colocar a próxima carta (byte).

Normalmente, a CPU usa a pilha para guardar os endereços de retorno e o

contexto, isto é, os registradores da CPU, na ocorrência de uma exceção (interrupção ou

reset).

Durante um reset, o Stack Pointer contém o endereço 0x00FF. A instrução RSP

(Reset Stack Pointer) carrega o byte menos significativo com 0xFF e o byte mais

significativo não é afetado.

Quando a CPU insere um novo dado na pilha, automaticamente o SP é

decrementado para o próximo endereço livre. Quando a CPU retira um dado da pilha, o

SP é incrementado para apontar para o dado mais recente, e o valor do dado é lido nesta

posição. Quando a CPU é energizada ou passa por um processo de reset, o SP aponta

para um endereço específico na memória RAM (no caso dos microcontroladores HC08 e

HCS08 = 0x00FF).

A CPU08 possui modos de endereçamento indexado com offsets de 8 ou 16 bits do

SP para acesso de variáveis temporárias inseridas na pilha. A CPU utiliza o conteúdo do

registrador SP para determinar o endereço efetivo do operando.

OBS: Embora o endereço inicial do SP seja 0x00FF, a localização da pilha é

arbitrária e pode ser realocada pelo usuário em qualquer lugar na RAM. Movimentar o SP

para fora da página de acesso direto (0x0000 a 0x00FF) permitirá que este espaço de

memória seja utilizado para modos de endereçamento mais eficientes.

9 Prof. Gustavo Weber Denardin

2.2. Sistema de Clock

Todo sistema computacional utiliza um clock para fornecer a CPU uma maneira de

se mover de instrução em instrução, em uma seqüência pré-determinada.

Uma fonte de clock de alta freqüência (normalmente derivada de um cristal

ressonador conectado a CPU) é utilizada para controlar o sequeciamento das instruções

da CPU. Normalmente as CPUs dividem a freqüência básica do cristal por 2 ou mais para

chegar ao clock do barramento interno. Cada ciclo de leitura ou escrita a memória é

executado em um ciclo de clock do barramento interno, também denominado ciclo de

barramento (bus cycle).

2.3. Memória

Podemos pensar na memória como sendo uma lista de endereços postais, onde o

conteúdo de cada endereço é um valor fixo de 8 bits (para CPU de 8 bits). Se um sistema

computacional tem n linhas (bits) de endereços, ele pode endereçar 2n posições de

memória (p.ex.: um sistema com 14 linhas pode acessar 214 = 16384 endereços). Entre os

diversos tipos de memória encontram-se:

RAM (Random Access Memory)– Memória de acesso aleatório. Pode ser lida ou

escrita pela execução de instruções da CPU e, normalmente é utilizada para manipulação

de dados pela CPU. O conteúdo é perdido na ausência de energia (memória volátil).

ROM (Read Only Memory) – Memória apenas de leitura. Pode ser lida, mas não é

alterável. O conteúdo deve ser determinado antes que o circuito integrado seja fabricado.

O conteúdo é mantido na ausência de energia (memória não volátil).

EPROM (Erasable and Programmable Read-Only Memory) – Memória ROM

programável e apagável. O conteúdo dessa memória pode ser apagado com luz

ultravioleta, e posteriormente, reprogramado com novos valores. As operações de

apagamento e programação podem ser realizadas um número limitado de vezes depois

que o circuito integrado for fabricado. Da mesma forma que a ROM, o conteúdo é mantido

na ausência de energia (memória não volátil).

OTP (One Time Programmable) – Memória programável uma única vez.

Semelhante à EPROM quanto a programação, mas que não pode ser apagada.

EEPROM (Electrically Erasable and Programmable Read-Only Memory) – Memória

ROM programável e apagável eletricamente. Pode ter seu conteúdo alterado através da

10 Prof. Gustavo Weber Denardin

utilização de sinais elétricos convenientes. Tipicamente, um endereço de uma EEPROM

pode ser apagada e reprogramada até 100.000 vezes.

FLASH – Memória funcionalmente semelhante a EEPROM, porém com ciclos de

escrita bem mais rápidos.

I/O (Input/Output) – Registradores de controle, estado e sinais de I/O são um tipo

especial de memória porque a informação pode ser sentida (lida) e/ou alterada (escrita)

por dispositivo diferentes da CPU.

2.4. Sinais de Entrada

Dispositivos de entrada fornecem informação para a CPU processar, vindas do

mundo externo. A maioria das entradas que os microcontroladores processam são

denominadas sinais de entrada digitais, e utilizam níveis de tensão compatíveis com a

fonte de alimentação do sistema. O sinal de 0V (GND ou VSS) indica o nível lógico 0 e o

sinal de fonte positiva, que tipicamente é +5VDC (VDD) indica o nível lógico 1

(atualmente os microcontroladores começaram a reduzir a tensão de VDD para valores na

faixa dos 3V).

Naturalmente que no mundo real existem sinais puramente analógicos (com uma

infinidade de valores) ou sinais que utilizam outros níveis de tensão. Alguns dispositivos

de entrada traduzem as tensões do sinal para níveis compatíveis com VDD e VSS. Outros

dispositivos de entrada convertem os sinais analógicos em sinais digitais (valores binários

formados por 0s e 1s) que a CPU pode entender e manipular. Alguns microcontroladores

incluem circuitos conversores analógicos/digitais (ADC) encapsulados no mesmo

componente.

2.5. Sinais de Saída

Dispositivos de saída são usados para informar ou agir no mundo exterior através

do processamento de informações realizados pela CPU. Circuitos eletrônicos (algumas

vezes construídos no próprio microcontrolador) podem converter sinais digitais em níveis

de tensão analógicos. Se necessário, outros circuitos podem alterar os níveis de tensão

VDD e VSS nativos da CPU em outros níveis.

11 Prof. Gustavo Weber Denardin

2.6. Códigos de operação (opcodes)

Os programas usam códigos para fornecer instruções para a CPU. Estes códigos

são chamados de códigos de operação ou opcodes. Cada opcode instrui a CPU a

executar uma seqüência específica para realizar sua operação. Microcontroladores de

diferentes fabricantes usam diferentes conjuntos de opcodes porque são implementados

internamente por hardware na lógica da CPU. O conjunto de instruções de uma CPU

especifica todas as operações que podem ser realizadas. Opcodes são uma

representação das instruções que são entendidas pela máquina, isto é, uma codificação

em representação binária a ser utilizada pela CPU. Mnemônicos são outra representação

para as instruções, só que agora, para serem entendidas pelo programador.

2.7. Mnemônicos das instruções e assembler

Um opcode como 0x4C é entendido pela CPU, mas não é significativo para nós

humanos. Para resolver esse problema, um sistema de instruções mnemônicas

equivalentes foram criadas (Linguagem Assembly). O opcode 0x4C corresponde ao

mnemônico INCA, lê-se “incrementa o acumulador”, que é muito mais inteligível. Para

realizar a tradução de mnemônicos em códigos de máquina (opcodes e outras

informações) utilizados pela CPU é necessário um programa computacional chamado

assembler (compilador para linguagem Assembly). Um programador utiliza um conjunto

de instruções na forma de mnemônicos para desenvolver uma determinada aplicação, e

posteriormente, usa um assembler para traduzir estas instruções para opcodes que a

CPU pode entender.

Após a descrição da unidade central de processamento de um microcontrolador

podemos partir para o aprendizado da linguagem de programação Assembly.

Recomenda-se a leitura da folha de dados (principalmente a seção que trata do conjunto

de instruções) do microcontrolador, bem como da apostila do microcontrolador HC08,

família QT/QY. O próximo capítulo deste documento irá descrever diversos periféricos que

podem compor um microcontrolador, como portas de entrada/saída, temporizadores, entre

outros.

12 Prof. Gustavo Weber Denardin

3. Periféricos

Os microcontroladores normalmente são classificados em famílias, dependendo

da aplicação a que se destinam. A partir da aplicação que a família de microcontroladores

se destina, um conjunto de periféricos específicos é escolhido e integrado a um

determinado microprocessador. Estes microprocessadores normalmente operam com

barramentos de 8, 16 ou 32 bits, e apresentam arquiteturas RISC (Reduced Instruction

Set Computer) ou CISC (Complex Instruction Set Computer). Alguns exemplos de

microcontroladores que utilizam microprocessadores com arquitetura RISC são o PIC

(Microchip) e o MSP430 (Texas Instruments). Já o MC68HC08 e HCS08 (Freescale) e o

8051 (Intel) são exemplos de microcontroladores que utilizam arquitetura CISC.

Apesar da classificação dos microcontroladores em famílias, existem periféricos

necessários a praticamente todas as aplicações, que são a memória de dados e a

memória de programa. A memória de dados mais utilizada é a RAM (Random Access

Memory), que é uma memória volátil, ou seja, não preserva o seu conteúdo sem uma

fonte de alimentação.

Recentemente as memórias de programa sofreram uma grande mudança. A

alguns anos atrás as memórias de programa mais utilizadas eram a ROM (Ready-Only

Memory) e a EPROM (Erasable Programmable Read-Only Memory). O grande problema

da utilização de tais memórias era a falta de praticidade durante o desenvolvimento de um

sistema embarcado. Com a popularização das memórias FLASH e, ainda, devido a

facilidade de utilização, cada vez mais os microcontroladores tendem a ser produzidos

com esta memória, em substituição a ROM e a EPROM. Importante lembrar que a

praticidade da memória FLASH se deve a esta memória ser uma variação das EEPROM

(Electrically-Erasable Programmable Read-Only Memory) que permitem que múltiplos

endereços sejam apagados ou escritos com sinais elétricos.

A seguir serão apresentadas as características e aplicações dos principais

periféricos encontrados em microcontroladores, tais como: portas de entrada e saída,

temporizadores, portas de comunicação serial e conversores Analógico-digitais (A/D).

13 Prof. Gustavo Weber Denardin

3.1 Temporizadores

Um microprocessador deve possuir um relógio. O relógio pode ser implementado

por um cristal oscilador que sincroniza todo o funcionamento do microprocessador,

controlando o tempo de cada um dos eventos relacionados aos dispositivos integrados a

ele.

Os temporizadores utilizam a base de tempo do relógio para poder implementar

contagens de tempo bem específicas e configuráveis. Estes utilizam contadores,

incrementados na mesma base de tempo do relógio. Desta forma é possível descrever

tempo em número de ciclos de um relógio. Por exemplo, imagine um microprocessador

utilizando um relógio de 20 MHz. O período relativo a esta freqüência é 50 ns. Podemos

representar então um tempo de 1ms através de períodos de 50ns, obtendo o valor de

20000. Ou seja, se incrementarmos um contador a cada ciclo de relógio, no caso 50ns,

quando este contador atingir o valor de 20000, teremos atingido a contagem de 1ms.

Para que este método seja aplicado, existe a necessidade da utilização de pelo menos 2

registradores. O registrador que será incrementado e o registrador que conterá o valor a

ser atingido. No entanto, existe um problema relacionado a este método. Imagine que

precisemos de um tempo na ordem de segundos, por exemplo, 1 segundos. Se

estivermos utilizando um relógio de 4 MHz, seria necessário registradores de 24 bits para

representar o valor de 4x106. Com o intuito de reduzir o tamanho destes contadores, os

temporizadores apresentam a possibilidade de divisão do relógio, normalmente por

valores múltiplos de 2. No caso do exemplo acima, poderíamos dividir o relógio por 128,

obtendo uma freqüência de 31,250 KHz. Então, para representarmos 1 segundo, seria

necessário uma contagem de 31250 períodos de 32μs, ou seja, um valor que pode ser

representado em 16 bits.

Devemos lembrar que a divisão terá influência somente no tempo de

incrementação do contador, continuando o barramento interno do microprocessador a

operar com o relógio original.

Para exemplificar a configuração dos registradores relativos a um temporizador

em um microcontrolador será utilizado o microcontrolador MC68HC908QY4. O processo

de configuração é apresentado a seguir.

Os microcontroladores da linha HC08 normalmente possuem 1 ou 2

temporizadores. Os registradores relativos a estes temporizadores apresentam nomes

semelhantes, tendo apenas o número no temporizador para diferenciá-los. Os três

14 Prof. Gustavo Weber Denardin

registradores de configuração do temporizador neste microcontrolador são: TSC, TCNT e

TMOD. Abaixo é apresentado o diagrama de blocos do temporizador destes

microcontroladores. É importante ressaltar que alguns dos registradores apresentados na

figura são relativos ao módulo PWM e captura de entrada.

Figura – Diagrama de blocos do módulo temporizador de microcontrolador MC68HC908QY4

TSC (Timer Status and Control Register):

Possibilita habilitar a interrupção do temporizador, verificar o estado da flag de

interrupção, para-lo, reiniciar a contagem e dividir o relógio para obter a base de tempo.

15 Prof. Gustavo Weber Denardin

Figura – Registrador TSC

Abaixo serão descritos as funções de cada um dos bits deste registrador:

TOF (Timer Overflow Flag): Este bit de escrita/leitura torna-se é setado quando o

registrador contador (TCNT) atinge o valor do registrador de módulo de contagem

(TMOD), condição essa que indica o estouro da contagem de tempo. O procedimento

correto para limpar esta indicação é ler o registrador TSC e escrever um “0” lógico para o

bit TOF;

1 = O módulo temporizador atingiu o valor desejado

0 = O módulo temporizador não atingiu o valor desejado

TOIE (Timer Overflow Interrupt Enable Bit): Este bit de escrita/leitura habilita a

interrupção do temporizador quando o bit TOF for setado.

1 = Interrupção do temporizador ativa

0 = Interrupção do temporizador desabilitada

TSTOP (Timer Stop Bit): Este bit de escrita/leitura para o incremento do contador

de tempo.

1 = Contador de tempo parado

0 = Contador de tempo ativo

TRST (Timer Reset Bit): Levar este bit de escrita para nível lógico 1 irá iniciar o

contador de tempo com zero e colocar o divisor de base de tempo para o estado inicial,

ou seja, divisão por 1.

1 = Pré-Escala de base de tempo e contador iniciados com o valor “0”;

0 = Sem efeito

16 Prof. Gustavo Weber Denardin

PS[2:0] (Prescaler Setect Bits) – Bits de pré-escala da base de tempo. Estes bits

de escrita/leitura selecionam um dos sete possíveis valores de divisão da base de tempo

do relógio para utilização como base de tempo do temporizador.

PS2 PS1 PS0 Base de tempo do temporizador
0 0 0 Clock de barramento interno / 1

0 0 1 Clock de barramento interno / 2

0 1 0 Clock de barramento interno / 4

0 1 1 Clock de barramento interno / 8

1 0 0 Clock de barramento interno / 16

1 0 1 Clock de barramento interno / 32

1 1 0 Clock de barramento interno / 64

1 1 1 Não disponível

TCNT (Timer Count Registers):

Estes registradores são somente de leitura e contém o valor mais significativo

(TCNTH) e menos significativo (TCNTL) do contador do temporizador. A leitura do

registrador mais significativo deve ser realizada primeiro.

Figura – Registrador TCNTH e TCNTL.

TMOD (Timer Module Registers):

Estes registradores de escrita/leitura contém o valor do módulo da contagem do

temporizador. Quando os registradores de contagem (TCNT) atingem o valor dos

registradores de módulo (TMOD), o bit TOF torna-se nível lógico “1” e os registradores de

17 Prof. Gustavo Weber Denardin

contagem resumem a contagem para $0000 até o próximo passo de clock. Escrever no

registrador TMODH inibe o bit TOF até que o registrador TMODL seja escrito.

Figura – Registradores TMODH e TMODL

Estando os registradores a serem configurados apresentados pode-se demonstrar

um exemplo de utilização. Abaixo será implementada a configuração de um temporizador

utilizando um relógio de 3,2 MHz para obter a base de tempo de 10ms.

Período relativo a base de tempo: Período= 1
3,2×106

=312,5×10−9

Cálculo do valor de módulo de tempo: Módulo= 10×10−3

312,5×10−9
=32000

O valor 32000 deve ser escrito nos registradores TMODH e TMODL da seguinte

maneira: O valor deve ser convertido para hexadecimal, sendo este igual a 7D00h. O

valor obtido é um valor válido dentro dos 16 bits referentes aos registradores TMODH e

TMODL, ou seja, a base de tempo do relógio foi dividida por 1. Desta forma, TMODH é

igual a 7Dh e TMODL é igual a 00h. Abaixo o exemplo de configuração dos registradores

para este caso é apresentado, tanto em assembly, quanto em linguagem “c”.

18 Prof. Gustavo Weber Denardin

Assembly:

MOV #$7D,TMODH
CLR TMODL
; Configuração do registrador TSC:
; Divisão por 1, timer ativo com interrupção do temporizador habilitada.
; TOF TOIE TSTOP TRST Reservado PS2 PS1 PS0
; 0 1 0 0 0 0 0 0
MOV #$40,TSC

“c”:

TMOD = 32000;
/*Configuração do registrador TSC:
Divisão por 1, timer ativo com interrupção do temporizador habilitada.
TOF TOIE TSTOP TRST Reservado PS2 PS1 PS0
 0 1 0 0 0 0 0 0 */
TSC = 0x40;

Para demonstrar um caso onde se faz necessário a divisão da base de tempo, o

temporizador será configurado utilizando um relógio de 3,2 MHz para obter a base de

tempo de 100ms.

Período relativo a base de tempo: Período= 1
3,2×106

=312,5×10−9

Cálculo do valor de módulo de tempo: Módulo= 100×10−3

312,5×10−9
=320000

Para representar 320000 é necessário mais do que os 16 bits disponíveis. Desta

forma se faz necessário a divisão da base de tempo. Dividindo 320000 pelo maior valor

possível em 16 bits, encontramos 4,88. Assumimos então o próximo valor válido de

divisão, ou seja, oito, como fator de divisão da base de tempo.

Fator de divisão da base de tempo: Fator=320000
65535 =4,88

E, recalculando os valores de configuração:

Período relativo a base de tempo:
Período= 1


3,2×106

8 
=2,5×10−6

19 Prof. Gustavo Weber Denardin

Cálculo do valor de módulo de tempo: Módulo= 100×10−3

2,5×10−6
=40000

Sendo 40000 um valor válido em 16 bits, a configuração do temporizador em

linguagem “c” é apresentada abaixo:

“c”:

TMOD = 40000;
/*Configuração do registrador TSC:
Divisão por 8, timer ativo com interrupção do temporizador habilitada.
TOF TOIE TSTOP TRST Reservado PS2 PS1 PS0
 0 1 0 0 0 0 1 1 */
TSC = 0x43;

Obs: Devemos lembrar que o código contido nas interrupções deve ser o menor

possível, com o intuito de evitar que o tempo de execução deste código seja superior ao

tempo da próxima interrupção. Por exemplo, se configurarmos a interrupção do

temporizador para ocorrer a cada 100μs, o tempo de execução do código contido nesta

interrupção não deve ser superior a esta base de tempo.

Exemplo de utilização da interrupção do temporizador (esta interrupção é

conhecida como interrupção de estouro de tempo):

Assembly:

; Interrupção do temporizador.
TOVER: BCLR 7,TSC ; Limpa a flag da interrupção do temporizador
 INC I ; Incrementa uma variável qualquer
 RTI ; Retorna da interrupção

“c”:

// Interrupção do temporizador
interrupt void tover(void) {
 TSC_TOF = 0; // Limpa a flag da interrupção do temporizador
 i++; // Incrementa uma variável qualquer
 } // Retorna da interrupção

20 Prof. Gustavo Weber Denardin

3.2 PWM (Pulse Width Modulation)

O módulo de geração de Modulação por Largura de Pulso (PWM) é um recurso

muito utilizado para o controle de motores e conversores CC-CC em geral. A partir dele é

possível gerar um sinal analógico, apesar de sua saída ser um sinal digital que assume

apenas os níveis lógicos alto (um) e baixo (zero). A saída gerada é uma onda quadrada,

com freqüência constante e largura de pulso variável. Estes conceitos estão diretamente

relacionados com o período fixo e o ciclo ativo (duty cycle) respectivamente.

A freqüência de uma onda pode ser definida como a quantidade de vezes que ela

se repete no tempo. E o período é cada pedaço dessa onda que irá se repetir.

O duty cycle define o tempo de sinal ativo (nível lógico alto) em um período fixo.

Assim, quando temos um duty cycle de 100%, temos nível lógico alto por todo o período.

Um duty cycle de 50% define a metade do período em nível lógico alto e a outra metade

em nível lógico baixo. Se uma saída TTL for utilizada, a tensão média de saída em um

duty cycle de 50% será 2,5V. Estes conceitos são demonstrados na figura abaixo.

Devemos lembrar que o PWM nem sempre possui estado inicial positivo, podendo iniciar

o período com nível lógico baixo.

Figura – Sinais modulados por Largura de Pulso

21 Prof. Gustavo Weber Denardin

A base de tempo dos módulos PWM normalmente é implementada de duas

formas. Uma destas formas é utilizando o próprio módulo temporizador como base de

tempo no PWM, ou seja, se o temporizador está configurado para um período de 1ms, a

freqüência do PWM será de 1 KHz. A outra forma é utilizando um temporizador específico

para o PWM, que deve ser configurado para a freqüência desejada. Ainda, um

temporizador pode ser utilizado como base de tempo de várias saídas PWM, ou seja,

vários PWM com a mesma freqüência, mas larguras de pulso diferentes.

A figura a seguir irá exemplificar o funcionamento de um PWM em um

microcontrolador onde o registrador PTPER possui o valor referente ao período do PWM

e os registradores PWM1H e PWM2H representam dois canais de saída PWM.

Figura – Sinais PWM com mesmo período e largura de pulso diferentes.

Para exemplificar a configuração de um módulo PWM será utilizado novamente o

microcontrolador MC68HC908QY4. Este microcontrolador utiliza o temporizador como

base de tempo para o período do PWM. Desta forma, para configurar a freqüência do

PWM deve-se utilizar a mesma metodologia adotada para o temporizador. Neste exemplo

será configurado um PWM de 10 KHz com largura de pulso inicial do ciclo ativo de 40%,

onde o relógio utilizado será de 3,2 MHz.

22 Prof. Gustavo Weber Denardin

Período da base de tempo do relógio: Período= 1
3,2×106

=312,5×10−9

Valor de módulo de tempo para 100μs: Módulo= 100×10−6

312,5×10−9
=320

Estando o módulo da base de tempo do PWM configurado, deve-se partir para a

configuração da largura do pulso e do nível do ciclo inicial do PWM. Através do módulo

PWM deste microcontrolador é possível obter duas saídas PWM para cada temporizador.

Como o microcontrolador utilizado possui somente um temporizador, é possível obter

duas saídas PWM, conhecidas como canal 0 e canal 1. Os registradores de configuração

do módulo PWM são: TSC0, TSC1, TCH0 e TCH1. Pode-se notar que os valores 0 e 1

são relativos ao canal a que se destina a configuração.

Este microcontrolador apresenta duas maneiras de se utilizar estes canais. As

saídas PWM podem ser configuradas no modo com buffer ou sem buffer. No modo com

buffer ambos os canais são aproveitados para gerar uma saída PWM. O modo com buffer

opera da seguinte maneira: Ambos os canais são configurados para operar com buffer. A

configuração da largura de pulso inicial é realizada no canal zero. Quando se desejar

alterar a largura de pulso da saída PWM, altera-se o valor da largura de pulso no canal

um. Ou seja, toda vez que se desejar alterar o valor da largura de pulso é realizado um

intercalamento entre os dois canais. A saída PWM ficará agregada ao pino de saída do

canal zero.

Já no modo sem buffer, cada canal de tempo pode gerar uma saída PWM. O

cuidado que deve ser tomado neste caso é que alterações de largura de pulso devem ser

realizadas em locais bem específicos. A alteração da largura de pulso para um valor

superior deve ser realizada na interrupção de estouro de tempo (temporizador). A

alteração da largura de pulso para um valor inferior deve ser realizada na interrupção de

comparação do devido canal. Na figura a seguir é apresentado os locais referentes as

interrupções supracitadas.

23 Prof. Gustavo Weber Denardin

Figura – Largura de pulso e período de um PWM

Abaixo temos a configuração de bits relativa aos registradores TSC0 e TSC1.

Figura – Timer Channel Status And Control Registers

A seguir serão descritos as funções de cada um dos bits deste registrador:

CHxF (Channel x Flag Bit): Quando o canal x está configurado para comparação

de saída (modo que permite a implementação de um PWM), esta flag torna-se 1 quando o

valor do registrador contador de tempo (TCNT) atinge a valor contido no registrador do

canal x (TCHx). Para limpar esta flag deve-se ler o registrador TSCx e escrever um zero

lógico para este bit.

24 Prof. Gustavo Weber Denardin

1 = Comparação de saída no canal x

0 = Sem comparação de saída no canal x

ChxIE (Channel x Interrupt Enable Bit): Este bit de escrita/leitura permite habilitar

a interrupção de comparação de saída para o canal x.

1 = Interrupção do canal x habilitada

0 = Interrupção do canal x desabilitada

TOVx (Toggle On Overflow Bit): Quando o canal x está configurado para

comparação de saída, este bit de escrita/leitura controla o comportamento da saída do

canal x quando ocorre um estouro de tempo no temporizador.

1 = Valor lógico no pino relativo ao canal x se altera no estouro de tempo

0 = Valor lógico no pino relativo ao canal x não se altera no estouro de tempo

ChxMAX (Channel x Maximum Duty Cycle Enable Bit): Quando o bit TOVx está

em nível lógico 1, ao setar o bit ChxMAX irá forçar o Duty Cycle do canal para 100%.

Como a figura a seguir demonstra, o efeito relativo a este bit só é notado 1 ciclo após que

este bit é alterado. O Duty Cycle permanece 100% até que este bit volte ao estado lógico

zero.

Figura – Latência do bit CHxMAX

Os outros bits relativos a estes registradores são configurados a partir da tabela

abaixo:

25 Prof. Gustavo Weber Denardin

Tabela – Seleção de modo, nível e borda

O registrador onde é realizada a configuração da largura de pulso é o TCHx,

sendo TCHxH o registrador de maior significado e TCHxL o de menor significado na

palavra de 16 bits que irá representar a largura do pulso. Abaixo estes registradores são

apresentados.

26 Prof. Gustavo Weber Denardin

Figura – Registradores TCH0H, TCH0L, TCH1H e TCH1L.

Voltando ao exemplo onde deseja-se configurar um PWM de 10KHz com largura

de pulso inicial igual a 40% e ciclo inicial ativo, utilizando um relógio de 3,2MHz. O módulo

referente ao período do PWM já foi definido, sendo igual a 320. Para configurarmos a

largura inicial para 40% deve-se utilizar 40% do valor do módulo do período encontrado,

ou seja, TCH0 = 320 x 40% = 128.

A seguir será apresentado a configuração do PWM do exemplo acima, utilizando

modo sem buffer com saída no canal zero, tanto para Assembly quanto para “c”.

27 Prof. Gustavo Weber Denardin

Assembly:

; Configuração do módulo de tempo
LHDX #!320 ; Valor relativo ao período de 100us
STHX TMD ; Move para o registrador de módulo do temporizador
LDHX #!128 ; Valor de 40% de largura de pulso (40% de 320)
STHX TCH0 ; Move para o registrador do canal 0
CLRH ; Limpa a parte alta do registrador de índice, utilizado anteriormente
; Saída PWM no canal 0, com alteração para nível lógico baixo na comparação
; CH0F CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX
; 0 1 0 1 1 0 1 0
MOV #$5A,TSC0
; Período do PWM igual a 100us
; TOF TOIE TSTOP TRST Reservado PS2 PS1 PS0
; 0 1 0 0 0 0 0 0
MOV #$40,TSC

“c”:

TMOD = 320; /* Perído do PWM*/
TCH0 = 128; /* 40% de PWM */

/*Saída PWM no canal 0, com alteração para nível lógico baixo na comparação
CH0F CH0IE MS0B MS0A ELS0B ELS0A TOV0 CH0MAX
 0 1 0 1 1 0 1 0 */
TSC0 = 0x5A;

/*Período do PWM igual a 100us
 TOF TOIE TSTOP TRST Reservado PS2 PS1 PS0
 0 1 0 0 0 0 0 0 */
TSC = 0x40; /* Não divide o clock */

Apesar de termos definido as inicializações, se o modo sem buffer está sendo

utilizado, precisamos implementar também no código as interrupções de estouro de

tempo e comparação de saída para ser possível alterar o valor da largura de pulso desta

saída.

Assembly:
; Interrupção do temporizador.
TOVER: BCLR 7,TSC ; Limpa a flag da interrupção do temporizador
 BRCLR condição,SAIR_OVER ; Verifica a necessidade de aumentar a largura
 ; Se a flag estiver com zero, não corrige
 BCLR AUM,FLAG ; Limpa a flag da necessidade de aumentar
 MOV Valor_corrigido,TCH0 ; aumenta a largura de pulso
SAIR_OVER
 RTI ; Retorna da interrupção

28 Prof. Gustavo Weber Denardin

; Interrupção da comparação

COMP: LDA TSC0
 BCLR 7,TSC0 ; Limpa a flag da interrupção da comparação
 BRCLR condição,SAIR_COMP ; Verifica a necessidade de diminuir a largura
 ; Se a flag estiver com zero, não corrige
 BCLR DIM,FLAG ; Limpa a flag da necessidade de diminuir
 MOV Valor_corrigido,TCH0 ; diminui a largura de pulso
SAIR_COMP
 RTI ; Retorna da interrupção
“c”:

// Interrupção do temporizador
interrupt void tover(void) {
 TSC_TOF = 0; // Limpa a flag da interrupção do temporizador
 if (condição){ /* Indicação para aumenta largura do PWM*/
 flag_aum = 0; // Limpa flag de condição
 TCH0 = Valor_corrigido; // Corrige a largura do pulso
 }
} // Retorna da interrupção

// Interrupção da comparação
interrupt void comparacao(void){
 byte i;
 i = TSC0; // Lê registrador de estado do PWM
 TSC0_CH0F = 0; // Limpa a flag
 if (condição) { // Verifica se é necessário diminuir a largura
 flag_dim = 0; // Limpa flag de condição
 TCH0 = Valor_corrigido; // Corrige a largura do pulso
 }
}

Em algumas aplicações é necessário a inserção de um tempo morto (dead time)

devido ao tempo de comutação de certos tipos de componentes utilizados ou devido as

topologias dos sistemas agregados a estas saídas PWM.

Normalmente estes tempos mortos são inseridos em pares complementares de

saídas PWM, ou seja, quando uma das saídas comuta para nível lógico alto, a outra saída

comuta para nível lógico baixo. Abaixo é apresentado um exemplo de utilização de

tempos mortos.

29 Prof. Gustavo Weber Denardin

Figura – Exemplo de utilização de tempo morto

3.3 Conversores Analógico-Digital e Digital-Analógico

De um modo geral, os sinais encontrados no mundo real são contínuos (ou

analógicos, pois variam no tempo de forma contínua), como, por exemplo: a intensidade

luminosa de um ambiente que se modifica com a distância, a aceleração de um carro de

corrida, etc. Os sinais manipulados por computadores e sistemas embarcados são

digitais, como por exemplo, uma faixa de áudio lida de um compact disk.

A conversão analógico-digital (A/D) é o processo que possibilita a representação

de sinais analógicos no mundo digital. Desta forma é possível utilizar os dados extraídos

do mundo real para cálculos ou operar seus valores.

Em geral, o conversor A/D está presente internamente nos processadores e

controladores de sinais digitais e alguns microcontroladores, mas também existem

circuitos integrados dedicados a este fim.

Basicamente é um bloco que apresenta portas de entrada e saída. A entrada

recebe sinais elétricos de forma contínua e possui uma faixa de tensão de entrada

máxima e mínima. Nos microcontroladores que possuem um conversor A/D e operam na

faixa de 5V, geralmente a faixa de tensão aceita sinais elétricos entre -5V e +5V.

30 Prof. Gustavo Weber Denardin

Na saída o sinal é amostrado em um dado intervalo de tempo fixo (determinado

pela freqüência de amostragem). Esta amostra disponibiliza um certo valor que

representa o sinal original naquele momento (quantização). As características de

quantização estão relacionadas à precisão do conversor.

Para ilustrar esta situação, imagine que você queira mostrar a temperatura de um

forno em um display de cristal líquido (LCD). Para isto seriam necessários alguns

componentes eletrônicos. Os mais expressivos são: um transdutor (sensor de

temperatura), um display de cristal líquido (LCD), um processador digital e um conversor

analógico digital.

Figura - Diagrama de blocos de uma conversão A/D de um sinal de temperatura

A temperatura é um sinal analógico. O sensor de temperatura converte a

temperatura em um sinal de impulsos elétricos analógicos. O conversor A/D recebe esse

sinal e o transforma em sinal digital, através de amostragem, entregando ao processador.

Este, por sua vez, manipula esses dados e envia-os para o display, mostrando em graus a

temperatura do forno. A figura abaixo mostra a representação do sinal analógico de

temperatura e seu equivalente na forma digital.

Figura – Representação de um sinal de temperatura analógico e digital.

31 Prof. Gustavo Weber Denardin

A informação digital é diferente de sua forma original contínua em dois aspectos

fundamentais:

● É amostrada porque é baseada em amostragens, ou seja, são realizadas

leituras em um intervalo fixo de tempo no sinal contínuo;

● É quantizada porque é atribuído um valor proporcional a cada amostra.

Explorando um pouco mais o caso do forno, a figura abaixo detalha um pouco

mais as três etapas mais importantes do processo: a aquisição, a amostragem e o

processamento.

Neste diagrama de blocos, o sinal analógico é capturado pelo transdutor (sensor),

em seguida passa por um filtro, denominado de anti-alias, a fim de diminuir os ruídos. A

chave representa a freqüência de amostragem do conversor A/D, entregando ao

processador o sinal digitalizado.

Figura – Diagrama de blocos da conversão A/D.

A freqüência de amostragem é o número de amostras capturadas em um

segundo. Esta freqüência é dada em Hertz (Hz) e é considerada adequada quando se

pode reconstruir o sinal analógico razoável a partir de amostras obtidas na conversão.

A taxa de conversão ou freqüência de amostragem é de suma importância para o

processamento de sinais reais. Para obter uma taxa de amostragem adequada pode-se

utilizar os teoremas de Nyquist ou Shannon. Estes teoremas indicam que um sinal

contínuo x(t) pode ser amostrado adequadamente se tiver banda limitada, ou seja, seu

espectro de freqüência não pode conter freqüências acima de um valor máximo (Fmáx –

freqüência máxima). Ainda, outro ponto importante é que a taxa de amostragem (Fa –

Freqüência de amostragem) deve ser escolhida para ser no mínimo duas vezes maior que

a freqüência máxima (Fmáx). Por exemplo, para representar um sinal de áudio com

32 Prof. Gustavo Weber Denardin

freqüências até 10 KHz, o conversor A/D deve amostrar esses sinais utilizando uma

freqüência de amostragem de no mínimo 20 KHz.

Para melhor entendimento, vamos ver como funciona um conversor A/D de 4 bits

(Figura abaixo).

Figura – Conversão A/D de 4 bits.

Com 4 bits o máximo representável é o número 16. Isso quer dizer que temos

uma faixa de 0 a 15 (não sinalizado) ou +7 a -8 (sinalizado). Nesse conversor fictício,

teremos uma variação a cada 1 volt. A figura anterior mostra um sinal de áudio de 200 Hz

variando de +7 a -8 volts, que pode ser capturado por um microfone. Conforme o teorema

de Nyquist, seria necessário uma freqüência de amostragem de 400 Hz.

Lembrando que, se o sinal de áudio possuísse amplitude maior que a faixa

representável do conversor A/D (7V a -8V), então não seria possível converter tal sinal.

O conversor D/A possui todas as características do conversor A/D, as quais

diferem apenas porque o conversor D/A pega um sinal digital e transforma em analógico.

Por exemplo, em uma aplicação de áudio, um microfone captura o áudio e envia a um

conversor A/D, que entrega o sinal amostrado e quantizado a um processador digital. Este

último efetua diversas operações com o sinal de áudio. Só então o processador envia ao

conversor D/A, para remontar o sinal analógico a partir do sinal digital, para ser

reproduzido em um alto-falante. Um exemplo de conversor D/A de 16 bits é o DAC1221,

da Texas Instruments.

Novamente para exemplificar a configuração de um conversor A/D em um

microcontrolador será utilizado o microcontrolador MC68HC908QY4. Este

microcontrolador possui um conversor A/D por aproximação sucessiva linear com quatro

canais, ou seja, existem 4 entradas possíveis para sinais analógicos que são

multiplexadas para um único conversor A/D. Isto implica em que só um canal será

convertido em um determinado momento. A resolução deste A/D é de 8 bits, no entanto, a

33 Prof. Gustavo Weber Denardin

Freescale disponibilizou uma nova versão com A/D de 10 bits, o MC68HC908QY4A. Na

figura a seguir é apresentado o diagrama de blocos do conversor A/D deste

microcontrolador.

Figura – Diagrama de blocos do conversor A/D do microcontrolador MC68HC908QY4

34 Prof. Gustavo Weber Denardin

