INSTITUTO FEDERAL DE EDUCACAO TEQNOLOGICA DE SANTA CATARINA
DEPARTAMENTO ACADEMICO DE ELETRONICA B
DISCIPLINA: INTRODUGCAO A LINGUAGEM DE PROGRAMACAO C

INTRODUGAO A

NGUAGEM©

PLANO DE AULA

33, EDICAO
PROFA. FERNANDA ISABEL MARQUES ARGOUD

FLORIANOPOLIS, ABRIL DE 2009.

SUMARIO

1 - INTRODUCAO
1.1 - HISTORICO
1.2 - CARACTERISTICAS DA LINGUAGEM
2 - PROGRAMA EXEMPLO
3 - TIPOS DE VARIAVEIS E CONSTANTES
3.1 - CONSTANTES
Constantes Numéricas
Constantes de Caractere
Sequéncias de Escape
Strings
3.2 - TIPOS DE VARIAVEIS
Declaragcao de uma variavel
Definicdo de uma variavel
Tipos de variaveis
4 - OPERADORES
Operadores Aritméticos
Operadores Relacionais
Operadores Logicos
Operadores Bit a Bit
Operador de Atribuicao
Operador de Atribuicdo Reduzida
Operadores Pré e Pés-Fixados
Operadores Condicionais
5- CONVERSOES DE TIPOS
Conversbes Automaticas
Conversodes Forgadas
6 - PRECEDENCIA
7 - ORDEM DE AVALIACAO
8 - COMANDOS DE CONTROLE DE FLUXO
8.1 - O COMANDO IF
8.2 - O COMANDO IF-ELSE
8.3 - O COMANDO WHILE
8.4 - O COMANDO DO-WHILE
8.5 - O COMANDO FOR
8.6 - O COMANDO CONTINUE
8.7 - O COMANDO BREAK
8.8 - O COMANDO SWITCH
8.9 - O COMANDO GOTO
9 - FUNCOES
9.1 - CHAMADA DA FUNCAO
9.2 - PARAMETROS E ARGUMENTOS
Os argumentos argc e argv da fun¢ao main()
9.3 - VALORES DE RETORNO
9.4 - ESCOPO DE VARIAVEIS
Variaveis Locais ou Automaticas
Variaveis Globais
Variaveis Externas
Variaveis Estaticas
Variaveis Registradores
10 - MATRIZES
10.1 - STRINGS
10.2 - MATRIZES MULTIDIMENSIONAIS
10.3 - MATRIZES PASSADAS PARA FUNCOES
10.4 - ORGANIZACAO DE MATRIZES NA MEMORIA
11 - PONTEIROS
11.1 - PONTEIROS E MATRIZES
11.2 - ARITMETICA DE PONTEIROS

11.3 - PONTEIROS PARA MATRIZES USANDO FUNCOES
12 - TIPOS DE DADOS COMPLEXOS E ESTRUTURADOS
12.1 - ENUMERACOES
12.2 - ESTRUTURAS
Atribuicdes entre Estruturas
Endereco da Estrutura
Passando e devolvendo estruturas para fungdes
Estruturas Aninhadas
Campos de bits
Ponteiros para Estruturas
12.3 - LISTAS ENCADEADAS
A fungéo malloc()
12.4 - UNIOES
Apéndice A - ROTINAS DE ENTRADA E SAIDA (I/0)
A fungao printf()
A fungéo scanf()
As fungdes getchar() e putchar()
As fungdes gets() e puts()
Apéndice B - PROGRAMA EXEMPLO PARA ROTINAS GRAFICAS
Apéndice C - DIRETIVAS DO PRE-PROCESSADOR
BIBLIOGRAFIA

1 - INTRODUGAO

Uma das linguagens mais utilizadas por técnicos e pesquisadores € a linguagem C. Isto ocorre
principalmente pela versatilidade e pela complexidade da linguagem, que permitem a criagdo de
programas muito sofisticados.

1.1 - HISTORICO

A primeira versdo da linguagem foi desenvolvida por dois pesquisadores da Bell Laboratories,
Brian Kernighan e Dennis Ritchie. A empresa necessitava de uma linguagem especificamente para
escrever o sistema operacional UNIX, mas C revelou-se tao eficiente e "transportavel" para outros
sistemas operacionais, sistemas e hardwares que seu uso alastrou-se rapidamente. Esta primeira
versdo, chamada "K&R" sofreu algumas modificagdes com o tempo, para adaptar-se a computadores
com mais de 8 bits e assim nasceu a versao "ANSI C", considerada um padrao da linguagem. Algum
tempo depois, com a moda de programagao orientada a objetos, nasceu a versao C++ que nao mais
segue a programacgao linear. Varias empresas criaram seus proprios compiladores C e assim
apareceram o MS C (Microsoft), o Turbo C, Borland C, etc.

1.2 - CARACTERISTICAS DA LINGUAGEM

“C & uma linguagem compilada, estruturada e de baixo nivel.”

Linguagem compilada porque, apds ser escrita num editor de textos qualquer (que siga o padrao
ASCII), precisa ser decodificada, compilada (cada médulo separadamente) e linkada para obter-se um
programa executavel. Certos softwares como o Turbo C e o Borland C permitem que se edite, compile
e linke os programas em C dentro de um mesmo ambiente (chamado de “IDE”, ou “Integrated
Development Environment”), o que facilita muito a manipulagao.

E uma linguagem estruturada porque segue o padrdo de endentagdo, tal como em Pascal e
Fortran por exemplo, com alinhamentos dos blocos légicos cada vez mais a direita, quanto mais
"interno" ao bloco for o comando, e com execugao linear, sem utilizagdo de goto's, break's, etc.

Finalmente € uma linguagem de baixo nivel por permitir acesso as camadas légicas mais baixas
da maquina. Isto é, por aproximar-se bastante da linguagem de maquina, Assembler, que apesar de
bastante rudimentar tem a capacidade de acessar diretamente a memdéria, o hardware do computador,
como registradores, portas, posi¢cdes da RAM, etc. Com isto, ganha-se muito em rapidez de execugéo e
em poder para utilizar completamente os recursos do computador. E importante salientar que apesar de
ser possivel utilizar-se fungdes muito complexas de baixo nivel em C, um programador nao interessado
nisto tera uma linguagem estruturada como qualquer outra de alto nivel.

Outra caracteristica importante € que C é uma linguagem de “estilo livre”, sem formatagao
rigorosa como Fortran e Basic. Em Basic, cada linha contém um comando e cada comando ocupa
somente uma linha (as vezes, ha até numeragéo das linhas). Em Fortran, os arquivos de saida contém
espagos reservados para cada string, valor de caractere ou espago em branco que devera ser
impresso. Nada disto ocorre em C. Desde que a sintaxe correta seja seguida, ndo ha maiores restricbes
na linguagem. Ou melhor, quase nao ha.

@ O programador ndo pode esquecer que o compilador C_diferencia caracteres minusculos de
maiusculos. Por exemplo, as variaveis "numero" e "Numero" sdo consideradas diferentes uma da outra
na linguagem C.

Um avanco significativo que C possibilitou, foi escrever-se um programa numa linguagem de alto
nivel (que C nao deixa de ser) e ter, apo6s a compilagdo, um cdodigo gerado diretamente em Assembler.
Qual a vantagem nisto? Quem ftrabalha com circuitos contendo microprocessadores ou
microcontroladores sabe! Até pouco tempo seria necessario escrever paginas de cédigo em Assembler
para fungdes simples. Agora, com o uso de compiladores como o Keil - C ou Avocet, o programador
escreve o cédigo em C e o compilador encarrega-se de transforma-lo em Assembler.

Costuma-se dizer que o C é uma linguagem extremamente "portavel". Ou seja, foi desenvolvido
para UNIX, mas roda muito bem em DOS. Além disto, um programa escrito em C, para uma estagao de
trabalho provavelmente rodara num PC ou num computador médio; ou mesmo passara de um IBM-PC
para um Machintosh. Isto ocorre porque C nio é rigido, ndo tem fungdes pré-definidas de 1/O (alias, de
nenhum tipo) para cada maquina e adapta-se a qualquer hardware. Fungdes especificas (como entrada
e saida) para cada maquina devem ser escritas pelo préprio usuario e certamente estas ndo rodariam
num hardware diferente. Uma opg¢éo para o programador mais pratico (ou preguigoso) € procurar nas
dezenas de arquivos de biblioteca ".h" (por exemplo, "stdio.h") uma fungdo que se encaixe nas suas
necessidades. E importante salientar que também estas fungdes (como por exemplo, printf(), que
imprime saidas formatadas na tela) foram desenvolvidas por usuarios e ndo pertencem a linguagem
original. Na verdade, quase tudo em C é definido pelo usuario, dai sua complexidade e ao mesmo
tempo, seu poder.

2 - PROGRAMA-EXEMPLO

O programa abaixo serve para ilustrar a estrutura de um programa em C.

/***/

/*** PROGRAMA C que demonstra como usar varias primitivas graficas ***/
/¥*¥* com monitor VGA wdk/
/**/
#include <graphics.h>

#include <stdio.h> L p
#include <stdlib.h> Diretivas do pré-processador:

inclusao de bibliotecas

#include <process.h>
#include <conio.h>

#define TRUE 1

#define MAX 200 —_ p) o,
#define NAO 'n' iretivas do pre-processador:

#define SIM_ s’ definicao de constantes

void circulo(int, int);

void barra(int); Protétipos de fungdes
void elipse(int, int) ;

void main(void) Funcao Principal

{

int gdriver = DETECT, gmode, errorcode, i;
int midx, midy;
char ch;

initgraph(&gdriver, &gmode, " ");

errorcode = graphresult();

if (errorcode != grOk)

{ printf("Erro de Fungdo Grafica: %s \n", grapherrormsg (errorcode));
printf("Aperte uma tecla para parar: ");
getch();
exit(1);

H
setbkcolor(BLACK);

for(i= 10; ch '=NAO; i +=100)
{

circulo(i, 1); // desenha um circulo vazio

elipse(i +200, i + 300); // desenha uma elipse cheia
printf("Deseja continuar? (s/n)");
ch = getchar();
H
closegraph();
}

void circulo(int x, int y) Fungao circulo()

/* desenha um pequeno circulo */
{ setcolor(BLUE);
circle(x, y,40);

}

Funcao barra()

void barra(int posicao)
/* desenha uma barra tridimensional */
{ setcolor(CYAN);
setfillstyle(LINE_FILL, CYAN);
bar3d(posicao, 20, posicao + 50, 90, 15, 1);
}

void elipse(int x, int y) Funcao elipse()

/* desenha uma elipse, traca e preenche */

{ setcolor(MAGENTA);
setfillstyle(SLASH_FILL, MAGENTA);
fillellipse(x, y, 40, 70);

}

Observe atentamente o programa. Este inicia com comentarios sobre o nome do programa e o
que ele faz. Em C, comentarios sempre estao entre os simbolos "/*" e "*/", ou apds o simbolo "//". Ou
seja, tudo que estiver entre "/* ... */" € completamente ignorado pelo compilador e tudo que estiver, na
mesma linha, apés o "//" também o é.

Em seguida, temos uma série de comandos, chamados "diretivas", que nado pertencem a
linguagem C propriamente, sempre comegando com o simbolo "#". Estes comandos fazem parte do
que chamamos de "Pré-Processador". O pré-processador, como o nome diz, € um programa que
examina o programa-fonte em C antes deste ser compilado e executa certas modificacdes nele,
baseado nas diretivas. As diretivas mais comuns sdo "#include" e "#define". A primeira, indica ao
compilador quais arquivos de header (os "*.h") serdo utilizados pelo programa. A segunda, define
constantes e macros para facilitar a visualizacdo do programa. Para maiores informacgdes, vide
Apéndice C.

A érea seguinte é a regido de declaragdo dos "protétipos de fungdes". Isto é necessario, em
alguns compiladores C, para indicar ao compilador quais e qual o formato das fungbes que existem no
programa. Por exemplo, o prototipo "void circulo(int, int)" diz ao compilador que dentro deste cédigo ele
encontrara uma fungdo chamada circulo, que recebe dois argumentos do tipo int (inteiros) e ndo retorna
valor algum (void) a expressao chamadora.

As outras areas sao todas func¢des. A primeira é a fungéo principal do programa, main(). A funcao
main() é sempre a primeira a ser executada num programa C, ndo importa onde esteja localizada no
cédigo. Neste programa foi colocada em primeiro lugar por convencdo. Note que uma fungéo inicia-se
sempre com o0 nome desta (seu tipo e argumentos) e em seguida temos o seu "corpo", sempre
delimitado pelos caracteres "{" e "}". Tudo que estiver entre os simbolos de abre e fecha-chaves faz
parte do corpo de uma fungao. Com excegéo da fungdo main(), que existe obrigariamente em qualquer
programa C, todas as outras fungdes foram previamente declaradas em protoétipos.

N&o s6 as fun¢des, mas também blocos de comandos sao delimitados por "{" e "}". Note o corpo
do comando "for" do programa.

As variaveis em C geralmente sdo declaradas no inicio dos blocos, em alguns compiladores por
convengdo e em outros por obrigagdo. Contudo, a rigor, as variaveis podem ser declaradas em
qualquer ponto do programa (dentro do escopo necessario, claro) desde que antes de serem utilizadas.

Finalizando, note que a maioria dos comandos C terminam com o caractere ™;" que € um analogo
do "End" utilizado em outras linguagens, como Fortran e Pascal.

Nos capitulos seguintes todos os pontos discutidos acima serdo explorados e o Apéndice C tem
uma lista das diretivas mais comumente utilizadas.

3 - TIPOS DE VARIAVEIS E CONSTANTES

3.1 - CONSTANTES

Uma constante tem valor fixo e inalteravel. Em C uma constante caractere é escrita entre aspas
simples (“' “ e “'“); uma cadeia de caracteres, entre aspas duplas (“" “ e “ " “); e constantes numéricas
como o0 numero propriamente dito.

Exemplos de declara¢des de constantes:

const char const_caract ='c';

#define NOME "meu primeiro programa
#define VALOR 8

n

Constantes podem ser dos tipos:

- Constantes numéricas: inteiros, octais, hexa, longas e ponto flutuante (reais).

Ex:
45E-8 (exponencial) 32 (inteiro) 034 (octal) 0xFE(hexa)
2e3 (exponencial)32L (longa) 567893 (longa implicito) 2.3 (double)

Como podemos notar, constantes inteiras nao possuem ponto decimal; constantes octais devem
ser precedidas por um '0"; constantes hexa, por um '0x'; constantes longas devem ser seguidas por um
'L', mas quando se trata de um nimero muito grande o compilador ja entende que é um inteiro longo; e
constantes double ou float ttm ponto decimal flutuante.

- Constantes de Caractere: podem ser representadas por seu cédigo ASCII, ou entre aspas, '".
Ex:

| "A'=65 (em ASCII) '

- Sequéncias de Escape - Sdo coédigos de tarefas a serem executadas na compilagao,
representados por caracteres que ndo podem ser impressos.

[o

| Sequéncia de escape Significado |

| \a Caractere Bell (ANSI C) |

| \b Caractere de retrocesso (backspace) |

| \n Caractere de nova linha |

| \r Caractere de retorno de carro |

| \t Caractere de tabulagcao horizontal |

| \ Caractere de contra-barra '

| \' Caractere de aspas simples Obs: os simbolos “#"
| \" Caractere de aspas duplas correspondem a

| \? Caractere de ponto-de-interrogagao digitosde 0 a 7, p/ a
| \H# Caédigo ASCIl em octal de caractere base octal e de 0 a

| \x##H# Cadigo ASCIl em hexadecimal de caractere F, p/ a base

I \0 Caractere nulo hexadecimal!

Ex: A instrugéo
printf(*‘\n\t\t Hoje \202 dia da Can\x87\xc60 da \nAm\x82rica\?”");

vai imprimir:

Hoje ¢ dia da Cangdo da

América?

Ex2: Teste o programinha:

#include <stdio.h>
void main(void)
{
printf("A\nB\nC");
printf("\n");
printf(" A\tB\tC");
printf("\n");
printf("AB\rC");
printf("n");
printf("AB\b\bC");
printf("\n");
printf("Beep\aBeep\aBeep\a");
printf("\n");
printf("A\B\C"); /* O que acontece aqui 77?7 */
printf("n");
printf(" Os comandos do Dos estdo no C:\\DOS ");
printf(*\n”);
printf(“Can\x87\xc60 da Am\x82rica — Milton Nascimento\n™);
printf(“‘xc9\xcd\xcd\xcd\xbb\n\xc8'\xcd\xcd\xcd\xbc™);
printf("\n");
printf("\"Cuidado!\" ndo fume ");

- 8trings - Conjunto, série ou sequéncia de caracteres seguido do caractere ' \0 ' e delimitado por

Ex:
char * texto="ABC"; // ou char texto[4] ={'A','B','C',"\0'};

Exercicios:

Usando os caracteres do teclado, as sequéncias de escape, a fungéo printf() e a fungéo gotoxy(int
x, int y), que posiciona o cursor na coluna x e na linha y do monitor, escreva o programa que imprime
um boneco no canto inferior direito da tela de saida. Ex:

Wunas
a I
\
Monitor de video:
(modo DOS)
> 24 linhas
(0]
/\

3.2 - TIPOS DE VARIAVEIS

As variaveis sao o aspecto fundamental de qualquer linguagem de computador. Uma variavel em
C é um espago de memodria reservado para armazenar um certo tipo de dado e tendo um nome para
referenciar seu conteudo. Ao contrario das constantes, uma variavel tem seu valor mutavel, dai o nome
" 2 oo n
variavel".

Declaragao de uma variavel: ocorre quando a variavel é "apresentada” ao compilador. O usuario
declara que vai criar uma variavel de um certo tipo para utiliza-la em seu programa. A sintaxe da
declaracao de uma variavel é:

tipo_var nome_var '

onde tipo_var é o tipo de variavel criada e nome_var, 0 nome ou 0s nhomes (separados por
virgulas) das proprias.

Ex: int num ;

e assim esta declarada a variavel "num" inteira.

Ex2: float varl, var 2, var 3;

declara as variaveis "var1" , "var2" e "var3", ao mesmo tempo, como sendo do tipo float.

Definicdo de uma variavel: ocorre quando a variavel ja declarada recebe um valor, uma
atribuicdo. A definicdo da variavel pode ocorrer na mesma linha da declaragdo, mas sempre depois
desta e denominamos isto de "inicializagdo da variavel". A sintaxe da definicao de variaveis é:

nome_var = valor ; '

onde nome_var € o nome (ou nomes, separados por simbolos de igual) da variavel e valor é o
valor atribuido & mesma.

Ex: num=>5; ou numl = num 2 =num3 = 0;

e assim o valor 5 (inteiro) é atribuido a variavel "num" e o mesmo valor, 0, é atribuido a trés
variaveis ao mesmo tempo.

Ex2: charx="b}

neste caso a inicializagao da variavel "x" como tendo o valor do caractere 'b' ocorreu logo apoés a
declaracao.

Tipos de Variaveis: O tipo de uma variavel informa a quantidade de memodria, em bytes que esta
ira ocupar. Sao eles:

Tipo Tamanho Escala (para word de 8 bits, no Turbo C)

unsigned char 1 word 0 a 255

char 1 word -128 a 127

enum * 2 words -32.768 a 32.767

unsigned int 2 words 0 a 65.535

short int 2 words -32.768 a 32.767

int 2 words -32.768 a 32.767

unsigned long 4 words 0 a 4.294.967.295

long 4 words -2.147.483.648 a 2.147.483.647

float 4 words 3,4.10% a 3,4.10%

double 8 words 1,7.10%% g 1,7 .10%%®

Ion_g double 10 words 3,4.10%%2 g 1,1.10%%%2 Obs: indica ao compilador
void . 0 sem valor .. gue nenhuma memodria deve
ponteiro 1-2 words endereco de memoria e

Os tipos basicos estdo em negrito, os outros tipos sdo chamados de m\ojdificadores de tipos e
servem para alterar o tamanho de um tipo basico. Por exemplo, em alguns computadores, como o IBM-
370, o modificador "short" faz com que o tipo "int" fique com a metade do tamanho, 8 bits. O tamanho
dos tipos varia bastante de maquina para maquina e de compilador, para compilador.

Inteiros com e sem sinal séo interpretados de maneira diferente pelo compilador. O bit de ordem
superior, bit 15, de um numero inteiro com sinal € sempre '0', quando o inteiro é positivo e '1' quando o
ndmero é negativo. Se usarmos o modificador "unsigned" o compilador vai ignorar o bit de sinal,
tratando-o como um bit a mais para numeros positivos.

Ex:

void main(void)

{
unsigned int j = 65000;
inti=j;
printf(" %d % u\n", i, j);

}

O resultado sera (na base binaria: 1111.1101.1110.1000):

| -536 65000 '

Variaveis também s3o modificadas por Classes de Armazenamento: auto, static, register e
extern. Isto sera visto mais tarde, quando estudarmos o escopo das variaveis.

@3 * O tipo "enum" é um acréscimo recente ao C. E definido como um conjunto de constantes enumeradas. Cada
constante é associada a um valor inteiro.
Ex: enum tipo_sinaltransito { vermelho, amarelo, verde};
enum tipo_sinalfransito sinal;
, pelo qual sinal so pode ter um dos trés valores: vermelho, que tem indice 0, amarelo, de indice I e verde, 2.

Exercicios:

1 - Identifique o tipo das seguintes constantes:

a)\r b) 2130 c)-123 d) 33.28 e) 0x42
f) 0101 g) 2.0e30 h) "xDC' i)\ i)W
k) 'F')0 m) "\0'

2 - O que é uma variavel, na linguagem C?
3 - Quais os 5 tipos basicos de variaveis em C?
4 - O tipo float ocupa 0 mesmo espago que variaveis do tipo char.

5 - Escreva um programa que contenha uma Unica instrucdo e imprima na tela:

Esta ¢ a linha um.
Esta ¢ a linha dois.

um
dois

tres

Obs: para escrever a letra ‘€’ utilize o cédigo \202, da tabela ASCII extendida.

4 - OPERADORES

A linguagem C é rica em operadores, em torno de 40. Alguns sdo mais usados que outros, como

€ o caso dos operadores aritméticos que executam operagdes aritméticas.

Os tipos de operadores sao: Aritméticos, Relacionais, Légicos, Bit a Bit, de Atribuicdo, de

Atribuicdo Reduzida, Pré e Pés-Fixados e Condicionais.

Operadores Aritméticos - Representam as operagfes aritméticas basicas de soma, subtragio,

divisdo e multiplicagdo; além dos operadores unarios (operam apenas sobre um operando) de sinal

negativo e positivo. Sdo eles:

Binarios
+ Soma
- Subtragdo
* Multiplicagado
/ Divisao
% Médulo (devolve o resto da diviséo inteira)
Unario
- Menos unario
+ Mais unario
Ex:
Expressao Tem o valor
5+i 5 somado ao valor da variavel i
223 *f 22,3 multiplicado pelo valor da variavel f
k/3 o valor de k dividido por 3 *
X-y o valor de x menos o valor de y
22/3 7 (como é divisao de inteiros o resultado é truncado)
22%3 1 (este operador devolve o resto da divisdo inteira)
-a -1 multiplicado ao valor da variavel a
Ex2:

#include <stdio.h>

void main(void)

{
int ftemp, ctemp;
printf("Digite a temperatura em graus Celsius: ");
scanf("%d", &ctemp);
ftemp =9./5 * ctemp + 32; // porque este ponto aqui???
printf("Temperatura em graus Fahrenheit é %d", ftemp);

Resultado:

Digite a temperatura em graus Celsius: 21
Temperatura em graus Fahrenheit € 69

Operadores Relacionais - S40 assim chamados porque sao utilizados para comparar, relacionar

dois operandos. Sao eles:

> Maior
>= Maior ou Igual
< Menor

= Menor ou Igual
== Igualdade

1= Diferenca
O resultado da comparacgao sera sempre igual a 0 (Falso) ou 1 (Verdadeiro).

Ex:

Expresséo Tem o valor

5<3 0

3<5 1

5== 1

3== 0

i<=3 0, se i>3 e 1, caso contrario
Ex2:

#include <stdio.h>
void main(void)
{ int verdad, falso;
verdad = (15 < 20);
falso= (15 ==20);
printf(""Verdadeiro= %d, falso= %d \n", verdad, falso);

}

Note que o operador relacional "Igual a" & representado por dois sinais de igual. Se for usado
apenas um sinal, o compilador entendera como uma atribuigdo e ndo como comparacao.

Ex:
x==2 esta comparando se x é ou nao igual a 2
x=2 esta atribuindo o valor 2 a variavel x (expressao verdadeira, por definicao)

Operadores Loégicos - Sdo chamados de "légicos" porque seguem a Légica Booleana de
operagdo com bits. A diferenga basica é que a rigor, a Algebra Booleana s6 utiliza dois algarismos: o "0"
e 0"1", 0"nao" e 0 "sim", o "falso" e o "verdadeiro", o0 "espago" e a "marca", etc. E em C, considera-se o
namero 0 como "falso" e todos os outros numeros como "verdadeiros". Os operadores ldgicos sao:

&& AND
[OR
! NOT

A operacao "E" (ou "AND") representada pelo simbolo "&&", exige que todos os operandos sejam
verdadeiros para que sua saida seja verdadeira.

A operagdo "OU" (ou "OR") representada pelo simbolo "||", exige que ao menos um dos
operandos seja verdadeiro para que sua saida seja verdadeira.

A operacéo "NAO" (ou "NOT") representada pelo simbolo
sua saida é verdadeira e vice-versa.

Abaixo temos as Tabelas-Verdade da Légica Booleana:

, inverte o operando. Se for falso,

operando1 operando2 AND OR
falso falso falso falso
falso verdadeiro falso verdadeiro
verdadeiro falso falso verdadeiro
verdadeiro verdadeiro verdadeiro verdadeiro
operando NOT
falso verdadeiro
verdadeiro falso
Expressao Tem o valor
5|3 1
5]I0 1

58&&3

1

58&&0 0

0J/0 0

i|lj 0,seiejforem 0 e 1, caso contrario
15 0
10 1

Operadores Bit a Bit - Realizam as mesmas operagbes que os logicos, s6 que bit a bit do
numero. Operam apenas em numeros inteiros, em sua forma binaria (tal como estdo armazenados na
memodria), casa binaria, por cada binaria, por isto o nome.

Sao eles:

& AND

| OR

A XOR

<< deslocamento a esquerda
>> deslocamento a direita

~ complemento de um (unario)

A operagdo "OU-EXCLUSIVO" (ou "XOR") representada pelo simbolo "A", exige que ou um ou
outro dos operandos seja verdadeiro para que sua saida seja verdadeira, nunca todos ao mesmo
tempo.

A operagao de "deslocamento a esquerda” de bits x<<y literalmente desloca os bits do nimero
binario x, y vezes para a esquerda. Isto equivale a multiplicar um numero binario x por 2, a cada
deslocamento. Ou, em outras palavras: x x 2*. Os espacos criados no deslocamento sdo preenchidos
com O's.

A operagdo de "deslocamento a direita" de bits x>>y literalmente desloca os bits do numero
binario x, y vezes para a direita. Isto equivale a dividir um numero binario x por 2, a cada deslocamento.
Ou, em outras palavras: x / 2*. Os espacos criados no deslocamento sdo preenchidos com 0's.

A operacgao de "complemento de um" inverte todos os bits do niumero binario. Os que séo "0"
passam a ser "1" e vice-versa, e o correspondente valor binario é utilizado.

operando1 | operando2 XOR
falso falso falso
falso verdadeiro verdadeiro
verdadeiro | falso verdadeiro
verdadeiro verdadeiro falso

Ex:
Tem o valor
0000.0011 =3

Expressao Em binarios
112 0000.0001 | 0000.0010

OXFF & OXOF 1111.1111 & 0000.1111 0000.1111 = OxOF
0xOD <<2 0000.1101 << 2 00110100 = 0x34
0x1C>>1 0001.1100 >> 1 0000.1110 = OxOE
~0x03 compl(0000.0011) 1111.1100 = OXFC
312 0000.0011 A 0000.0010 0000.0001 = 1

Operador de Atribuigao - Em C, o sinal de igual ndo tem a interpretacdo dada em matematica.
O que acontece é que o resultado ou valor do operando do lado direito é copiado, atribuido para a
variavel ou endereco, o operando do lado esquerdo. O operador de atribuigéo é:

= Igual a
Ex:
Expressao Operacdo
i=3 coloca o valor3emi

i =3+ 4colocaovalor7emi

i = (k=4) coloca o valor 4 em k e depois de k para i

i=(k=4)+3 coloca o valor 4 em k,a adigéo é feita e o valor 7 é colocado em i
3=i operacao invalida! a variavel deve estar do lado esquerdo

Operadores de Atribuicdo Reduzida - Compactam operagbes quaisquer seguidas de operagao
de atribuicdo e tornam o cdédigo mais rapido pois a variavel utilizada s6 é procurada uma vez na
memoria.

Formato:
operagéo =

Ex:
Expressao E equivalente a
a+=2 a=a+2
j <<=3 J :j << 3
q/=7+2 q=q/(7+2)

Operadores Pré e Pés-Fixados - Realizam incremento ou decremento do valor de uma variavel
antes de seu valor ser utilizado, no caso de operador pré-fixado, ou depois de seu valor ser utilizado, no
caso de operador pés-fixado. A vantagem de se utilizar estes operadores, e nao o tradicional "variavel =
variavel + 1;" é que além da praticidade e da compactagdo do cédigo, torna o programa muito mais
rapido.

++ incrementa de 1 seu operando

-- decrementa de 1 seu operando

Ex: Suponhamos a variavel i = 5:

Expressao Valor expressao Valor de i depois
5+ j++ =10 6
5+i-- =10 4
-i+5 =9 4
++i+5 =11 6

Operador Condicional - Substitui com vantagens o loop: "Se expressdo? & verdadeira Entédo
expressdo2, Senao expressdod". Sua sintaxe é:
exp1? exp2: exp3

Ex:
Expressao Valor
5?71:2 1
i?7 i+ 1 k+j valor de i+j, se i ndo € zero e k+j, caso contrario
(m>7)? 3:4 3, se m maior que 7 e 4, caso contrario
c=(a>b)?a:b devolve o maior valor, entre a e b, a variavel ¢
d=(a>b)? ((a>c)? a:c): ((b>c)? b:c)) devolve o maior valor, o maior entre a, b e ¢, parad

e=(a>b)?((a>c)?((a>d)?a:d):((c>d)?c:d)):((b>c)?((b>d)?b:d):((c>d)?c:d)); maior entre a,b,ced

Exemplos:
/***/
/Fxxx . EXEMPLO 1: Programa que mistura tipos int e char **/

/***/

#include <stdio.h>
void main(void)
{ charc="a, ans;
printf("O valor de ¢+3 = %c", ¢ + 3);
ans =c % 3;
printf(“‘n\nResto da divisdo inteira = %d\n”, ans);

}

/***/

/***

EXEMPLO 2: Programa sobre o operador aritmético % */
/**/
#include <stdio.h>
void main(void)
{ printf("\n13 resto 3 = %d", 13 % 3);

printf("\n-13 resto 3 = %d", -13 % 3);

printf("\n13 resto -3 = %d", 13 % -3);

printf("\n-13 resto -3 = %d", -13 % -3);

/**/

[RFEE EXEMPLO 3: Programa para demonstrar operadores ***%*/
[RHEE relacionais - Nimeros primos HAdK
/***/
#include <stdio.h>

#include <math.h>

void gera primos(int limite);

void main(void)
{ int maximo;
printf("\n Gerar numeros primos ate ?");
scanf("%d", &maximo);
gera_primos (maximo);
printf("\n");
}
void gera_primos (int limite)
{ int divisor;
int candidato;
int r=1;
if (limite >=7)
{ if(limite%2==0) /* O limite superior é par */

limite--;
for(candidato = 3; candidato <= limite; candidato +=2)
{ divisor = 3;
while (divisor <= sqrt(candidato) && (r=candidato % divisor)!= 0)
divisor +=2;
if (r 1=0)
printf("%8d", candidato); /* numeros primos */

/***/

[Fr¥Exx . EXEMPLO 4: Programa para exibir o padrao de bits de um */
[REEAR inteiro sem sinal */
/**/
#include <stdio.h>

void mostra_bits(unsigned especimen);

void main(void)

{ unsigned valor;
mostra_bits (0);
mostra_bits (5);
mostra_bits (13);

mostra_bits (132);

printf("\n\n Entre um numero: ");
scanf("%u", &valor);
printf("n");

mostra_bits(valor);

}

void mostra_bits(unsigned especimen)
{ const int pos_max = 15;
int posicao_bit;
printf("\n\b O nimero %d na base bindria \202: \n", especimen);
for (posicao_bit = pos_max; posicao_bit >=0; posicao_bit--)
printf("%d", especimen >> posicao_bit & 1);

Exercicios:

Implemente o programa que |& valores para duas variaveis inteiras, X e Y, e depois, dependendo
da escolha do usuario, implementa uma das operagdes a seguir e imprime a resposta: (a) X AND Y; (b)
X (OU-EXC bit-a-bit) Y; (c) X deslocado Y vezes para a direita.

5 - CONVERSOES DE TIPOS

Apesar do tipo de cada variavel e constante ser definido no inicio das fungdes, eventualmente
uma variavel ou constante precisara ser convertida para outro tipo, no meio do programa.

Uma conversao pode ocorrer porque definimos um operando como sendo de um tipo e depois
precisamos compara-lo ou realizar alguma operagéo aritmética com este e outro operando de outro
tipo. Ou entédo porque o tipo do operando nao foi suficiente para armazena-lo durante todo o correr do
programa. O fato € que conversdes de tipos de variaveis e constantes acontecem e podem ser:

Conversao Automatica - Ocorre quando tipos diferentes aparecem numa mesma expressao. A
regra geral € converter o tipo "menor" para o tipo "maior".
Ex:

int x=5;
floaty = 2.4;

soma=x +y; /* Nesta linha o inteiro x é convertido para o valor real 5.0 */

Conversao Forgada - Também conhecida como conversdo "cast". Ocorre quando um tipo
especifico for necessario e o operando nao foi definido como tal. A sintaxe é:

| (tipo) expresséo '

onde tipo é o tipo para o qual sera convertido o operando e expressdo € uma expressao que
contém a variavel ou constante a ser convertida.
Ex:

float r = 3.5;
int i;

i=(int) r; /* Nesta linha o valor 3 (truncamento do real r) foi atribuido a i */"

Conversbdes de tipos sdo perigosas, pois além de poderem gerar um cédigo ndo-portatil (pois o
tamanho dos tipos varia de maquina para maquina), podem criar problemas de armazenamento dos
operandos. Por exemplo, quando um numero real muito grande, cuja representagdo da parte inteira
exceda 16 bits (por exemplo 3.24e14), for convertido para inteiro, o resultado sera imprevisivel, pois
nao se pode determinar o que sera feito com a parte inteira que ndo couber nos 16 bits de um int.

As regras para conversdes automaticas sao:

Tipo Char e Short - Sdo convertidos automaticamente para Int. Utiliza-se o cédigo ASCII do
caractere. Se o caractere contém o bit MSB em 1, o inteiro resultante podera ser negativo, ou nao,
dependendo da maquina. Se o caractere for unsigned, o inteiro sera positivo e os bits de maior ordem
serao preenchidos com zeros.

Tipo Float - E convertido para Double.

Conversao de Operandos Aritméticos - o tipo "maior", dentre os tipos da expressao sera o do
resultado. Aregra é: double > long > unsigned > int.

Conversdo de Operandos de Atribuicdo - o lado direito sera convertido para o tipo do lado
esquerdo. A regra é:

Operando a direita Operando a esquerda Conversao
Double Float com arredondamento
Float Int trunca parte frac., se 0 numero nao couber
em int: resultado indeterm.
Long Int elimina os bits MSB
Int Char elimina os bits MSB

Exemplo 1 — diferentes tipos numa mesma expressao:

char ch;
int 1;
float f;
double d;
result=(ch/i)+(f*d)-(f+1i);
int double double double

Lot ot
int double double

double

double

jouble

Exemplo 2:

#include <stdio.h>
void main(void)
{ inti;
for (i=1; 1 <= 100; ++i)
{ printf("%d/3 é: %f\n", i, (float) i/3);
if(1(1%20)) getch(); //mostra vinte linhas e espera usuario teclar para continuar

}

Exemplo 3:

A expressao: (float) x/2 , converte x e, por consequéncia, o 2 para float
J& a expresséo: (float) (x/2) , converte o resultado inteiro de x/2 para float

6 - PRECEDENCIA

Os operadores obedecem uma certa ordem de precedéncia. Isto é: operagdes de maior
precedéncia sao realizadas antes das de menor precedéncia. O operador de mais alta precedéncia é o
abre e fecha-parénteses ("()"), portanto, tudo que estiver entre eles sera realizado primeiro. Por
exemplo:

primeiro *= segundo <= terceiro

Primeiramente o segundo operando € comparado ao terceiro e depois a atribuicdo ao primeiro é
feita, porque o operador "<=" tem uma precedéncia maior que o "*=". Esta expressao é equivalente a:

primeiro *= (segundo <= terceiro)

Observe que a expressao (segundo <= terceiro) tem valor zero ou um.
No caso da expressao:

primeiro = segundo -= terceiro

os operadores "=" e "-=" tém igual precedéncia, mas o segundo operando & avaliado antes do
primeiro porque os compiladores C costumam avaliar expressdes condicionais e de atribuicdo da direita
para a esquerda.

Existem 15 classes de precedéncia, ou seja, todos os operadores pertencentes a mesma classe
tém igual precedéncia. Neste caso, valem as regras de associatividade, para determinar-se quais
operacdes serao realizadas primeiro.

A tabela abaixo mostra as classes de precedéncia dos operadores, em ordem decrescente:

Operador Nome do Operador Precedéncia Associatividade
() Chamada de fungéo
[1 Elemento Matriz 1 esq. pf dir
> Ponteiro para Membro Estrutura ’ '
Membro de Estrutura
! Negacéao Logica
~ Complemento de um
++ Incremento
-- Decremento
- Menos unario 2 dir. p/ esq.
(tipo) Cast
* Ponteiro
& Endereco
sizeof Tamanho do Objeto
* Multiplicagcéo
/ Divisao 3 esq. p/ dir.
% Resto da Divisdo
b Adigao 4 esq. p/ dir
- Subtracao ’)
<< Deslocamento a Esquerda 5 esq. p/ dir
>> Deslocamento a Direita)]
< Menor Que
= MeRAO;ig:JQI%Zal a 6 esq. p/ dir.
>= Maior ou Igual a
== Igualdade .
1= Desigualdade 7 esq. p/ dir.

& AND, Bit a Bit 8 esq. p/ dir.
A XOR, Bit a Bit 9 esq. p/ dir.
| OR, Bit a Bit 10 esq. p/ dir.

&& AND Légico 11 esq. p/ dir.
I OR Lbgico 12 esq. p/ dir.
?: Condicional 13 dir. p/ esq.
= Atribuicao :

op= Atribuicao Rgeduzida 14 dir. p/ esq.
, Virgula 15 esq. p/ dir.

7 - ORDEM DE AVALIACAO

A ordem de avaliagdo de uma expressdo indica se a operagdo sera avaliada da direita pra
esquerda ou o contrario.

Os operadores "&&", "||", e "," sempre s&o avaliados da esquerda para a direita. Fora este caso, a
ordem de avaliagao dependera do compilador.
Ex:
int i=5;

¥ = () + ()

Neste caso, y podera receber o valor 5+4= 9, 6+5 = 11 ou até 10(???)!!! Dependera do
compilador.

8 - COMANDOS DE CONTROLE DE FLUXO

Considera-se comando valido em C, qualquer expressao valida, seguida por um ponto-e-virgula
(;), ou expressao entre chaves ({}).
Ex:
a=>5;

Neste capitulo, entretanto, trataremos de comandos de controle de fluxo.

Pode-se dividir os comandos de controle de fluxo do C, em trés categorias: instrugdes
condicionais (if e switch), comandos de controle de loop (while, for e do-while) e instru¢cdo de desvio
incondicional (goto).

8.1 - O COMANDO IF

A forma geral da declaragao if é:

if(condig¢do_de_teste)
comando;

A interpretagéo é: "Se a condigdo de_teste for verdadeira (ndo-zero), executa comando". Caso
contrario, a execugao € transferida para a instrugdo seguinte ao comando if.
Ex:
if (x==5) y=3;

Se comando contiver mais de uma instrugcéo, o bloco deve ser colocado entre chaves ({}):

if(condigdo_de_teste)

{ comandol;
comando?2;
comando3;

8.2 - O COMANDO IF-ELSE

A forma geral da declaragao if-else é:

if(condig¢do_de_teste)
comandol;

else comando?2;

A interpretagéo é: "Se a condicdo_de_teste for verdadeira (ndo-zero), executa comando1, Sendao,
executa comando2".
Ex:

Os comandos if e if-else podem ser aninhados!!!
Isto ocorre quando uma série de testes sucessivos tem que ser feita, para fazer-se a escolha da
instrugcao a ser executada. A sintaxe pode ser tal como:

if(condic¢aol)
if(condi¢do?2)
comandol; //instrugdo executada quando condi¢aol e condi¢do2 forem V
else
comando?2; //instrugdo executada quando condi¢dol for V e condi¢ao2 for F
else
if(condi¢do3)
comando3; //instrugdo executada quando condicaol for F e condi¢ao3 for V
else
comando4, //instru¢ao executada quando condi¢dol e condi¢do3 forem F

Exercicio: Um professor de educacao fisica especificou a tabela abaixo que define o tempo de
treinamento para alunos do sexo feminino e masculino, jovens ou adultos. Escreva o programa que
implementa a tabela abaixo, isto é, |1é a idade e sexo do usuario e devolve o tempo de treinamento

recomendado.

Sexo:
Idade: Feminino Masculino
< 30 anos t=15 t =45
> 30 anos t=25 t=60’

Mas ha que se ter cuidado com o que € interno, o que é externo e a qual if pertence cada else e

Ex:

O algoritmo: ¢ diferente de: e de: e de: ..
if (i>2) if (i>2) if (i>2); if (i>2)
if(j=3) (=3 if(j=3) (G =3);
y=4 y=4 y=4 y=4
else y=5; }elsey=5; elsey=>5; }elsey=5;

No primeiro caso, o else refere-se ao if mais interno e no segundo caso, ao if externo, pelo uso
das chaves. No terceiro caso e no quarto casos, o ponto-e-virgula “terminou” a instrugao if, antes que
esta executasse qualquer comando interno.

Obs:
if(a>b) c=a;
else c=b; E equivalente a: c=(a>b)?a:b;
Obs2: Em expressdes condicdo_de teste nao-relacionais deve-se tomar cuidado:
if(i==3) y=35; - seiforiguala3,yiguala5
ifi=3) y=5; - se i=3 for ndo zero , y igual a 5 (i=3 é TRUE).
Obs3:
if (i!=0) y=3; ¢éequivalente a if@Q)y=3;
Exercicio:

Crie um programa de adivinhagéo, utilizando os comandos if e if-else. O programa pede um
numero ao usuario, verifica se este & igual ao numero magico (previamente definido) e imprime " **
Certo **", caso a pessoa tenha acertado ou " ** O niimero magico é maior que ¥* " 0 numero que a
pessoa digitou, ou ainda " ** O niimero magico é menor que ... ** " 0 numero digitado.

Exemplos

/**/
[REE Programa 1: Exemplo de Conversdao Automatica *x/
/**/

#include <stdio.h>
void main(void)

{
char ch;
int i;
float fl;
fl=1=ch="A"; // o caractere 'A' é armazenado
printf(""ch = %c, i = %d, fl = %2.2f\n", ch, i, fl); // como 65 (em i) € 65.00 (em f1)
ch=ch+1; // converte ch para int, soma 1 e reconverte para char
i=fl+2*ch; // converte ch para int, multiplica 2, transforma em float, soma a fl ¢ converte para int
f1=2.0*ch+1i; /I converte ch em float, multiplica por 2.0, i € convertido em float e
printf(""ch = %c, i = %d, fl = %2.2f \n", ch, i, fl); //somado a ch, o resultado é armazenado em fl
ch=5212205.17, // o valor excede 8 bits, portanto é truncado e o codigo
printf ("Agora ch = %c\n", ch); //ASCII é armazenado em ch

/**/
/¥** Programa 2: Demonstrar Conversdo For¢ada de Dados ~ (Cast) oAk
/**/
#include <stdio.h>

void main(void)

{ int valorl, valor2;
valorl =1.6 + 1.7,

printf("valorl = %d\n", valorl);

printf("valor2 = %d\n", valor2);
!
5

Sk sk Rk koo kRl kool kol ookl Rl kol Rk ksl Rl ok ok /

/¥** Programa 3: Demonstrar Estrutura IF - ELSE K/
/**/
/* Este programa localiza a percentagem de dias abaixo gelados!! */
#include <stdio.h>

#define ESCALA "celsius"

#define GELANDO 0

int main(void)

{
float temperatura;
int gelando = 0;
int dias =0;

printf("Entre com a relacao das temperatura dos dias gelados.\n");
printf("Use escala %s, e entre s para sair.\n", ESCALA);
while (scanf("%f", &temperatura) == 1)
{ diast++;
if(temperatura < GELANDO)
gelando++;

}
if (dias!=0)
printf("Do total de %d dias: %.11\% foram abaixo de zero.\n", dias, 100.0*(float) gelando/dias);
else
printf("Nao foi fornecido nenhum dado!\n");
return 0;

}

8.3 - O COMANDO WHILE

A forma geral da declaragédo while é:

while(expressdo_de_teste)
comando;

A interpretagdo é: "Enquanto expressdo_de teste for verdadeira; execute comando". No
momento em que expressdo_de teste deixa de ser ndo-zero, a execugao continua na linha de
comando seguinte ao lago while.

Se houver varios comandos internos ao loop while, estes devem estar entre chaves ({ }).

Ex:

1=0;

while(i < 10)

{ a=b*2;
chama_funcéo();
it+;

§

E importante salientar que se a expressdo_de_teste nao for verdadeira ja no primeiro teste do
lago este ndo sera executado nenhuma vez e que o comando while € mais apropriado para lagos onde
0 numero de interagdes nao é conhecido de antem&o. Por exemplo, como saber quantas vezes o

usuario vai digitar caracteres para um nimero ou uma string de entrada?
Ex:

#include <stdio.h>
#include <conio.h>
void main(void)

{ int cont=0;
printf("Digite uma frase: \n");
while(getche()!= 13) /* O caractere com ASCII igual a 13 ¢ a tecla enter (return) */
cont++;

printf("\nO numero de caracteres ¢ %d", cont); }

Ex2:

i=0; i=35;

... while (i<5) E equivalente a ... while (i)
1++; - ..

9 ore y

8.4 - O COMANDO DO-WHILE

A forma geral da declaragédo do-while é:
do
comando;
while(expressdo_de_teste);

A interpretacao é: "Faga comando enquanto expressao_de _teste for verdadeira".O comando do-
while faz quase o0 mesmo que o while, com a diferenga que no primeiro, o loop é executado pelo menos
uma vez, ja que o teste da expresséo é feito no final da interagao. Ou seja, se expressdo_de_teste for
falsa ja na primeira interagdo, comando é executado uma vez e em seguida a execugao continua fora
do loop, na proxima linha de comando. Caso expressdo_de teste seja verdadeira, comando sera
executado até que esta se torne falsa.

Exercicio:

Adapte o programa do numero magico, para uso com estrutura do-while.

8.5 -0 COMANDO FOR
A forma geral da declaragao for é:

for(inicializag¢do;teste;incremento)
comando;

Em sua forma mais simples, inicializagdo € uma instrugao de atribuigéo (p.e.: i = 0) e é sempre
executada uma unica vez antes do lago ser inicializado.

O teste é uma instrugdo condicional que controla o lago. Comando sera executado até que teste
seja falso.

A expresséao de incremento (ou decremento) define a maneira como a variavel de controle do lago
sera alterada a cada interacgéo.

Ex:
for(1=0;1<5;i++) — Paraide 0 até 4:
R incrementa j a cada interag@o e incrementa i
for(i=5;1>0;i--) — Paraide5 até 0:
J=*2 novo valor de j é j * 2 e decrementa i
for(;;) { ...} - Loop eterno
for(i = 0; i< 5; i++) E equivalente a for (i = 0; i< 5; j++, i++);"

7+t

E

Exercicios

1 - Faga um programa que imprima os numeros de 1 a 10, utilizando:
a) comando while,
b) comando do-while,
¢) comando for.

2 - Faga um programa que imprima os numeros de 0 a 9, de 2 em 2, utilizando o comando for.

3 - Faga um programa que imprima o fatorial de um numero solicitado ao usuario, utilizando o
comando while.

8.8 - O COMANDO SWITCH

A forma geral da declaracao switch é:

switch (exp_int)
{ caserotl:

cmdl * Atengao!!!

case rot2:
cmd?2

default:
cmdn

}

* Os comandos cmd1, cmd2, etc e a declaragao default sdo opcionais no bloco.

Este comando testa o valor da expressao inteira exp_int, comparando-a com rot1, rot2, etc, até
encontrar um rotulo que se iguale. Quando encontra, comega a executar de cima para baixo os
comandos cmd1, cmd2, etc, até o final do bloco. Se n&o encontra, executa o comando do bloco default,
cmdn.

Ex: switch (i)
{ casel: j=j+5;
case 2:
case 3: j=j+3; }

Valor de i Comandos executados
1 j=i+5 ej=j+3;
20u3 i=j+3;
qualquer outro nenhum.

Utiliza-se a instrugao break para que apenas o comando referente a cada rétulo seja executado.
Ex: switch (i)
{case l: j=j+5;
break;
case 2:
case3: j=j+3;
break;
default: j=j+1; }

Valor de i Comandos executados
1 j=i+5;
2o0u3 j=j+3;

qualquer outro j=jt1;

Exercicios

SRRk ks Rk kR sk Rk sk Rk kR Rk

[FEFE Programa que imprime ntimeros de 1 a 10 utilizando lago while: HokdkRk/
/**/
#include <stdio.h>
void main(void)
{ int contador = 1;

while (contador <= 10)

{ printf("%d\n", contador);

contador++;

/***/

/¥**% Programa que imprime nimeros de 1 a 10 utilizando lago do-while Hodkk/
/**/
#include <stdio.h>
void main(void)
{ int contador = 1;

do

{ printf("%d\n", contador);

contador++;

while (contador <= 10);

[st s st sk st sk ste skt skt skt sk st skt skt s st st stttk kol stk skokekoskokoskokolokolokokokokokolokolokolokolokoskokoskokoskokesoksokskokskok /

/¥** Programa que imprime numeros de 1 a 10 utilizando lago for rorAcAk/
/***/
#include <stdio.h>
void main(void)
{ int contador;
for(contador = 1; contador <= 10; contador++)
printf("%d\n", contador);

[st s st sk st sk ste skt skt skt skt skt skt sk stttk sttt skt skekostkekosokoskokokokolokokokokokolokolokolokolokoskokoskokoskokoskokskokskokekok /

[F**% Programa que imprime nimeros de 0 a 9, de 2 em 2 AR/
/**/
#include <stdio.h>
void main(void)
{ inti;
for (1=0;1<=9;i+=2)
printf("%d\n", 1);

SRRk sk Rk kR sk Rk sk kR sk R ok

[F***% - Programa que calcula o fatorial de um numero Ak
/**/

#include <stdio.h>
#include <conio.h>

{ int numero, j;
char ch;
double fat=1,

for(;;)
{ fat=1,
printf("Entre com um niimero positivo: \n");
scanf("%d", &numero);
if(numero== 0 || numero == 1)
printf("O fatorial de %d é: %.0f\n", numero, fat);

else
{ j=numero;
while(j)
 fat *=j;
i
H

printf("O fatorial de %d é: %.0f\n", numero, fat);

/***/
/¥** Programa que gera a tabuada de 2 a9 AR]
/**/
#include <stdio.h>
void main(void)
{ inti,j, k;
printf("\n");
for (k=0; k <=1; k++)
{ printf("\n");
for(i=1;i<5;it++)
printf("TABUADA DO %3d ", i+4*k+1);
printf("\n");
for(i=1;1<=9;i++)
{ for(j=2+4%*k;j<=5+4%k; j++)
printf("%3d x %1d = %3d\t", j, 1, j*1);
printf("\r");

/***/
/¥**% Programa da feira de frutas o/
/**/
#include <stdio.h>
#include <conio.h>
void main(void)
{ int1i, opcao;
printf("\n");
for(i=1;1<=53;i++)
printf("*");
printf("n**** M t(\tPROGRAMA DA FEIRA!N\t\t*****\n");
for(i=1;1<=53; i++)
printf("*");
printf("\n\n\t\t Escolha sua opg¢ao: \n");
1 " . LAY

printf("\n\t\t(2) Maga; \n");
printf("\n\t\t(3) Banana; \n");
printf("\n\t\t(4) Laranja; \n");
scanf("%d",&opcao);
switch(opcao)
{ case 1: printf("O cacho de uvas custa R$1.00");
break;
case 2: printf("A unidade de magas custa R$0.50");
break;
case 3: printf("O kilo de bananas custa R$0.70™);
break;
case 4: printf("A duzia de laranjas custa R$0.90");
break;
default: printf("Desculpe, mas ndo temos esta fruta!!");

}

Exercicios

1) Um certo Centro Académico esta tentando realizar um plebiscito para escolha do
logotipo do curso, dentre 3 propostas. Faga o programa que implementa a “urna
eletrdnica”, a qual vai contabilizar os votos dos estudantes e professores em cada
logotipo, os votos brancos e nulos; calcular os percentuais de votos validos em cada
logotipo e imprimir qual foi o logotipo vencedor.

2) Faga um programa-calculadora de 4 fungbes, ou seja, o usuario entra com dois nimeros
e estes sdo somados, subtraidos, multiplicados ou divididos.

9 - FUNGOES

Uma fungéo é uma unidade de cddigo de programa autbnoma projetada para cumprir uma tarefa
particular. Funcdes permitem grandes tarela, fas de computagdo em tarefas menores e permitem as
pessoas trabalharem sobre o que outras ja fizeram, ao invés de partir do nada.

A linguagem C em si, ndo possui funcdes pré-definidas. Todas as fungdes utilizadas em C foram
projetadas pelos proprios usuarios e algumas mais usadas ja foram incorporadas as bibliotecas de
alguns compiladores. Um exemplo de fungdo em C é printf(), que realiza saidas dos programas sem
que o usuario precise preocupar-se como isto € feito, pois alguém ja fez isto e vendeu sua idéia aos
outros usudrios.

A principal razdo da existéncia de fungbes € impedir que o programador tenha de escrever o
mesmo codigo repetidas vezes.

As fungbes em C sao utilizadas como fungbes (retornam valores; podem ser chamadas de
dentro de uma expressao e nao recebem parametros) e subrotinas (nao retornam valores; séo
chamadas por um comando CALL e recebem parametros) das outras linguagens. No entanto, ndo pode
haver aninhamento de uma fung¢ao dentro de outras fung¢des. Cada bloco de um programa em C é uma
e somente uma fungdo.

Sintaxe:

tipo nome_da_fun¢do(declaracdo de pardmetros formais)
{ declarag¢do de variaveis
comandos

}
Onde:

tipo - tipo do valor de retorno da fungéo. Se uma fungao néo retornar nenhum valor deve-se usar
o tipo "void", pois, por default, as fungdes em C/C++ retornam um inteiro. Ex: "void main(void)".

nome_da_fun¢do - nome da funcdo. Como qualquer identificador em C, o nome ndo pode ser uma
palavra reservada da linguagem (a ndo ser no caso da fungdo main()), pode ser composto por letras,
numeros e o caractere de sublinhado (também chamado underscore: " "), mas deve iniciar com uma
letra ou com o underscore.

declaragdo de pardmetros formais - neste campo sdo declarados os parametros que a fungéo
recebe. Se a fungdo nao receber nenhum parametro, em alguns compiladores exige-se a utilizagao de
"void", em outros, basta a omissdo (quando entdo os pardmetros sdo assumidos como inteiros). Os
nomes dos parametros devem ser separados por virgulas. Ex: " int sqrt(x, y)".

Em alguns compiladores (como € o caso do Turbo C), a declaragdo das variaveis utilizadas na
funcdo deve, obrigatoriamente, preceder quaisquer comandos da funcao. Deve vir logo depois do
caractere de abre-chaves ("{"). Existem outros compiladores que aceitam esta declaragdo em qualquer
linha da fungéo, desde que precedendo a utilizagdo das mesmas.

comandos - Além dos comandos do corpo da fungdo, este bloco pode conter o comando return
que finaliza a execugéo da funcdo e retorna o valor para a expressdo que a chamou. Caso nao haja
"return”, este sera assumido quando o compilador encontrar o caractere de fecha-chaves ("}") e o valor
retornado sera indefinido.

Ex:

somaum (int numentra)
{ int numsai;
numsai = numentra + 1;
return numsai;

}

Exercicio:
Escreva a fungado que recebe, calcula e devolve a média de 4 valores.

9.1 - CHAMADA DA FUNGAO

Vimos até agora, como € a sintaxe da execugédo do corpo de uma fungdo chamada em um
expressdo. Mas qual é a sintaxe da chamada de uma fungdo? Seja numa expresséo, ou ndo, a sintaxe
é:

nome_da_fungdo(argumentos);

Na chamada de fungcao em C nao se utiliza CALL. Note que o que diferencia a chamada de uma
funcdo, da declaracdo da mesma ¢é a utilizagdo do ponto-e-virgula (";"). Os argumentos séo valores
passados para a fungado. Quando nao houver argumentos a serem passados, deixa-se este espago em
branco.

Ex:
somaum(5) - Retorna o valor 6
maior = acha num_maior(4,7,2,5); - Retorna o valor 7 para a variavel maior.

9.2 - PARAMETROS E ARGUMENTOS

Argumento é o valor passado para uma fungéo.
Parametro (Formal) é a variavel que recebe valor do argumento.
Ex:

#include <stdio.h>
mult(int,int); argumentos
void main(void)
{ inta=4, b=5;
printf(" O valor da multiplicacdo de %d por %d ¢ %d\n", a, b, mult(a,b));
§

mult(int x, int y)\

{ int resultado;
resultado =x *y;
return resultado;

parametros formais

}

Normalmente, C utiliza passagem de pardmetros "por valor" para fungdes. Isto €, os argumentos
recebem coépias dos valores das variaveis na expressao. Temos isto ilustrado no exemplo acima.
Quando a fungdo mult(), recebe os argumentos a e b, na verdade apenas copias dos valores de a e b
sdo enviados para a fungdo mult(). Em resumo, as variaveis a e b ndo tem seus valores modificados
apos terem sido utilizadas como argumentos de uma fungao.

Se deseja-se que a propria variavel seja passada para a fungdo que vai modificar seu valor
utilizamos a passagem "por referéncia". Neste caso, o argumento recebe o endereco de memaria da
variavel e a fungdo chamada modifica o contelido deste enderego diretamente. Para passar valores por
referéncia, utiliza-se os operadores "&" e "*":

& -"oenderecode" - endereco da variavel

* -"no enderego de" - o que esta contido no enderego da variavel.

Ex:
int saida = 5;
incrementa(&saida);
incrementa(int *numentra) /* numentra contém o enderego e ndo o valor de saida */
/* contetido do enderego numentra é do tipo int */
{ (* numentra)++; /* incrementa o contetido de numentra */
return;
) - No final da funcéo incrementa(), saida tem o valor 6

9.3 - VALORES DE RETORNO

Quando o tipo de valor de retorno da fungéo nao é especificado, por default a fungao vai retornar
um valor inteiro.

Quando a fungéo deve retornar um tipo que nao o int, € necessario declarar-se o0 mesmo.

Quando a fungao nédo retorna nada, no caso de compiladores C ANSI, o tipo deve ser void.

9.4 - ESCOPO DE VARIAVEIS

Um programa em C & um conjunto de uma ou mais fungdes, sendo que uma destas fungdes € a
principal (main()), que sera a primeira a ser executada. Como saber a que funcao pertence determinada
variavel, como seu valor muda de fung¢éo para funcdo e em qual(is) fungdo(des) ela existe?

Variaveis Locais ou Automaticas

S3o todas as variaveis declaradas dentro de uma fungdo. Como sé existem enquanto a funcao
estiver sendo executada, sdo criadas quando tal fungdo é chamada e destruidas quando termina a
execucao desta. Parametros formais sdo variaveis locais.

Somente podem ser referenciadas pela fungdo onde foram declaradas e seus valores se perdem
entre chamadas da funcao.

Ex:
void funcl(void)
{ intx; - O x da func1() e o x da func2() sdo duas variaveis diferentes, armaze-
x=10; } nadas em posi¢des de memoria diferentes, com conteudos diferentes,
void func2(void) apesar do mesmo nome.
{intx;
x =-199;

Uma variavel local deve ser declarada no inicio da fun¢do (antes de qualquer comando), por
motivos de clareza e organizagao do cdodigo e porque alguns compiladores assim o exigem. Existem

compiladores, no entanto, que permitem que a declaragéo seja feita em qualquer ponto do corpo da
funcéo, desde que antes da utilizagao da variavel.

Variaveis Globais

Sao variaveis declaradas e/ou definidas fora de qualquer funcdo do programa. Podem ser
acessadas por qualquer fungdo do arquivo e seus valores existem durante toda a execucdo do
programa. Também por motivos de clareza convenciona-se declara-las no inicio do programa, apés os

comandos do pré-processador e das declaragdes de prototipos de fungdes.
Ex:

int conta; /* conta é global */
void main(void)

{ conta=mul(10,123);

e b
funcl()
{ int temp;

temp = conta,
e}
func2()
{ int conta;

conta=10; /* esta conta ¢ local */

}

Variaveis externas

Um programa em C pode ser composto por um ou mais arquivos-fonte, compilados
separadamente e posteriormente linkados, gerando um arquivo executavel. Como as varias fungdes do
programa estarao distribuidas pelos arquivos-fonte, variaveis globais de um arquivo n&o serédo
reconhecidas por outro, a menos que estas variaveis sejam declaradas como externas. A variavel
externa deve ser definida em somente um dos arquivos-fonte e em quaisquer outros arquivos deve ser
referenciada mediante a declaragdo com a seguinte sintaxe:

extern fipo_var nome_var;

onde tipo_var € o tipo da variavel e nome_var, o nome desta.

Ex:
Arquivo 1 Arquivo 2
int x, y; extern int X, y;
char ch; extern char ch;
void main(void) func23()
{..} { x=y/10;
func1() }
{ x=123; func24()
. {y=10;}

Variaveis Estaticas

Sao variaveis reconhecidas e permanentes apenas dentro dos arquivos-fonte ou fungdes onde
foram declaradas. Uma variavel estatica mantém seus valores entre chamadas da fungéo o que é muito

util quando se quer escrever fungbes generalizadas (sem o uso de variaveis globais) e biblioteca de
fungdes. A sintaxe é:

static tipo_var nome_var;

onde tipo_var é o tipo da variavel e nome_var, o nome desta.

Ex:

static int rand(void)
{ static int semente = 1;
semente = (semente * 25173+ 13849)%65536; /* formula magica */
return (semente);

}

void main(void)
{ intc;
for(c=1; c<=5; ct++)
printf("Numero randémico: %d \n", rand());

A saida deste programa seré:
NuUmero randdémico: -26514
Numero randémico: -4449
NuUmero randdmico: 20196
Numero randémico: -20531
NuUmero randdémico: 3882

Variaveis Registradores

Uma variavel declarada com o modificador register indica ao compilador para utilizar um
registrador da CPU, ao invés de alocar memoéria para a variavel. Variaveis armazenadas em
registradores sdo acessadas muito mais rapido que as armazenadas em memoria, 0 que aumenta
muito a velocidade de processamento. Se o numero de varidveis designadas como register exceder o
numero disponivel de registradores da maquina, entdo o excesso sera tratado como varidveis
automaticas.

Variaveis registradores ndo podem ser globais e geralmente aplicam-se aos tipos int e char.

Obs: Existem programadores que costumam colocar variaveis contadoras em registradores, para
tornar o processamento 0 mais rapido possivel.

Ex:

[skt skt skt skt skt skt sk stk stk stk stk kol skokskoslkekoskokoskekoskokokokokokokokokokekokek /

// Este programa mostra a diferenca que uma variavel register
// pode fazer na velocidade de execucao de um programa
/**/
#include <stdio.h>

#include <time.h>

unsigned int i; // variavel ndo-register

unsigned int delay;

void main(void)
{ register unsigned int j;
long t;
t =time(\0");
for(delay = 0;delay < 50000; delay-++)
for(i = 0; i< 64000; i++) ;
printf("tempo de loop néo register: %d \n", time("\0')-t);
getch();
t = time(\0");
for(delay = 0; delay < 50000; delay++)
for(j=0; j< 64000; j++) ;
printf("tempo do loop register: %d \n", time("\0')-t);

10. MATRIZES

S&0 grupos (de uma ou mais dimensdes) de varidveis indexadas, do mesmo tipo. Matrizes
unidimensionais sdo mais conhecidas por vetores ou "arrays".
Sintaxe:

tipo nome[tamanho] = {elem0, eleml, ..., elemn} ;

onde,

tipo: tipo dos elementos da matriz;

nome: nome da matriz;

tamanho: numero de elementos da matriz;

= { } : termo opcional. Representa a definicdo de uma matriz, ja na declaragdo. Caso a matriz
seja definida na declaragéo € desnecessério especificar-se o tamanho desta.

elemx: elemento da matriz de indice x.

Todas as matrizes e vetores em C iniciam pelo elemento de indice 0 (zero). Elementos nio-
inicializados recebem o valor 0 (zero) por default.

Os elementos da matriz sao referenciados individualmente pela especificagcdo do nome da matriz,
seguido do indice do elemento entre colchetes:

nome[indice)

Ex:
Matriz que armazena as notas das 4 provas de um aluno:
float notas[4] = {9.5, 5.0, 10, 6.8};

notas[0] =9.5;
notas[2] = 10;

ou
float notas[4];

notas[0] = 9.5;

notas[3] = 6.8;
ou
float notas[] = { 9.5, 5.0, 10, 6.8};

notas [0] =9.5;

10.1 - STRINGS

Uma string em C equivale a um vetor de caracteres sempre terminado pelo caractere NULL (\0').
Para inicializar-se um vetor de caracteres pode-se fazé-lo individualmente, elemento a elemento,
ou ndo. Mesmo que se esqueca de incluir o caractere NULL, este sera acrescentado a string. Além
disto, deve-se sempre lembrar de dimensionar o tamanho da string como o nimero de caracteres da
expressao + 1 (para o caractere NULL).
Exs:
char matcar[] = "ABCD";
onde:
matcar[0] = 'A";
matcar[1] = 'B';
matcar[2] ='C’;
matcar[3] ='D’;

matcar[4] ="\0";

ou

char matcar[5] = {'A",'B', 'C', 'D', \0'};
se:

char matcar[10] = "ABCDE";
temos:

matcar[0] = 'A’;
matcar[1] = 'B";
matcar[4] = 'E";
matcar[5] = '\0';
matcar[6] = '0";
matcar[7] ='0";
matcar[8] ='0";
matcar[9] ='0'

A string nula (") é: {"\0'}.

10.2 - MATRIZES MULTIDIMENSIONAIS

Para representar, por exemplo, a matriz bidimensional "Mat", abaixo:

Mat =

~=an
NN
©wo
<N

utilizamos a sintaxe:
tipo nome [numero_linhas | [numero_colunas 1,

ou seja, no primeiro par de colchetes indicamos o numero de linhas da matriz e no segundo par, o
numero de colunas. O tamanho da matriz sera:

numero_linhas X niimero_colunas
No caso de matrizes multidimensionais, a sintaxe é:
tipo nome [tamanhol] [tamanho?2] ... [tamanhon];

onde tamanhoX é o niUmero de elementos da X-ésima dimensao.

Ex:
intmat[3][4]= { {2,4,6,8},
{1,2,3,4},
{7,8,9,0} };
onde:
elemento mat [0] [0] = 2;
elemento mat [2] [3] = 0;
elemento mat [1] [2] = 3;
etc.
Exercicios

Faga um programa que cria uma matriz de 3 dimensbdes (2 x 4 x 2) e atribui valores a mesma.

10.3 - MATRIZES PASSADAS PARA FUNGOES

Na linguagem C, o nome de uma matriz € equivalente ao endere¢o do primeiro elemento da

matriz! Isto significa que quando queremos passar uma matriz como argumento ("por referéncia") a
uma fungao, basta utilizar o nome da matriz, sem os colchetes e indices. Se apenas um elemento da
matriz deve ser modificado, entdo utiliza-se seus indices em colchetes.

Ex:

3 stk st sk st sk st sk st sk st skt skeste skt sk stk stk stk stk stk skokoskosdoksdoksoksokokokek /

/*** Programa que converte uma string para maiiscula ***/
SRk kR sk kR sk R sk kR ok

#include <ctype.h>
#include <stdio.h>
void imprime_maius(char[81]);
void main(void)
{ char s[81];
printf(“Digite uma frase”);
gets(s);
imprime_maius(s);
H
void imprime_maius(char string[])
{ register int t;
for(t=0;string[t]; t++)
{ string[t] = toupper(string[t]);
printf("%c", string[t]);
}

}

/************************************/

/*** MATRIZ DO JOGO DA VELHA Hkk
/*************************************/
#include <stdlib.h>

#include <stdio.h>

void pega_mov_jogador(void);
void pega_mov_computador(void);
void exibir_matriz(void);

int check(void);

char matriz[3][3]={'"'", ', "', ", ",

void main(void)
{ char feito;

printf(" ** Este ¢' 0 jogo da velha!! ***\n");
printf(" Voce vai jogar contra o computador \n");
feito="";
do
{ exibir_matriz();
pega_mov_jogador();
feito = check(); // verifica quem ganhou
if(feito I="")
break;
pega_mov_computador();
feito = check(); // verifica quem ganhou

else printf(" Eu ganhei!!\n");
exibir_matriz(); // mostra posicoes finais

}

void pega_mov_jogador(void)
{ intx,y;
int ok = 0;
printf(" Digite as coordenadas para o seu X: ");
do
{ scanf(" %d %d", &x, &y);
X--; ¥
if (matriz[x][y] !="")
printf(" Movimento invalido, \nTente de novo.\n");
else
{ matriz[x][y] = X}
ok =1;}
ywhile(lok); }
void pega_mov_computador(void)
{ register intt, i;
// procura lugar nao usado ainda
for(t=0;t<3;t++)
for(i=0;i<3;i++)
if(matriz[t][i] =="")
if(t*i==9)
{ printf(" Empate!! \n");
exit(0); // terminar o programa
telse
{matriz[t][i] ='O";
t=3; 1=3;
H
}

void exibir_matriz(void)
{ intt;
for(t=0;t<3;t++)
{ printf(" %c | %c | %c " , matriz[t][0], matriz[t][1], matriz[t][2]);
if(t!=2) printf("\n---|]--- |---\n");

§
printf("\n");
}

// verifica se existe um ganhador; caso contrario, retorna "'
int check(void)
{ intt;
for(t=0;t<3; t++)
if(matriz[t][0]==matriz[t][1] && matriz[t][1]==matriz[t][2])
return matriz[t][0];
for(t=0;t<3;t++)
if(matriz[0][t]==matriz[1][t] && matriz[1][t]==matriz[2][t])
return matriz[0][t];
if(matriz[0][0]==matriz[1][1] && matriz[1][1]==matriz[2][2])
return matriz[0][0];
if(matriz[0][2]==matriz[1][1] && matriz[1][1]==matriz[2][0])
return matriz[0][2];
return '';

}

10.4 - ORGANIZAGAO DE MATRIZES NA MEMORIA

Como ja foi dito, o nome de uma matriz contém o enderego do primeiro elemento da matriz (ou
seja, € um ponteiro para o primeiro elemento) . Além disto, os elementos sdo armazenados um em
seguida do outro, em enderegos consecutivos. Ou seja, huma matriz de caracteres (variaveis de 1
palavra), se o endereco do primeiro elemento (indice 0) for 1500, por exemplo, o enderego do segundo
(indice 1) sera 1501 e assim por diante.

Quando utilizamos o nome de uma matriz como parametro para uma fungédo, ndo estaremos
passando a matriz, mas na verdade apenas o endereco do primeiro elemento desta, e por
consequéncia, os outros.

Ex:

char alfa[27];

alfa[0] ="'A";
alfa[1] ="'B';

alfa[25] ="Z';
escreve(alfa);
Note que, apesar de termos reservado 27 bytes para a matriz 'alfa’, utilizamos apenas 26. Como
trata-se de uma string, o ultimo lugar é reservado para o caractere NULL (\0').

Na memoria, a representagédo desta matriz seria (suponha o enderego de 'alfa' como sendo 1492
e do primeiro elemento, alfa[0] como sendo 1500):

1490 1491 1492 1493 1494 1495 | 1496 | 1497 | 1498 | 1499

X X Ifa X X X X X X X

X X 1500 X X X X X X X

1500 1501 1502 1503 1504 | 1505 1506 | 1507 | 1508 | 1509

alfa[0] | alfa[l] | alfa[2] | alfa[3] | alfa[4 | alfa[5]

65 66 67 68 69 70

1520 1521 1522 1523 1524 1525 1526 1527 | 1528 | 1529

alfa[24] | alfa[25] | alfa[26] | X X X

89 90 00 X X X

onde o valor 65 é o cédigo ASCII do caractere 'A', 90 é o codigo do caractere 'Z' e 00 é o codigo
do caractere NULL.

Observacgao Importante sobre Matrizes:

A linguagem C néo verifica se alguma matriz tomar espago de memoria que ndo devia. Por
exemplo:

int notas[30];

for(i=0; 1<40; i++)

==

scanf("%d", notas + i);

No exemplo acima, declaramos a matriz notas como tendo 30 elementos e depois, por descuido
provavelmente, atribuimos 40 valores a esta (notas[0] a notas[39]). Neste caso, 10 espagos de memoéria
seguintes ao espaco ocupado pela matriz, serdo apagados e receberdo valores de notas. Isto pode

danificar dados importantes do programa, ao apagar os valores de variaveis ou constantes, ou mesmo
partes do codigo. Nao se pode prever o que aconteceria.

A responsabilidade do programador redobra, portanto, ao lidar com matrizes e vetores e é preciso
muita atencgao.

Qutro erro que poderia ocorrer no exemplo acima, seria pedir a entrada de valores tipo float
(usando "%f", por exemplo) em scanf() para elementos de uma matriz de inteiros. Como o tipo float é
maior que o tipo int, cada elemento nao caberia no espaco reservado para si e tomaria memoria do
elemento seguinte.

Note que utilizamos aqui a expressdo " scanf("%d", notas +i); ", ao invés de "scanf("%d",

¬as[i]);" ou mesmo "scanf("%d", notas[i]);" . Porque? Todas estas expressdes sdo aceitas? Qual a
diferenga entre elas???

Exercicios

Faca um programa que |é 4 notas para cada um dos 30 alunos de uma turma, armazena-as em
uma matriz, calcula e devolve a média de cada aluno.

11 - PONTEIROS

Uma das caracteristicas mas poderosas oferecidas pela linguagem C é o uso de ponteiros. Mas
também é visto como um do tépicos mais complexos da linguagem. Isto ocorre principalmente porque
os conceitos embutidos em ponteiros podem ser novos para muitos programadores (tendo-se em vista
que nem todas as linguagens utilizam ponteiros), mas também porque os simbolos usados para
notacdo de ponteiros em C nao sao tao claros; por exemplo, 0 mesmo simbolo ("*") é usado para duas
diferentes finalidades.

Mas, o que s&o ponteiros?

Ponteiros proporcionam um modo de acesso a variaveis sem referencia-las diretamente, através
do seu enderego. Basicamente, um ponteiro € uma representagdo simbdlica de um enderego.

Para declarar uma variavel como ponteiro, a sintaxe é:

tipo * nome_da_varidvel;

onde tipo é o tipo de variavel para qual o ponteiro vai apontar e nome_da_variavel € o nome do
ponteiro. Ou seja, a variavel ponteiro nome_da_variavel vai conter o enderego de uma outra variavel do
tipo tipo. Além disto, quando quisermos definir o ponteiro, utilizaremos o operador "&" para atribuir "o
enderec¢o de" uma variavel ao ponteiro.

Ex:
int *pont i; // pont_i é uma variavel ponteiro para variaveis int
float * pont f; /I pont_f ¢é uma variavel ponteiro para variaveis float
int i=5;
pont_i= &i; /I coloca o enderego de i em pont_i

A variavel pont i agora "aponta para i". Caso precisemos acessar o conteldo do endereco
apontado por pont_i, ou seja, o conteudo de i, utilizaremos o operador "*", que neste caso significa
"valor no endereco de":

*pont_i=15; // coloca o valor 5 no enderego apontado por pont_i (fazi=15)

Os ponteiros podem ser inicializados ja na declaragao, como qualquer variavel:

int *pi = &i;
Além disto, os ponteiros podem ser utilizados na maioria das expressdes validas em C.

Ponteiros sdo usados em situagbes em que a passagem de valores € dificil ou indesejavel.
Algumas razdes para o uso de ponteiros sao:

1 - fornecem maneiras com as quais as fun¢des podem realmente modificar os
argumentos que recebem;

2 - para passar matrizes e strings mais convenientemente de uma fungao para outra;

3 - para manipular matrizes mais facilmente através da movimentagdo de ponteiros
para elas;

4 - para criar estruturas de dados complexas, como listas encadeadas e arvores
binarias, onde uma estrutura de dados deve conter referéncias sobre outra;

5 - para comunicar informagdes sobre meméria, como na fungéo malloc() que retorna a
localizagdo de memédria livre através do uso de ponteiro;

6 - a notagdo de ponteiros compila muito mais rapidamente, tornando o cédigo mais
eficiente.

Outra coisa muito importante, é lembrar que podemos passar varios valores como argumentos
para uma fungado, porém apenas sabemos como retornar um unico valor (através do comando "return").
Mas como fazer para que uma fungéo altere mais de um valor para a fungdo chamadora? Visto que nao
ha mecanismos proprios para isto, devemos contar com o uso de ponteiros.

Ex:

#include <stdio.h>

void main(void)

{ intx=4,y=T7,
int *px, *py;

printf("x é&: %d, y é: %d. \n", X, y);

px = &X;
py = &y;
printf(" O endereco de x é: %u, e o de y é: %u \n", px, py);
*px = *px + 10; // pode-se usar *px += 10;
*py = *py + 10; // e também (*py) +=10

printf(" Agorax é: %d eyé: %d\n", X, y);
printf(" ... e agora px aponta para: %u, e py para: %ou\n", ++px, ++py);
printf(" ... que contém os valores: %d, %d \n", *px, *py);

}

Um operador "&" pode ser aplicado somente a varidveis e elementos de matrizes. Construgbes
tais com "&(x+1)" e "&(3)" séo ilegais.

Ponteiros sdo sempre inicializados com o valor 0 (NULL) que ndo é um enderego valido,
obrigando portanto, que inicializemos sempre nossos ponteiros antes de utiliza-los.

11.1 - PONTEIROS E MATRIZES

Existe uma correspondéncia muito grande entre ponteiros e matrizes. O nome de uma matriz é
equivalente ao enderego do primeiro elemento na matriz. Como isto é imutavel, podemos chamar o
nome de uma matriz de "ponteiro constante". J4 um ponteiro comum tem conteudo variavel, pode
conter qualquer endereco, sendo porisso chamado de "ponteiro variavel". Pode-se fazer, portanto:

int imat[5] = {5,7,31,18,22};
int *ip;

ip = imat; /- OU ip=&imat[0];

e teriamos, por exemplo, "*(ip+n)" como sendo o valor do n-ésimo elemento da matriz imat.
Isto porque o significado da adigdo ou subtragdo de um inteiro com um ponteiro € adicionar ou subtrair
o tamanho de memdria do tipo da variavel (sizeof) para o qual o ponteiro foi declarado. Em outras
palavras, ip ndo vai ser incrementado de n bytes de memoaria, mas de 2 bytes * n, pois o tipo int ocupa 2
bytes. A disposi¢do na memaria, por exemplo, seria:

Variavel Endereco Valor

imat 567 630

imat[0] 630 5

imat[1] 632 7

imat[2] 634 31

imat[3] 636 18

imat[4] 638 22

ip 802 630

entao:

Expressao Valor Explicagao

ip 630 endereco de imat[0]
*ip 5 valor em 630

ip+1 632 endereco de imat[1]
*(ip+1) 7 valor em 632

*ip + 1 6 valor em 630 mais 1
imat[0] 5

*(imat) 5

imat[1] 7

*(imat+1) 7

Com strings é a mesma coisa:
char *pc="ABC";
define um ponteiro para a série de caracteres "ABC" (terminada com "\0"). O ponteiro pc tem
portanto, como valor, o enderego do primeiro elemento da série, o caractere 'A'.
Pode-se ter, também, matrizes de ponteiros:
static char *cp[3] = {"XYZ", "QRS", "KLM"};
por exemplo, declara cp como sendo uma matriz de 3 ponteiros para caracteres e ja inicializa-os,

fazendo-os apontar para as trés sequéncias de caracteres.
Na memoria isto ficaria:

Variavel Endereco Valor
constante 731 X'
constante 732 Y
constante 733 'Z'
constante 734 \0'
constante 735 'Q
constante 736 'R’
constante 737 'S'
constante 738 \0'
constante 739 'K'
constante 740 L'
constante 741 'M'
constante 742 \0'
cp[0] 900 731
cp[1] 902 735
cpl2] 904 739

11.2 - ARITMETICA DE PONTEIROS

Existem poucas operagdes que devem ou podem ser efetuadas com o valor dos ponteiros. Essas
operagdes sao a atribuicdo de valores a outros ponteiros, soma e subtragao de inteiros, e comparagao
de igualdade com outro valor de ponteiro. Ponteiros podem ser adicionados e subtraidos de outros
ponteiros, quando estes ponteiros apontam para elementos diferentes de uma mesma matriz. Por
exemplo:

static int imat[10];
int *ip= &imat[0];
int *ig= &imat[4];

distancia = iq - ip; // distancia= 4 e significa o nimero de elementos int entre iq e ip

Os operadores unarios utilizados em ponteiros sao "++" e "--". Supondo um ponteiro para ponto
flutuante p1, com valor atual de 2000. Apds a operagao:

pl++;

o conteudo de p1 sera 2008 e ndo 2001. Para cada incremento de p1, este apontara para o
double seguinte, que na maioria dos computadores tem 8 palavras de comprimento.
O mesmo vale para decréscimos:

pl--;

fara com que p1 tenha o valor 1992.

Pode-se comparar ponteiros, através dos testes relacionais ">=, <=, < e >". Deve-se, no entanto,
tomar cuidado para ndao comparar ponteiros que apontam para tipos diferentes de variaveis, pois os
resultados serdo sem sentido.

Nao se pode multiplicar, dividir, deslocar os bits, somar ou subtrair floats e double aos ponteiros.

11.3 - PONTEIROS PARA MATRIZES USANDO FUNGOES

Vamos analisar como uma fungédo pode usar ponteiros para acessar elementos de uma matriz
cujo enderecgo é passado para a fungdo como argumento.

Como exemplo, vamos ver a fungédo adcon1(), que adiciona uma constante a todos os elementos
de uma matriz.

#include <stdio.h>
#define TAM 5

void adconl(int *, int, int);

void main(void)

{ static int matriz[TAM] = { 3,6,7,9,11};
int ¢c=10;
int j;

adconl(matriz, TAM, c);
for(j=0; j<TAM; j++)
printf("%d", *(matriztj));
H

// adconl1() - adiciona constante a cada elemento da matriz
void adconl(int *ptr,int num,int con)
{ intk;

for(k=0; k<num; k++)

{ ‘*ptr=*ptr+ con; ptr++; }

}

A saida sera:
131617 19 21
Na definicdo da fungdo adcon1(), a declaragéo " int *ptr; " é equivalente a " int ptr[]; ". Em outras
palavras, a primeira declaragao cria um ponteiro variavel, enquanto a segunda, um ponteiro constante.
Exercicios

1 - "Os ponteiros permitem a passagem de valores por referéncia para uma fungao". Demonstre
esta propriedade através de um programa.

2 - Faca um programa que calcule a média aritmética de um numero arbitrario de notas de
provas, usando matrizes.

3 - Repita o programa acima, agora utilizando ponteiros.

Exemplos

/**/

[F¥*%% Programa que procura um caractere em uma "string" ok
/**/
#include <stdio.h>

#include <conio.h>

char *procstr(char *, char);

void main(void)
{
char *ptr;
char ch, lin[81];

puts("Digite uma frase: ");

gets(lin);

printf("Digite o caractere a ser procurado: ");

ch = getche();

ptr = procstr(lin, ch);

printf("\n A string comeca no enderego %u.\n",lin);

if(ptr)

{ printf("Primeira ocorrencia do caractere: %u.\n", ptr);
printf("E a posigdo: %d", ptr-lin);

H
else printf("\n caractere nao existe. \n");
getche();

}

char *procstr(char *linha,char c)
{ while(*linha != ¢ && *linha !="0")
linha++;
if(*linha !="0")
return(linha+ 1);
else

return(0);

12 - TIPOS DE DADOS COMPLEXOS E ESTRUTURADOS

A linguagem C permite que o usuario "crie" seus proprios tipos complexos de variaveis.
Enumeracgdes, unibes, estruturas e definicdo de tipos serdo os topicos estudados neste capitulo.

12.1 - ENUMERAGOES
Enumeragdes sao classes, conjuntos de valores relacionados, criados para melhorar a
legibilidade do cédigo-fonte. Uma variavel de um tipo enumeragdo somente pode receber valores que
foram declarados para aquele tipo. A sintaxe da declaragao de um tipo enum é:
enum rotulo {enuml, enum?2, ..., enumn};
onde rétulo € uma identificagdo para esta enumeragdo e enum1, enum?2, ..., enumn Sao 0s
valores possiveis para rotulo.
A sintaxe para a definicdo de uma varidvel como sendo de um tipo rétulo é:
enum rotulo nome_varidvel,
onde nome_variavel € o nome da variavel que vai assumir algum valor dentre os valores
possiveis da enumeragéao rotulo.
Como qualquer tipo em C, a definicdo de uma variavel como sendo de um certo tipo enumeragéo

rétulo, pode ser feita na prépria declaragao do tipo.

enum rotulo {enuml, enum2, ..., enumn} nome_variavel,

Ex:
enum dias { seg, ter, qua, qui, sex, sab, dom}; (1)
enum dias hoje, dia_semana; (2)
ou
enum dias { seg, ter, qua, qui, sex, sab, dom} hoje, dia_semana; (3)

Neste exemplo, definimos uma enumeragédo dias (1), que pode ter os valores seg, ter, qua, qui,
sex, sab, dom. Logo abaixo, (2), declaramos as variaveis hoje e dia_semana, como sendo do tipo dias.
Pode-se fazer os dois passos ao mesmo tempo, como na linha (3) do exemplo.

A definicdo da variavel sera feita com a seguinte sintaxe:

nome_variavel = enumx;

onde enumx é qualquer um dos n valores contidos na enumeragao.
Ex:

dia_semana = ter;

Cada valor possivel na enumeragao recebe um valor inteiro com o qual pode ser representado.
Caso nao seja explicitado, o primeiro valor vai receber o inteiro 0, o segundo, o inteiro 1 e assim por
diante. Isto é feito para que se possa comparar cada valor da enumeragdo. Por exemplo, na
enumeragao dias:
Identificador Valor
seg 0
ter
quar
qui
sex
sab

A WN -

dom 6

se fizermos:
Expressao Valor
dia_semana == seg 1 se dia_semana for seg, 0 caso contrario
hoje > sex 1 se hoje for sab ou dom, 0 caso contrario
ter > quar 0 (falso)

Alguns compiladores permitem que se altere o inteiro atribuido a cada valor da enumeracao.
Exs:
enum estagdes { primavera = 1, verdo = 2, outono = 3, inverno = 4} estacdo;

enum fim_de semana { sab =6, dom);

No exemplo acima, dom tera automaticamente, o valor 7.

12.2 - ESTRUTURAS

Estrutura € um grupo de variaveis, cujo formato é definido pelo programador e ao contrario das
matrizes, pode ser composto por tipos diferentes. Em outras linguagens, por exemplo Pascal, estruturas
s&o conhecidas como registros.

O exemplo tradicional de uma estrutura é o registro de uma folha de pagamento: um funcionario é
descrito por um conjunto de atributos tais como nome (uma "string"), o ndmero do seu departamento
(um inteiro), salario (um float) e assim por diante. Como provavelmente existirdo varios funcionarios,
pode-se criar uma matriz desta estrutura como sendo o banco de dados completo de pagamentos.

Definigdo
A definicdo de uma estrutura é feita da seguinte forma:
struct rotulo
{ declaracdo da variavell;

declarac¢do da variavel2;

declaracgdo da varidveln;
¥
onde rotulo é uma identificagdo para esta estrutura e como veremos mais tarde, é opcional. As
linhas de comando declaragcdo da variavel sao declaragbes de variaveis de tipos convencionais (int,
float, char) que vao compor os campos da estrutura.
Declaragao de uma variavel do tipo estrutura:
A declaragéo de uma varidvel como sendo do tipo estrutura rétulo é feita com a seguinte sintaxe:

struct rotulo nome_variavel,

O exemplo acima declara a variavel nome_variavel como sendo uma estrutura do tipo rétulo. A
declaracéo da variavel pode ser feita ja na defini¢cdo do tipo estrutura:

struct rotulo
{ declaragdo da variavell;

declarac¢do da variavel2;

declaragdo da variaveln;
} nome_variavel,

como usualmente é feito.

Ex:

struct registro

{ char nome[20];
int departamento;
float salario;

15

struct registro meu_registro;

struct registro folha pagamento[50];

Neste exemplo, definimos a estrutura registro que contém dados sobre um determinado
empregado, como nome, numero de departamento e salario. Declaramos também, a variavel
meu_registro como sendo do tipo registro, ou seja, uma estrutura de dados.

Matriz de estruturas:

A seguir, no exemplo acima, declaramos a matriz de estruturas folha pagamento, como tendo
50 elementos. Isto significa que a folha de pagamento da empresa contera 50 registros, cada qual com
o0 nome, numero de departamento e salario do empregado.

A sintaxe para a declaragdo de uma matriz de estruturas é:

struct rotulo nome_mat_estrut[dimensdo];

onde nome_mat_estrut € o nome da matriz de estruturas e dimensédo é o numero de elementos
da matriz.

Roétulo da estrutura:

O rétulo de um tipo estrutura € opcional quando declaramos uma estrutura na prépria definigdo do
seu tipo. Caso fagcamos a declaragao da variavel em linha de comando subsequente ou queiramos
declarar outras estruturas como sendo daquele tipo deve-se utilizar o rétulo.

Inicializagao da estrutura:

A inicializagdo de estruturas assemelha-se a inicializagdo de matrizes:

static struct registro meu_registro = { "Fernanda Marques", 21, 10000} ;

ou
static struct registro meu_registro = { { 'F', '¢', ', 'n', 'a', 'n', 'd', 'a' , ' ', 'M', 'a, '’", 'q', ', ‘e, ',
"\0'}, 21, 10000} ;
ou
static struct registro meu_registro = { 'F','e,'r','n','a’,'n', 'd,'a', ', "M, 'a", '’", 'q, 'u', ‘e, 's', "0,

0,0, 0,21, 10000};

Na memoria, os campos de uma estrutura sdo armazenados um ao lado do outro. Portanto, o
endereco da estrutura é o endereco do primeiro byte do primeiro campo desta. Os 3 zeros (entre o
caractere nulo, \0', e o valor do segundo campo, 21) na inicializagdo da estrutura meu_registro acima,
foram justamente acrescentados para completar o espagco de memoéria alocado na declaracao do
campo nome (string de 20 bytes).

Acessando membros da estrutura:

Para acessar individualmente cada campo de uma estrutura, utilizamos o operador de selegao ".".
A sintaxe é:

estrutura.campo = valor;

onde campo é cada varidvel declarada na estrutura estrutura.
Exs:

meu_registro.nome = "Fernanda Marques";
meu_registro.nome[0] ='F';

Atribuigoes entre estruturas:

Na maioria dos compiladores mais modernos é possivel igualar-se duas estruturas do mesmo
tipo da seguinte forma:

estrutural = estrutura2;

Note que n&o foi preciso igualar cada campo individualmente!

Endereco da estrutura:

A sintaxe do enderego de uma estrutura, como um todo, é:

&nome_estrutura

Passando e devolvendo estruturas para fungodes:

Para passar (por valor) uma estrutura como argumento para uma funcdo simplesmente
passamos 0 nhome da estrutura:

struct xyz {
int a;
char b;
} estrl, estr3(struct xyz);

/* tipo estrutura xyz, com dois campos: a (inteiro) e b (caractere) */

/* declarag@o da variavel global estrl e fungdo estr3() como tipo xyz */
void main(void)

{ struct xyz estr2; /* declarag¢do da variavel local estr2 como tipo xyz */

estrl.a =234,
estrl.b="J";
estr2 = estr3(estrl);

/* atribuigdo ao campo a da variavel estrl
/* atribuigdo ao campo b da variavel estrl
/* atribui¢do do valor retornado pela funcdo estr3 a variavel estr2...
/* ... (ambos os campos). O argumento ¢ uma copia de estrl
H

struct xyz estr3(struct xyz estr) /* fungao estr3 - recebe (estr) e retorna (estrlocal) vars xyz */
{ struct xyz estrlocal, /* declaragdo da varidvel local estrlocal */
estrlocal.a = estr.a + 1; /* atribui¢do ao campo a da variavel estrlocal */
estrlocal.b = estr.b + 2; /* atribuigdo ao campo b da variavel estrlocal */

return(estrlocal); /* retorna valor atualizado de estrlocal */

}

O algoritmo acima nao é trivial e devemos fazer algumas considera¢des sobre 0 mesmo:
1) Note que o tipo estrutura xyz foi definido como global;
2) A variavel global estr1 e a fungao estr3() foram definidas como sendo do tipo xyz;
3) Dentro da fungao main() foi declarada uma variavel local, str2, do tipo xyz;
4) Os campos a e b da variavel estrutura estr1 recebem valores em main();

5) A variavel estr2 vai receber o valor retornado pela fungédo estr3(), que por sua vez
recebeu o valor de estr1 como argumento;

6) Na declaracéo da funcdo, deve-se colocar "struct xyz estr3(argumentos)”, para que o
programa saiba que o tipo retornado pela fungdo também é uma estrutura;

7) Também na lista de argumentos, "(struct xyz estr)", deve-se especificar que o tipo
recebido pela fungéo é uma estrutura xyz;

8) Dentro da funcao estr3() foi declarada uma variavel local, estrlocal, do tipo xyz;

9) Os campos a e b da variavel estrutura estrlocal recebem valores (no caso, o inteiro 235 e
o caractere 'L') em estr3();

10) No final, a fungédo estr3() retorna a estrutura estriocal para a expressao chamadora.

Estruturas aninhadas:

Assim como podemos ter matrizes de matrizes (varias dimensdes), podemos também ter
estruturas que contém outras estruturas.
Ex:

/***/

/* Programa para biblioteca que separa livros em dois grupos: Dicionario e Literatura */

/* mostra o uso de estruturas aninhadas */
sk ke sk sk ke skeoske ke sk ske sk sk sk ske s sk sk sk sk sk sk s sk sk sk ke sk sk sk sk sk sk s sk sk sk sk sk sk st sk sk sk ke sk sk sk sk skeoske st st skoske sk sk sk sk skeoskeoske skeoskosko sk skeoskosko sk skoskoskoskskosk ok
/ /

struct livro {
char titulo[30];
int regnum;
¥
struct grupo {
struct livro dicionario;
struct livro literatura;
¥
struct grupo grupol = { {"Aurélio", 134},
{"Iracema", 321} };

void main(void)

{

printf("\nDicionario: \n");
printf(" Titulo: %s \n", grupol.dicionario.titulo);
printf(" No. do registro: %03d\n", grupol.dicionario.regnum);
printf(" \nLiteratura: \n");
printf(" Titulo: %s\n", grupol.literatura.titulo);
printf(" No. do registro: %03d\n", grupol .literatura.regnum);

Consideragoes:

1) Quando uma matriz de varias dimensdes é inicializada, usamos chaves dentro de
chaves; do mesmo modo inicializamos estruturas dentro de estruturas;
2) Para acessar um elemento da estrutura que é parte de outra estrutura utilizamos:
grupo.dicionario.titulo
No exemplo acima temos o elemento fitulo da estrutura dicionario, que por sua vez € um
elemento da estrutura grupo;

Para compor um banco de dados completo, vamos utilizar tudo o que aprendemos até agora:
matrizes de estruturas, passagem de estruturas para fungdes, estruturas aninhadas, etc. Seguindo o
exemplo da livraria, temos:

/***/

[*E* PROGRAMA LIVRARIA - Demonstra como criar bancos de dados em C, utilizando */
/*** estruturas ***/

#include <stdlib.h> /* para a funcdo atof{(), que transforma uma string em float */

#include <conio.h>
void novonome(void);
void listatot(void);

struct lista

{ char titulo[30];
char autor[30];
int regnum;
double preco;

15
struct lista livro[50]; /* declara uma matriz com 50 livros (estruturas do tipo lista) */
int n=0;
void main (void)
{ charch;
for(;ch !="s";)
{ printf("\nDigite: 'e' para adicionar um livro\n");
printf("\t'l ' para listar os livros\n");
printf("\t's' para sair:\n");
ch = getche();
printf("\n");
switch(ch)
{ case'e': novonome(); break;
case 'l': listatot(); break;
case 's': printf("Fim do programa"); break;
default : puts("\nDigite somente opg¢des validas: ");
H
}
H

/¥%x% FUNCAO NOVONOME - adiciona um novo livro ao arquivo ***/
void novonome(void)
{ char numstr[81];
printf("\n Registro %d. \nDigite titulo: ", nt+1);
gets (livro[n].titulo);
printf("Digite autor: ");
gets(livro[n].autor);
printf("Digite o nimero do livro (3 digitos): ");

gets(numstr);

livro[n].regnum = atoi(numstr); /* fung@o atoi() converte uma string para inteiro */
printf("Digite precgo:");

gets(numstr);

livro[n++].preco = atof(numstr);

printf("\n \n");

H
/x*x%% FUNCAO LISTATOT - lista os dados de todos os livros ~ **¥*%/

void listatot(void)
{ . .
nt 1;
if(In)
printf("\n\nLista vazia!!l\n");
else
for(i=0; i<n; i++)
{ printf("\n Registro %d.\n", i+1);
printf("Titulo: %s. \n", livro[i].titulo);
. 0 1 1 1 .

printf("Numero do registro: %3d.", livro[i].regnum);
printf("Prego: %4.2f. \n\n", livro[i].preco);
§
printf("\n \n");
j

Note que para acessarmos cada elemento da matriz de estruturas utilizamos "livro[2].titulo", por
exemplo. Isto mostra que o indice da matriz é atribuido a livro e ndo ao campo, titulo. Se tivéssemos a
construcao "livro[2].titulo[3]", por exemplo, estariamos referindo-nos ao quarto elemento (caractere) da
string titulo, da terceira estrutura de livros.

Campos de bits

Uma estrutura pode conter campos de bits, em vez de bytes. Estes campos sdo normalmente
utilizados para acessar valores dependentes da maquina (como registradores, por exemplo). Campos
de bits sdo uma alternativa a utilizagdo dos operadores bit a bit no acesso individual de bits dentro de
um inteiro.

A sintaxe é:

struct{
unsigned int varl: num_bits1;
unsigned int var2: num_bits2;

unsigned int varn: num_bitsn;
} var_estrut;

onde unsigned int é o tipo de todos os campos da estrutura; var1, var2,..., varn sdo os campos da
estrutura; num_bits € o numero de bits que cada campo tem e var_estrut é a variavel declarada como
estrutura de campos de bits. Um campo nao pode ser ultrapassar o tamanho de um int. Se isto ocorrer,
0 campo sera alinhado no préximo inteiro.
Um exemplo de uma declaragdo para campos de bits é:
struct {
unsigned int pronto: 1;
unsigned int desligado: 2;
unsigned int outros: 5;
} modem;

Isto declara modem como sendo uma estrutura de 8 bits com os membros:

Membro Referéncia
modem.pronto primeiro bit
modem.desligado proximos dois bits
modem.outros préximos cinco bits

Estas expressdes podem ser utilizadas em qualquer lugar onde um inteiro unsigned possa ser
utilizado. modem tera a distribuigdo de memadria mostrada no diagrama abaixo (assumindo que ints sédo
obrigatoriamente alinhados em bytes pares e que bits, em nossa maquina-exemplo, sdo atribuidos da
esquerda para a direita, ja que isto depende do computador):

Bit 0o 1 2 3 4 5 6 7 8

L 1 1 1 1 1 1 1| 1 |
|H/_/\\//

desligado outros

pronto

O operador de enderecgo (&) ndo pode ser utilizado com campos.

Ponteiros para Estruturas:

Existem diversos motivos para se usar ponteiros para estruturas. Assim como ponteiros sao mais
rapidos e faceis de manipular que matrizes, também os ponteiros para estruturas sdao melhores que
matrizes de estruturas. Varias representagdes de dados que parecem fantasticas sdo constituidas de
estruturas contendo ponteiros para outras estruturas.

A sintaxe da declaragao de um ponteiro para estrutura é:

struct rotulo *nome_ponteiro;

onde rétulo é o identificador para o tipo de estrutura e nome_ponteiro € o nome do ponteiro que
aponta para tipos estrutura. Na verdade, a sintaxe € a mesma de qualquer declaragdo de ponteiro.
Ex:
struct lista *ptrl;
declara o ponteiro ptrl que pode apontar para qualquer estrutura do tipo lista.
A sintaxe da definicao de um ponteiro para estrutura é:

nome_ponteiro = &estrutura;

onde estrutura é uma estrutura qualquer do tipo que o ponteiro nome_ponteiro pode apontar.
Ex:
ptrl = &livro[0];

define o conteldo de ptrl como sendo o enderego do primeiro elemento da matriz de estruturas
livro.

Sabemos que se conhecemos o nome de uma dada variavel estrutura, podemos acessar seus
campos usando seu nome acompanhado do operador ponto.

Para acessar os campos de uma estrutura através do ponteiro nao teria sentido utilizar-se a
construgao "ptrl.preco", por exemplo, porque ptrl € um ponteiro e ndo um nome de estrutura.

Temos duas formas de acessar os campos:

1) Utilizando a construgéo:

(*ptrl).preco

que indica "o campo preco da estrutura apontada por ptr/ ". Isto é equivalente a "livro[0].preco", se
ptrl == & livro[0] !
ou
2) Utilizando o operador "->" (sinal de "menos" seguido pelo sinal "maior que"):
ptrl -> preco
Este é o0 método mais comum e tem o mesmo significado da primeira opgao: ptrl € um ponteiro
para estrutura, mas "ptrl/ -> preco" € uma variavel double.

12.3 - LISTAS ENCADEADAS

A lista encadeada ou "lista ligada" é uma estrutura de dados abstrata que pode ser criada em C,
utilizando-se o mecanismo de ponteiros para estruturas. Uma lista encadeada assemelha-se a uma
corrente em que as estruturas estdo penduradas sequencialmente. Isto é, a corrente é acessada
através de um ponteiro para a primeira estrutura, chamado "cabega", e cada estrutura contém um
ponteiro para a sua sucessora. O ponteiro da ultima estrutura tem valor NULL (\0"), indicando o fim da
lista.

Normalmente uma lista encadeada é criada dinamicamente na memdaria. O diagrama abaixo
ilustra a grosso modo como ficaria uma lista encadeada na memodria:

estrC

esttA | X X X X X X X
\\ /? \
’ﬂ'>
X XSSUB x | x x | x | x | x
X X X X x [estD | x X X
~

onde cada flecha é um ponteiro apontando para a préxima estrutura da lista. Esta "flecha" é um
campo da estrutura, criado como tipo ponteiro, que contera o endereco da estrutura seguinte.

Abaixo temos o exemplo "Livraria", utilizando-se listas ligadas, ao invés de matrizes de estruturas:

/***/

[F** PROGRAMA LIVRARIA 2 - Demonstra como criar bancos de dados em C, utilizando */
/**% estruturas e listas ligadas */
/***/
#include <stdlib.h> /* para a fung@o atof(), que transforma uma string em float */
#include <stdio.h>

#include <conio.h>

#define TRUE 1

void novonome(void);
void listatot(void);

struct prs /* estrutura basica para listas ligadas */
{ char titulo[30];

char autor[30];

int regnum;

double preco;

struct prs *ptrprox;
IR

struct prs *ptrprim, *ptratual, *ptrnovo; /* declara estruturas tipo prs para montar a lista encadeada */

void main (void)
{ charch;

ptrprim = (struct prs *) NULL; /* sem dados ainda */
for(;ch !="s";)
{ printf("\nDigite: 'e' para adicionar um livro\n");
printf("\t'1"' para listar os livros\n");
printf("\t's' para sair:\n");
ch = getche();
printf("n");
switch(ch)
{ case'e': novonome(); break;
case 'l': listatot(); break;
case 's': printf("Fim do programa"); break;
default : puts("\nDigite somente opg¢des validas: ");

H

}

/¥%x% FUNCAO NOVONOME - adiciona um novo livro ao arquivo ***/
void novonome(void)
{ char numstr[81];

ptrnovo = (struct prs *) malloc (sizeof(struct prs)); /* novo ponteiro p/ estrut. da lista */
/* reserva espago na memoria (malloc) para armazenar estrutura do tamanho (sizeof) de prs */

if (ptrprim == (struct prs *) NULL) /* se o lo. ponteiro da lista tem conteudo NULL */
ptrprim = ptratual = ptrnovo; /* lista ainda ndo tem dados */

else

{ ptratual = ptrprim;
while(ptratual -> ptrprox != (struct prs *) NULL) /* procura novo item */

ptratual = ptratual -> ptrprox;
ptratual -> ptrprox = ptrnovo;
ptratual = ptrnovo;

}

printf(" Digite titulo: ");

gets (ptratual -> titulo);

printf(" Digite autor: ");

gets(ptratual -> autor);

printf(" Digite o nimero do livro (3 digitos): ");

gets(numstr);
ptratual -> regnum = atoi(numstr); /* func@o atoi() converte uma string para inteiro */
printf(" Digite prego:");
gets(numstr);
ptratual -> preco = atof(numstr);
printf("\n \n");
ptratual -> ptrprox = (struct prs *) NULL; /* altimo */
H
/#**%%* EUNCAO LISTATOT - lista os dados de todos os livros ~ *¥¥*%*/
void listatot(void)
{

if(ptrprim == (struct prs *) NULL)
{ printf("\n\nLista vazia!!\n");

return;
h
ptratual = ptrprim;
do

{ printf("Titulo: %s. \n", ptratual -> titulo);
printf("Autor: %s.\n", ptratual -> autor);
printf("Numero do registro: %3d.", ptratual -> regnum);
printf("Prego: %4.2f. \n\n", ptratual -> preco);
ptratual = ptratual -> ptrprox;
} while(ptratual != (struct prs *) NULL);

printf("\n \n");

A grande vantagem neste ultimo programa "Livraria", que utiliza listas ligadas, € que a meméria
necessaria para armazenar as estruturas é alocada a medida que a lista aumenta. No primeiro
programa "Livraria", foi necessario alocar 50 espagos de meméria, cada um do tamanho de uma
estrutura, o que representa um enorme disperdicio se entramos com apenas 3 registros, por exemplo,
ou que pode ser insuficiente (e tomar espacgos indevidos na memoaria), se um desavisado resolve entrar
com 100 registros!

A fungao malloc()

Note que no programa acima utilizamos a fungdo malloc(), para alocar memoéria e armazenar as
estruturas criadas dinamicamente. Isto significa que sé alocamos memoéria, quando for realmente
necessario! A fungcdo malloc() toma como argumento um inteiro sem sinal que representa a quantidade
de bytes de memoria requerida. A fungao retorna um ponteiro para o primeiro byte do bloco de memoaria
disponivel que foi alocado. Se ndo houver memdria suficiente para alocar, malloc() devolvera um
ponteiro NULL.

A funcgao sizeof()

O operador unario sizeof() devolve o tamanho, em bytes, do argumento que recebe.
Utilizamos no programa acima o operador sizeof() para determinar o tamanho da estrutura prs e
poder alocar memaria para armazena-la.

12.4 - UNIOES

Unides sdo localizagdes de memodria usadas para agrupar um numero de variaveis de tipos
diferentes juntas, tal como as estruturas. Porém, enquanto os membros (campos) de uma estrutura sdo
armazenados em espacos diferentes de memdéria, numa unido os membros compartiiham da mesma
localizacdo de memodria. Ou seja, a unido é uma forma de tratamento de uma area de memoria
contendo um tipo de variavel numa ocasido e um outro tipo de variavel noutra ocasiao.

A sintaxe de definicao e a de uso de uma unido é a mesma que a de uma estrutura:

union rotulo
{ declaragdol,
declarac¢do?2,

declaracdon,
} var_unido;

onde rotulo € uma identificacdo para a unido e declaragdox € uma declaracdo de variavel, um
membro da unido. A variavel var_unido é declarada, na sintaxe acima, como sendo uma unido do tipo
rétulo. O tamanho de uma uniao sera o tamanho do maior de seus membros.

Ex:

union demo
{ char inicial;
int idade;
float salario;

union demo pessoal;

declara uma variavel de nome pessoal do tipo union demo e para esta variavel foram reservados
4 bytes de memoaria tendo em vista que o maior de seus membros é do tipo float.
Para acessar um membro da unido, utilizamos o operador ponto (.), como em estruturas:

var_unido.membro

onde membro é qualquer membro declarado na uniao var_unio.
Ex:

pessoal.idade

Uma das razdes para se utilizar unides é a possibilidade de se usar um Unico nome para dados
de tipos diferentes. Por exemplo, se queremos utilizar um mesmo dado em fungdes diferentes, que
aceitam argumentos de tipos diferentes, declaramos este dado como unido dos dois tipos passados
como argumentos para as fungdes.

APENDICE A- ROTINAS DE ENTRADA E SAIDA (1/0)

Geralmente os programas desenvolvidos tém alguma forma de entrada e saida de dados. Por
exemplo, num programa que calcula o fatorial de um numero fornecido pelo usuario, o dado de entrada
seria este numero e a saida, o fatorial deste.

As fungdes de entrada e saida mais utilizadas s&o, respectivamente, scanf() e printf(). Neste
apéndice veremos com detalhes a utilizagao destas e outras fungdes de I/O importantes da linguagem
C.

Obs: Como cada compilador possui conjuntos de comandos de 1/0 diferentes, convém procurar-
se no Help de cada um quais as fungdes mais convenientes para cada caso. No Turbo C, deve-se
teclar no menu "Help"” (ou digital Alt-h), depois no submenu "Index" (ou Alt-i) e por ultimo no botao
"Search" (ou Alt-s). No quadro de texto deve-se digitar scanf, printf, gets, getchar, etc, que a busca sera
feita automaticamente. Quando o tdpico procurado for encontrado, clica-se em "Show Topics " e
finalmente "Goto".

A fungéo printf()

A fungdo printf(), assim como scanf(), € uma fungdo formatada de I/O, no caso, entrada de
dados. A sintaxe é:

printf("expressdo_de_controle", lista_de argumentos);,

A expressao de controle consiste de dois tipos de itens. O primeiro tipo sera feito de caracteres
que serao impressos na tela. O segundo tipo contém comandos de formatagdo que definem a maneira
como os argumentos subsequentes sdo apresentados. Deve existir o mesmo nimero de comandos de
formatacdo que o numero de argumentos e os comandos de formatagdo e os argumentos sao
combinados em ordem. Por exemplo:

printf("O1, %c %d %s \n", 'c', 10, "alunos!");
apresenta na tela:

01, ¢ 10 alunos!

Os cadigos de formatagao da fungéo printf() (que valem também para scanf()) sao:

Cédigo Funcgéo
%cC um unico caractere
%d um inteiro decimal
%e um numero em notacgéao cientifica
Yof um numero em ponto flutuante
%0 um inteiro octal
%s uma série de caracteres (string)
Yox um numero hexadecimal
Y%u um decimal sem sinal
Y%l um inteiro longo

Obs1: Os codigos de controle poderao ter modificadores que especifiquem a largura do campo, o
numero de casas decimais e um indicador de alinhamento a esquerda. Um inteiro colocado entre o
sinal "%" e o comando de formatagao atua como um especificador de largura-de-campo minimo, o que
preenche a saida com brancos ou zeros para assegurar que tenha ao menos um comprimento minimo.
Caso uma série ou um numero sejam maiores que o minimo, serdo completamente impressos. O
preenchimento normal é feito com espagos. Caso queira-se preencher com zeros, basta colocar um
zero antes do especificador de largura-de-campo. Por exemplo, "%05d" vai preencher um nimero com
menos de 5 digitos com 0's.

Obs2: Para especificar o numero de casas decimais impressas para um numero em ponto
flutuante, coloque um ponto decimal seguido do nimero de casas decimais que se quer apresentar. Por
exemplo, "%10.4f" apresenta um numero com pelo menos 10 caracteres de comprimento, com 4 casas
decimais. No caso de strings, "%5.7s" apresenta uma série com pelo menos cinco caracteres, mas nao
excedendo sete (o resto é truncado).

Obs3: Como condicdo normal, toda saida é alinhada pela direita do campo. Para forgar-se o
alinhamento pela esquerda, coloca-se um sinal de menos ("-") logo apds o "%". Por exemplo, "%-10.2f"
forgara um alinhamento a esquerda de um numero em ponto flutuante, com duas casas decimais e um
campo de 10 caracteres de largura.

Exemplos de formatagéo da saida printf()

Declaragao print() saida

("%-5.21", 123.234) [123.23 |

("%5.21", 123.234) | 123.23
("%10s", "hello") | hello|
("%-10s", "hello") |hello |
("%35.7s", "123456789") | 1234567|
("%010d", 1234) [0000001234|

A fungao scanf()

A funcdo scanf() realiza a operagdo de formatagdo nas entradas a partir da entrada padrao
(teclado). Existem inumeras func¢des da familia scanf() que permitem a leitura de dados formatados de
outras entradas. Por exemplo, fscanf() I&é os dados em um arquivo, e ndo do teclado. A sintaxe é:

scanf("expressdo_de_controle", lista_de_argumentos)

A expressao_de_controle contém cddigos de formatagao, precedidos por um sinal "%", indicando
qual o tipo de dado sera lido. Se apds o sinal "%" colocarmos um sinal "*" indica que o dado sera lido
mas n&o sera atribuido a variavel nenhuma, neste caso a lista de argumentos ndo existe. Isto é util
quando se tem um conjunto de entradas mas somente uma parte da entrada sera lida pelo programa.

A lista de argumentos contém um endereco de variavel para cada dado lido e formatado pela
expressdo_de_controle. Se a variavel é simples, e ndo um nome de matriz, ou um ponteiro (que ja tem
enderegos associados ao seu proprio conteudo), € necessario acrescentar-se o operador "&"
("enderego de"), para especificarmos o enderego de cada variavel.

Por exemplo:

scanf("%f", &anos);

indica que sera lido um dado do tipo float e atribuido a variavel anos.
Ex2:
scanf("%3d/%2d",&int_argl, &int_arg2);

Neste caso, se for digitado "345/67" e Enter, int_arg1 recebera o valor 345 e int_arg2 o valor 67.

Obs1: O modificador de maxima largura de campo pode ser aplicado aos cédigos de formatacéo.
Por exemplo, se deseja-se ler um maximo de 20 caracteres para a string address, escreve-se:

scanf("%?20s", address);

Obs2: Espacos, tabulagdes e caracteres de linha-nova apenas séo utilizados como separadores
de campo, quando nao se estiver lendo caracteres simples. Neste caso, serdo lidos como caracteres
mesmo, e ndo como separadores. Por exemplo, com uma lista de entrada "x y":

scanf("%c%c%c", &a, &b, &c);

voltara com o caractere "x" em a, um espago em b e o caractere "y" em c.

Obs3: Qualquer outro caractere na expressdo de controle (inclusive espagos, tabulagdes e
caracteres de linha-nova) sera usado para comparar caracteres da lista de entrada. Caso sejam iguais,
serao descartados. Por exemplo, dada a lista de entrada "abcdttttttefg":

scanf("%ostttttt%s", &namel, &name?2);
colocara os caracteres "abcd" em name1 e os caracteres "efg" em name2.

Entradas e Saidas Nao-Formatadas:

As fungoes getchar() e putchar()

Sao0 as fungdes mais simples de 1/0 em C. A fungéo getchar() 1é um caractere da entrada padrao
(normalmente o teclado). Quando o programa encontra esta instrugdo, a execugdo para e aguarda até
0 pressionamento de uma tecla, para em seguida devolver seu valor. Normalmente getchar() ecoa o
caractere digitado para o video. A sintaxe é:

getchar()

Ja a fungdo putchar() escreve um argumento de caractere no video do computador, se o
argumento for parte do conjunto de caracteres que o computador pode apresentar. A sintaxe é:

putchar()

O exemplo abaixo ilustra a utilizagdo das duas fungdes, lendo caracteres pelo teclado e
imprimindo-os em modo reverso: mailsculas em minusculas e vice-versa. O programa para ao se
digitar um ponto:

#include <stdio.h>

#include<ctype.h>
void main(void)
{ char ch;
do
{ ch=getchar();
if(islower(ch)) putchar(toupper(ch));
else putchar(tolower(ch));
} while(ch !=""); /* use ponto para parar */

}

As funcgoes gets() e puts()

Estas fungdes permitem que se leia e escreva séries de caracteres (strings).

A fungéo gets() retorna uma série terminada por nulo em seu argumento de vetor de caracteres
("nome_string"). Isto significa que quando utiliza-se gets() pode-se digitar caracteres no teclado até a
operagao de retorno de carro (Enter). O retorno de carro coloca um terminado nulo no fim da série e
gets() retorna. A sintaxe é:

gets(nome_string)

A funcao puts() escreve uma série no video. Esta fungdo reconhece os mesmos cédigos de
sequéncias de escape ("\n", "t", etc) que printf(). Apesar de ser pouco utilizado por ndo permitir
formatagéo da saida, conversdes de formato, nem colocagao de numeros, a fungéo puts() € muito mais
rapida e simples que printf(), quando trata-se de apenas imprimir strings simples. A sintaxe é:

puts(string)

onde string pode ser uma sequencia de caracteres propriamente dita (delimitada por "), ou o
nome de uma.
Ex:
#include <stdio.h>
#include <stdlib.h>
#define is_digit(x) (x>="0'" && x<="9")7 1:0)

number(char *s)

{ intt;
for(t = 0; s[t]; ++t)

if (lis_digit(s[t]))
return 0;
return 1;

}

getnum()
{ char num[80], n;
do
{
gets(num);
if(!number(num))
{ puts("Deve ser numero.\n");
n=0;
} else n=1;
}+ while(!n);
return(atoi(num));

}

void main(void)
{ puts("Entre com um numero\n");
printf("%d",getnum());

}

APENDICE B - PROGRAMA-EXEMPLO PARA ROTINAS
GRAFICAS

/***/

/I TWINDOW.C - Teste para as funcoes de janela no modo texto
/***/
#include <stdio.h>

#include <stdlib.h>

#include <conio.h>

#include <graphics.h>

#define H LINE "xC4' /* ASCII estendido da IBM */
#define V_LINE "xB3'

#define DH_LINE "xCD'

#define DV_LINE "xBA'

#define TLC "xDA' /* caractere para canto superior esquerdo, etc */
#define TRC "xBF'

#define BLC "xCO0'

#define BRC "xD9'

#define DTLC "xC9'

#define DTRC "xBB'

#define DBLC "xC8'

#define DBRC "xBC'

#define SINGLE_BORDER 1

#define TWIN_BORDER 2

#define UNDERLINE textcolor(YELLOW); textbackground(BLACK);
/* alternativa para underline() */

struct text _info mytext; /* global: fornece o status da janela,atributos, etc */

// as funcoes a seguir mostram como os atributos para texto interpretam aqueles usados para a selecao //de

cor

void magenta(void)

{ textcolor(MAGENTA);
textbackground(BLACK); }

void green(void)

{ textcolor(GREEN);
textbackground(BLACK); }

void underline(void)

{ textcolor(BLUE);
textbackground(BLACK); }

void reversevideo(void)

{ textcolor(BLACK);
textbackground(WHITE); }

void hide(void)

{ textcolor(BLACK);
textbackground(BLACK); }

/** Somente para modo texto F¥FdkHAAAK/

/* MY _HLINE() desenha uma linha horizontal com o caractere se
lecionado de (startx, starty) a (endx, starty). Retorna com

o numero de caracteres desenhados. startx pode ser maior

que endx. O cursor ficard na posicao imediatamente seguinte

ao ultimo caractere exibido. As coordenadas sao relativas
ajanela ativa. */

int my_hline(int startx, int starty, int endx, char line_char)
{ . .
nt1;
gotoxy(startx, starty);
if(startx == endx) return (0);
if(startx < endx)
{ for (1= startx; i <= endx; i++)
putch(line_char);
return(i - startx);
H
gotoxy(endx, starty);
for(i = endx; i <= startx; i++)
putch(line_char);
return(i- endx);

b

[¥*¥%% Somente para modo texto FHFAAAEAR/

/* MY _VLINE() desenha uma linha vertical de (startx, starty) a
(startx, endy). starty pode ser maior que endy. line_cahr é o
simbolo selecionado para a linha. As coordenadas sdo relativas
a janela ativa */

int my_vline(int startx, int starty, int endy, char line char)

{ . .
nt 1;

// nao €' necessario o gotoxy aqui
if(starty == endy) return (0);
if(starty < endy)

{ for(i=starty; i<=endy; i++)
{ gotoxy(startx, 1);
putch(line_char);
H
return (i-starty);
}
for(i = endy; i <= starty; i++)
{ gotoxy(startx, i);
putch(line_char);
}

return (endy-i);

/*¥*¥*% Somente para 0 modo texto F¥¥***/

/*¥* MY _RECT() desenha um retangulo com coordenadas (tlx, tly)
para o canto superior esquerdo e (brx, bry) para o canto

inferior direito. style=1 fornece uma borda simples, style =2
fornece uma borda dupla */

int my_rect(int tlx, int tly, int brx, int bry, int style)
{

int w, h;

char hline ch, vline ch, tlc, trc, brc, blc;

switch(style)
{ casel:

case 0:
hline ch =H_LINE;
vline ch =V _LINE;
tlc = TLC; trc = TRC;
brc = BRC; blc = BLC;

break;

case 2:
hline ch = DH_LINE;
vline ch =DV_LINE;
tle = DTLC; trc = DTRC;
brc = DBRC; blc = DBLC;
break;

default:
return(0);

gotoxy(tlx, tly);

putch(tlc);

w =my hline(tlx+1, tly, brx-1, hline ch);
putch(tre);

h =my vline(brx, tly+1, bry-1,vline_ch);
gotoxy(brx, bry);

putch(bre);

my_hline(brx-1,bry, tlx +1, hline ch);
gotoxy(tlx, bry);

putch(blc);
my_vline(tlx, bry-1, tly+1, vline ch);
return(w*h); /* area delimitada */

void main(void)
{ int graphmode;
int graphdriver;
int himode, lomode;
char savewin1[300], savewin2[300];

directvideo = 1;
// =0 significa que usa as chamadas a ROM BIOS; =1 usa o
// acesso direto ao video

[xFEERE - detectgraph(&graphdriver, &graphmode);*****/
// verifica o hardware do video -- encontra o modo de maior
// resolucao

/I getmoderange(graphdriver, &lomode, &himode);
textmode(C4350);
// ajusta para colorido VGA em 80x25 - somente texto - sem
// grafico

gettextinfo(&mytext);

// pega o modo texto atual e a posicao da janela
clrscr();
magenta();
my_rect(9,7,49,25,SINGLE_BORDER);

green();
my rect(10,8,48,13, TWIN BORDER);
window(11,9,47,12);

gotoxy(2,1); /* coordenadas relativas */
normvideo();
// reversevideo();
cprintf("driver = %d,maior modo = %d", graphdriver, graphmode);
gettext(12,9,47,11, savewinl);
// salva a janela de texto no array savewinl
normvideo();

window(1,1,80,25);
my_rect(10,14,48,19,TWIN_BORDER);
window(11,15,47,18);

gotoxy(2,1); /*=12,15 em coordenadas absolutas */
// underline() ou MACRO
UNDERLINE
cprintf("TxtModo =%d, Winleft =%d, Wintop =%d",mytext.currmode,
mytext.winleft, mytext.wintop);
gotoxy(2,2); /*=12,16 em coordenadas absolutas */
normvideo();
cprintf("Modo baixo= %d, Modo alto = %d", lomode, himode);
gettext(12,15,47,17, savewin2);
// salva uma determinada area de texto no array savewin2
underline();
highvideo();
cputs("<cr>."); getch();

// pausa de tempo - ate' pressionar uma tecla
gotoxy(1,1);
clrscr(); // limpa a janela de texto 2
puttext(12,15,47,17,savewinl);

// troca a janela 1 para a janela 2
window(1,1,80,25);
window(11,9,47,12);
gotoxy(1,1);
clrscr();
puttext(12,9,47,11,savewin2);

// troca a janela 2 para a janela 1

closegraph();

H

Apéndice C - DIRETIVAS DO PRE-PROCESSADOR

E possivel incluir varias instrugdes para o compilador no cédigo-fonte de um programa em C.
Essas instrugbes sdo chamadas diretivas do pré-processador e embora ndo sejam realmente parte da
linguagem C, ampliam o escopo do ambiente de programacéo C.

Este apéndice contém uma lista de diretivas e detalhes sobre as mais utilizadas.

De acordo com o padrdo ANSI, o pré-processador contém as seguintes diretivas:

#define
#else
#elif
#endif
#error
#if
#ifdef
#ifndef
#include
#line
#pragma
#undef

O comando #define
Utiliza-se #define para definir um identificador e um valor (ou string). O compilador substituira o
identificador pelo valor cada vez que aquele for encontrado no arquivo-fonte. O padrdo ANSI proposto
refere-se ao identificador como nome de macro e ao processo de substituicdo como substituicdo de
macro. A sintaxe é:
#define identificador valor
Note que este comando nado contém ponto e virgula, encerrando-se portanto, com o final da linha.
Ex:
#define VERDADEIRO 1
printf("%d ", VERDADEIRO);
O que causara a impressao da constante 1, no comando printf().
Por convencgao, escreve-se as macros em letras maiusculas, o que ajuda a distingui-las dentro do
cédigo-fonte, normalmente escrito em mindsculas.
Ex2:
#define xyz "isto é um teste"
printf(xyz);
Neste exemplo, sera impressa a string "isto é um teste", no comando printf().
Pode-se utilizar a diretiva #define para pequenas fungdes:
Ex3:
#define min(a,b) ((a <b)? a:b)

Ou seja, toda vez que o programa encontrar a macro min(x, y), vai devolver o valor minimo entre
xey.

O comando #include

Esta diretiva instrui o compilador para incluir um arquivo-fonte ao arquivo que contém o #include.
A sintaxe é:

#include "arquivo" ou #include <arquivo>

onde arquivo é o arquivo-fonte a ser incluido. Se forem utilizadas as aspas, o compilador
procurara o arquivo primeiro no diretdrio de trabalho atual, depois nos diretdrios especificados na linha
de comando e por ultimo nos diretérios padroes. Se forem utilizados os sinais de "maior e menor que" o
compilador procurara o arquivo primeiro nos diretérios especificados na linha de comando do
compilador, depois nos diretérios padrdes e por ultimo, no diretério de trabalho atual.

Esta diretiva € muito utilizada para acessar-se as fungdes ja incorporadas aos compiladores
tradicionais (como Turbo C, Borland C) e facilitar a vida do programador que n&o precisara recriar
fungdes, como por exemplo, de entrada e saida (printf(), scanf(), puts(), gets(), etc). Estas fungdes
encontram-se em arquivos que convencionou-se chamar de "Header" (porisso a extensédo ".h") e o
conteudo de cada arquivo varia de compilador para compilador.

Comandos de compilagao condicional (#if, #else, #elif, #endif)

Estas diretivas permitem que se compile de forma seletiva partes do cédigo-fonte do programa.
Na diretiva #if, se a expressdo constante que vem depois de #if for verdadeira, entdo o
processador compilara o cédigo entre esse comando e a diretiva #endif. A sintaxe é:

#if expressdao_constante
sequéncia de comandos
#endif

A diretiva #else funciona como um "sendo" do C a diretiva #if e a diretiva #elif, como um "sendo

se".
Os comandos #ifdef e #ifndef (ou #if defined #if !defined)

Estas diretivas, que podem tomar os formatos acima, dependendo do compilador, selecionam o
que sera compilado "se algo foi definido" ou "se algo n&o foi definido".
Ex:
#if defined(Windows)
#error BGI graphics not supported under Windows
#endif
Ou seja, se (_Windows) foi definido, a diretiva #error (que obriga o compilador a parar a
compilacdo e apresentar a mensagem de erro " BGI graphics not supported under Windows") é
executada. Caso contrario, o compilador ndo entra no bloco #ifdef.

BIBLIOGRAFIA - LINGUAGEM C

MIZRAHI, VICTORINE V. - Treinamento em Linguagem C - Médulos 1 e 2 - , McGraw-Hill, Sdo
Paulo, 1990.

KELLY-BOOTLE, STAN - Dominando o Turbo C - 2a. ed. - Ed. Ciéncia Moderna, Rio de Janeiro,
1989.

PUGH, KENNETH - Programando em Linguagem C - McGraw-Hill, Sdo Paulo, 1990.

SCHILDT, HERBERT - Turbo C: Guia do Usuario - 2a. ed. revisada - McGraw-Hill, Sdo Paulo,
1988.

PAPPAS, CHRIS H. & MURRAY, WILLIAM H. - Turbo C++: Completo e Total - McGraw-Hill, Sdo
Paulo, 1991.

SCHILDT, HERBERT - Linguagem C: Guia do Usuario - McGraw-Hill, Sdo Paulo, 1986.

RITCHIE, DENNIS M. & KERNIGHAN, BRIAN W. - C, a linguagem de programacgédo - Ed.
Campus, Rio de Janeiro; Edisa, Porto Alegre; 1986.

WIENER, RICHARD S. - Turbo C, passo a passo - Ed. Campus, Rio de Janeiro, 1991.

	1 - INTRODUÇÃO
	1.1 - HISTÓRICO
	1.2 - CARACTERÍSTICAS DA LINGUAGEM

	2 - PROGRAMA-EXEMPLO
	3 - TIPOS DE VARIÁVEIS E CONSTANTES
	3.1 - CONSTANTES
	3.2 - TIPOS DE VARIÁVEIS

	4 - OPERADORES
	5 - CONVERSÕES DE TIPOS
	6 - PRECEDÊNCIA
	7 - ORDEM DE AVALIAÇÃO
	8 - COMANDOS DE CONTROLE DE FLUXO
	8.1 - O COMANDO IF
	8.2 - O COMANDO IF-ELSE

	9 - FUNÇÕES
	10. MATRIZES
	11 - PONTEIROS
	12 - TIPOS DE DADOS COMPLEXOS E ESTRUTURADOS
	APÊNDICE A - ROTINAS DE ENTRADA E SAÍDA (I/O)
	APÊNDICE B - PROGRAMA-EXEMPLO PARA ROTINAS GRÁFICAS
	Apêndice C - DIRETIVAS DO PRÉ-PROCESSADOR
	BIBLIOGRAFIA - LINGUAGEM C

