
INSTITUTO FEDERAL DE EDUCAÇÃO TECNOLÓGICA DE SANTA CATARINA
DEPARTAMENTO ACADÊMICO DE ELETRÔNICA
DISCIPLINA: INTRODUÇÃO À LINGUAGEM DE PROGRAMAÇÃO C

INTRODUÇÃO À

PLANO DE AULA

  3ª. EDIÇÃO
       PROFA. FERNANDA ISABEL MARQUES ARGOUD

        

FLORIANÓPOLIS, ABRIL DE 2009.



SUMÁRIO

1 - INTRODUÇÃO
1.1 - HISTÓRICO
1.2 - CARACTERÍSTICAS DA LINGUAGEM

2 - PROGRAMA EXEMPLO
3 - TIPOS DE VARIÁVEIS E CONSTANTES

3.1 - CONSTANTES
Constantes Numéricas
Constantes de Caractere
Sequências de Escape
Strings

3.2 - TIPOS DE VARIÁVEIS
Declaração de uma variável
Definição de uma variável
Tipos de variáveis

4 - OPERADORES
Operadores Aritméticos
Operadores Relacionais
Operadores Lógicos
Operadores Bit a Bit
Operador de Atribuição
Operador de Atribuição Reduzida
Operadores Pré e Pós-Fixados
Operadores Condicionais

5 - CONVERSÕES DE TIPOS
Conversões Automáticas
Conversões Forçadas

6 - PRECEDÊNCIA
7 - ORDEM DE AVALIAÇÃO
8 - COMANDOS DE CONTROLE DE FLUXO

8.1 - O COMANDO IF
8.2 - O COMANDO IF-ELSE
8.3 - O COMANDO WHILE
8.4 - O COMANDO DO-WHILE
8.5 - O COMANDO FOR
8.6 - O COMANDO CONTINUE
8.7 - O COMANDO BREAK
8.8 - O COMANDO SWITCH
8.9 - O COMANDO GOTO

9 - FUNÇÕES
9.1 - CHAMADA DA FUNÇÃO
9.2 - PARÂMETROS E ARGUMENTOS

Os argumentos argc e argv da função main()
9.3 - VALORES DE RETORNO
9.4 - ESCOPO DE VARIÁVEIS

Variáveis Locais ou Automáticas
Variáveis Globais
Variáveis Externas
Variáveis Estáticas
Variáveis Registradores

10 - MATRIZES
10.1 - STRINGS
10.2 - MATRIZES MULTIDIMENSIONAIS
10.3 - MATRIZES PASSADAS PARA FUNÇÕES
10.4 - ORGANIZAÇÃO DE MATRIZES NA MEMÓRIA

11 - PONTEIROS
11.1 - PONTEIROS E MATRIZES
11.2 - ARITMÉTICA DE PONTEIROS



11.3 - PONTEIROS PARA MATRIZES USANDO FUNÇÕES
12 - TIPOS DE DADOS COMPLEXOS E ESTRUTURADOS

12.1 - ENUMERAÇÕES
12.2 - ESTRUTURAS

Atribuições entre Estruturas
Endereço da Estrutura
Passando e devolvendo estruturas para funções
Estruturas Aninhadas
Campos de bits
Ponteiros para Estruturas

12.3 - LISTAS ENCADEADAS
A função malloc()

12.4 - UNIÕES
Apêndice A - ROTINAS DE ENTRADA E SAÍDA (I/O)

A função printf()
A função scanf()
As funções getchar() e putchar()
As funções gets() e puts()

Apêndice B - PROGRAMA EXEMPLO PARA ROTINAS GRÁFICAS
Apêndice C - DIRETIVAS DO PRÉ-PROCESSADOR
BIBLIOGRAFIA



1 - INTRODUÇÃO
Uma das linguagens mais utilizadas por técnicos e pesquisadores é a linguagem C. Isto ocorre 

principalmente pela versatilidade e pela complexidade da linguagem, que permitem a criação de 
programas muito sofisticados.

1.1 - HISTÓRICO

A primeira versão da linguagem foi desenvolvida por dois pesquisadores da Bell Laboratories, 
Brian Kernighan e Dennis Ritchie. A empresa necessitava de uma linguagem especificamente para 
escrever o sistema operacional UNIX, mas C revelou-se tão eficiente e "transportável" para outros 
sistemas operacionais, sistemas e hardwares que seu uso alastrou-se rapidamente. Esta primeira 
versão, chamada "K&R" sofreu algumas modificações com o tempo, para adaptar-se a computadores 
com mais de 8 bits e assim nasceu a versão "ANSI C", considerada um padrão da linguagem. Algum 
tempo depois, com a moda de programação orientada a objetos, nasceu a versão C++ que não mais 
segue a programação linear. Várias empresas criaram seus próprios compiladores C e assim 
apareceram o MS C (Microsoft), o Turbo C, Borland C, etc.

1.2 - CARACTERÍSTICAS DA LINGUAGEM

“C é uma linguagem compilada, estruturada e de baixo nível.”

Linguagem compilada porque, após ser escrita num editor de textos qualquer (que siga o padrão 
ASCII), precisa ser decodificada, compilada (cada módulo separadamente) e linkada para obter-se um 
programa executável. Certos softwares como o Turbo C e o Borland C permitem que se edite, compile 
e linke os programas em C dentro de um mesmo ambiente (chamado de “IDE”, ou “Integrated 
Development Environment”), o que facilita muito a manipulação. 

É uma linguagem estruturada porque segue o padrão de endentação, tal como em Pascal e 
Fortran por exemplo, com alinhamentos dos blocos lógicos cada vez mais à direita, quanto mais 
"interno" ao bloco for o comando, e com execução linear, sem utilização de goto's, break's, etc. 

Finalmente é uma linguagem de baixo nível por permitir acesso às camadas lógicas mais baixas 
da máquina. Isto é, por aproximar-se bastante da linguagem de máquina, Assembler, que apesar de 
bastante rudimentar tem a capacidade de acessar diretamente a memória, o hardware do computador, 
como registradores, portas, posições da RAM, etc. Com isto, ganha-se muito em rapidez de execução e 
em poder para utilizar completamente os recursos do computador. É importante salientar que apesar de 
ser possível utilizar-se funções muito complexas de baixo nível em C, um programador não interessado 
nisto terá uma linguagem estruturada como qualquer outra de alto nível.

Outra característica importante é que C é uma linguagem de “estilo livre”, sem formatação 
rigorosa como Fortran e Basic. Em Basic, cada linha contém um comando e cada comando ocupa 
somente uma linha (às vezes, há até numeração das linhas). Em Fortran, os arquivos de saída contém 
espaços reservados para cada string, valor de caractere ou espaço em branco que deverá ser 
impresso. Nada disto ocorre em C. Desde que a sintaxe correta seja seguida, não há maiores restrições 
na linguagem. Ou melhor, quase não há. 

 O programador não pode esquecer que o compilador C   diferencia     caracteres     minúsculos     de   
maiúsculos. Por exemplo, as variáveis "numero" e "Numero" são consideradas diferentes uma da outra 
na linguagem C.

Um avanço significativo que C possibilitou, foi escrever-se um programa numa linguagem de alto 
nível (que C não deixa de ser) e ter, após a compilação, um código gerado diretamente em Assembler. 
Qual a vantagem nisto? Quem trabalha com circuitos contendo microprocessadores ou 
microcontroladores sabe! Até pouco tempo seria necessário escrever  páginas de código em Assembler 
para funções simples. Agora, com o uso de compiladores como o Keil - C ou Avocet, o programador 
escreve o código em C e o compilador encarrega-se de transformá-lo em Assembler.



Costuma-se dizer que o C é uma linguagem extremamente "portável". Ou seja, foi desenvolvido 
para UNIX, mas roda muito bem em DOS. Além disto, um programa escrito em C, para uma estação de 
trabalho provavelmente rodará num PC ou num computador médio; ou mesmo passará de um IBM-PC 
para um Machintosh. Isto ocorre porque C não é rígido, não tem funções pré-definidas de I/O (aliás, de 
nenhum tipo) para cada máquina e adapta-se a qualquer hardware. Funções específicas (como entrada 
e saída) para cada máquina devem ser escritas pelo próprio usuário e certamente estas não rodariam 
num hardware diferente. Uma opção para o programador mais prático (ou preguiçoso) é procurar nas 
dezenas de arquivos de biblioteca ".h" (por exemplo, "stdio.h") uma função que se encaixe nas suas 
necessidades. É importante salientar que também estas funções (como por exemplo, printf(), que 
imprime saídas formatadas na tela) foram desenvolvidas por usuários e não pertencem à linguagem 
original. Na verdade, quase tudo em C é definido pelo usuário, daí sua complexidade e ao mesmo 
tempo, seu poder.

2 - PROGRAMA-EXEMPLO
O programa abaixo serve para ilustrar a estrutura de um programa em C.

/***************************************************************/
/*** PROGRAMA C que demonstra como usar várias primitivas gráficas   ***/
/***    com monitor VGA                                                                           ***/
/**************************************************************/
#include <graphics.h>
#include <stdio.h>
#include <stdlib.h>
#include <process.h>
#include <conio.h>

#define TRUE 1
#define MAX 200
#define NAO  'n'
#define SIM    's'

void circulo(int, int);
void barra(int);
void elipse(int, int) ;

void main(void)
{     
        int gdriver = DETECT, gmode, errorcode, i;
        int midx, midy;
        char ch;

       initgraph(&gdriver, &gmode, " " );
       errorcode = graphresult();
       if (errorcode != grOk)
       {         printf("Erro de Função Gráfica:  %s \n", grapherrormsg (errorcode));
                  printf("Aperte uma tecla para parar: ");
                  getch();
                  exit(1);
       }
      setbkcolor(BLACK);
      for(i = 10; ch != NAO; i +=100 )
     { 
           circulo(i, i);                                                 // desenha um círculo vazio
           barra(i + 50);                                             // desenha uma barra cheia

Diretivas do pré-processador:
inclusão de bibliotecas

Diretivas do pré-processador:
definição de constantes

Protótipos de funções

Função Principal



           elipse(i +200, i + 300);                                             // desenha uma elipse cheia
           printf("Deseja continuar? (s/n)");
           ch = getchar();
     }
     closegraph();
}

 void circulo(int x, int y) 
  /* desenha um pequeno círculo  */
 {  setcolor(BLUE);
       circle(x, y,40);
  }

void barra(int posicao)
/* desenha uma barra tridimensional */
{   setcolor(CYAN);
     setfillstyle(LINE_FILL, CYAN);
     bar3d(posicao, 20, posicao + 50, 90, 15, 1);
}

void elipse(int x, int y)
/*  desenha uma elipse, traça e preenche */
{   setcolor(MAGENTA);
     setfillstyle(SLASH_FILL, MAGENTA);
     fillellipse(x, y, 40, 70);
}

Observe atentamente o programa. Este inicia com comentários sobre o nome do programa e o 
que ele faz. Em C, comentários sempre estão entre os símbolos "/*" e "*/", ou após o símbolo "//". Ou 
seja, tudo que estiver entre "/* ... */" é completamente ignorado pelo compilador e tudo que estiver, na 
mesma linha, após o "//" também o é.

Em seguida, temos uma série de comandos, chamados "diretivas", que não pertencem à 
linguagem C propriamente, sempre começando com o símbolo "#". Estes comandos fazem parte do 
que chamamos de "Pré-Processador". O pré-processador, como o nome diz, é um programa que 
examina o programa-fonte em C antes deste ser compilado e executa certas modificações nele, 
baseado nas diretivas. As diretivas mais comuns são "#include" e "#define". A primeira, indica ao 
compilador quais arquivos de header (os "*.h") serão utilizados pelo programa. A segunda, define 
constantes e macros para facilitar a visualização do programa. Para maiores informações, vide 
Apêndice C.

A área seguinte é a região de declaração dos "protótipos de funções". Isto é necessário, em 
alguns compiladores C, para indicar ao compilador quais e qual o formato das funções que existem no 
programa. Por exemplo, o protótipo "void circulo(int, int)" diz ao compilador que dentro deste código ele 
encontrará uma função chamada circulo, que recebe dois argumentos do tipo int (inteiros) e não retorna 
valor algum (void) à expressão chamadora.

As outras áreas são todas funções. A primeira é a função principal do programa, main(). A função 
main() é sempre a primeira a ser executada num programa C, não importa onde esteja localizada no 
código. Neste programa foi colocada em primeiro lugar por convenção. Note que uma função inicia-se 
sempre com o nome desta (seu tipo e argumentos) e em seguida temos o seu "corpo", sempre 
delimitado pelos caracteres "{" e "}". Tudo que estiver entre os símbolos de abre e fecha-chaves faz 
parte do corpo de uma função. Com exceção da função main(), que existe obrigariamente em qualquer 
programa C, todas as outras funções foram previamente declaradas em protótipos.

Não só as funções, mas também blocos de comandos são delimitados por "{" e "}". Note o corpo 
do comando "for" do programa.

As variáveis em C geralmente são declaradas no início dos blocos, em alguns compiladores por 
convenção e em outros por obrigação. Contudo, a rigor, as variáveis podem ser declaradas em 
qualquer ponto do programa (dentro do escopo necessário, claro) desde que antes de serem utilizadas.

Finalizando, note que a maioria dos comandos C terminam com o caractere "';" que é um análogo 
do "End" utilizado em outras linguagens, como Fortran e Pascal.

Função circulo()

Função barra()

Função elipse()



Nos capítulos seguintes todos os pontos discutidos acima serão explorados e o Apêndice C tem 
uma lista das diretivas mais comumente utilizadas.

3 - TIPOS DE VARIÁVEIS E CONSTANTES

3.1 - CONSTANTES

Uma constante tem valor fixo e inalterável. Em C uma constante caractere é escrita entre aspas 
simples (“ ' “ e “ ' “);  uma cadeia de caracteres, entre aspas duplas (“ " “ e “ " “); e constantes numéricas 
como o número propriamente dito.

Exemplos de declarações de constantes: 
const char const_caract ='c';  
#define NOME "meu primeiro programa  "
#define VALOR 8

Constantes podem ser dos tipos: 

- Constantes numéricas: inteiros, octais, hexa, longas e ponto flutuante (reais).
   Ex:

45E-8 (exponencial) 32 (inteiro)  034 (octal) 0xFE(hexa) 
2e3 (exponencial)32L  (longa) 567893 (longa implícito) 2.3  (double) 

Como podemos notar, constantes inteiras não possuem ponto decimal; constantes octais devem 
ser precedidas por um '0'; constantes hexa, por um '0x'; constantes longas devem ser seguidas por um 
'L', mas quando se trata de um número muito grande o compilador já entende que é um inteiro longo; e 
constantes double ou float têm ponto decimal flutuante.

- Constantes de Caractere: podem ser representadas por seu código ASCII, ou entre aspas, ' '. 
Ex: 
 ' A ' = 65    (em ASCII)

- Sequências de Escape - São códigos de tarefas a serem executadas na compilação, 
representados por caracteres que não podem ser impressos. 

Sequência     de     escape                                             Significado                                    .  
\a                                         Caractere Bell  (ANSI C)
\b                                         Caractere de retrocesso (backspace)
\n                                         Caractere de  nova linha
\r                                         Caractere de retorno de carro
\t                                          Caractere de tabulação horizontal
\\                                          Caractere de contra-barra
\'                                           Caractere de aspas simples
\"                                          Caractere de aspas duplas
\?                                          Caractere de ponto-de-interrogação
\###                                       Código ASCII em octal de caractere
\x###                                     Código ASCII em hexadecimal de caractere
\0                                          Caractere nulo

Ex: A instrução 
printf(“\n\t\t Hoje \202 dia da Can\x87\xc60 da \nAm\x82rica\?”);

Obs: os símbolos “#” 
correspondem a 

dígitos de 0 a 7, p/ a 
base octal e de 0 a 

F, p/ a base 
hexadecimal!



vai imprimir:

Hoje é dia da Canção da 
América?

Ex2: Teste o programinha:

#include  <stdio.h>
void main(void)
{
      printf("A\nB\nC");
      printf("\n");
      printf("A\tB\tC");
      printf("\n");
      printf("AB\rC");
      printf("\n");
      printf("AB\b\bC");
      printf("\n");
      printf("Beep\aBeep\aBeep\a");
      printf("\n");
      printf("\A\B\C");                                     /* O que acontece aqui ????  */
      printf("\n");
      printf(" Os comandos do Dos estão no C:\\DOS ");
      printf(“\n”);
      printf(“Can\x87\xc6o da Am\x82rica – Milton Nascimento\n”);
      printf(“\xc9\xcd\xcd\xcd\xbb\n\xc8\xcd\xcd\xcd\xbc”);
      printf("\n");
      printf("\"Cuidado!\" não fume ");
}

- Strings - Conjunto, série ou sequência de caracteres seguido do caractere ' \0 ' e delimitado por 
" ".

Ex: 
char * texto= "ABC";       // ou char  texto[4]  ={ 'A' , 'B' , 'C' , '\0'};

 

Exercícios:
Usando os caracteres do teclado, as sequências de escape, a função printf() e a função gotoxy(int  

x,  int y), que posiciona o cursor na coluna x e na linha y do monitor, escreva o programa que imprime 
um boneco no canto inferior direito da tela de saída. Ex:

   Monitor de vídeo:
   (modo DOS)

O
/|\

   /\

24 linhas

80 colunas



3.2 - TIPOS DE VARIÁVEIS

As variáveis são o aspecto fundamental de qualquer linguagem de computador. Uma variável em 
C é um espaço de memória reservado para armazenar um certo tipo de dado e tendo um nome para 
referenciar seu conteúdo. Ao contrário das constantes, uma variável tem seu valor mutável, daí o nome 
"variável".

Declaração de uma variável: ocorre quando a variável é "apresentada" ao compilador. O usuário 
declara que vai criar uma variável de um certo tipo para utilizá-la em seu programa. A sintaxe da 
declaração de uma variável é: 

      tipo_var       nome_var  ; 

onde tipo_var é o tipo de variável criada e nome_var, o nome ou os nomes (separados por 
vírgulas) das próprias.

Ex:      int num ;
e assim está declarada a variável "num" inteira.
Ex2:      float  var1, var 2, var 3;
declara as variáveis "var1" , "var2" e "var3", ao mesmo tempo, como sendo do tipo float.

Definição de uma variável: ocorre quando a variável já     declarada   recebe um valor, uma 
atribuição. A definição da variável pode ocorrer na mesma linha da declaração, mas sempre depois 
desta e denominamos isto de "inicialização da variável". A sintaxe da definição de variáveis é:

     nome_var = valor ;

onde nome_var é o nome (ou nomes, separados por símbolos de igual) da variável e valor é o 
valor atribuído à mesma.

Ex:       num = 5;      ou        num1 = num 2 = num3  = 0; 
e assim o valor 5 (inteiro) é atribuído à variável "num" e o mesmo valor, 0, é atribuído a três 

variáveis ao mesmo tempo.
Ex2:     char x = 'b';
neste caso a inicialização da variável "x" como tendo o valor do caractere 'b'  ocorreu logo após a 

declaração.

Tipos de Variáveis: O tipo de uma variável informa a quantidade de memória, em bytes que esta 
irá ocupar. São eles:

Tipo                                         Tamanho              Escala     (para     word     de     8     bits,     no     Turbo     C)   
unsigned char 1 word 0  a  255
char 1 word -128  a  127
enum  * 2 words -32.768   a   32.767 
unsigned int 2 words 0  a   65.535 
short int 2 words -32.768  a   32.767 
int 2 words -32.768  a   32.767 
unsigned long 4 words 0  a  4.294.967.295 
long 4 words -2.147.483.648  a  2.147.483.647 
float 4 words 3,4 . 10-38  a  3,4 . 1038 
double 8 words 1,7 . 10-308  a   1,7 . 10308 
long double 10 words 3,4 . 10-4932  a  1,1 . 10+4932 
void                                 0                      sem valor
ponteiro                          1-2 words endereço de memória

Os tipos básicos estão em negrito, os outros tipos são chamados de modificadores de tipos e 
servem para alterar o tamanho de um tipo básico. Por exemplo, em alguns computadores, como o IBM-
370, o modificador "short" faz com que o tipo "int" fique com a metade do tamanho, 8 bits. O     tamanho   
dos     tipos     varia     bastante     de     máquina     para     máquina     e     de     compilador,     para     compilador.  

Obs: indica ao compilador 
que nenhuma memória deve 

ser alocada



Inteiros com e sem sinal são interpretados de maneira diferente pelo compilador. O bit de ordem 
superior, bit 15, de um número inteiro com sinal é sempre '0', quando o inteiro é positivo e '1' quando o 
número é negativo. Se usarmos o modificador "unsigned" o compilador vai ignorar o bit de sinal, 
tratando-o como um bit a mais para números positivos.

Ex: 
           void main(void)

{ 
    unsigned int j = 65000;
    int i = j ;
    printf(" %d  % u \n", i, j);
}    

O resultado será (na base binária: 1111.1101.1110.1000): 
-536    65000 

Variáveis também são modificadas por Classes de Armazenamento: auto, static, register e 
extern. Isto será visto mais tarde, quando estudarmos o escopo das variáveis. 

*   O  tipo "enum" é um acréscimo recente ao C. É definido como um conjunto de constantes enumeradas. Cada  
constante é associada a um valor inteiro.

Ex:       enum tipo_sinaltransito { vermelho, amarelo, verde};
enum tipo_sinaltransito  sinal;  

, pelo qual sinal só pode ter um dos três valores: vermelho, que tem índice 0, amarelo, de índice 1 e verde, 2.

Exercícios:

1 - Identifique o tipo das seguintes constantes:
a)'\r' ______ b) 2130 ______ c) -123 ______ d) 33.28______ e) 0x42 ______
f) 0101 ______ g) 2.0e30______h) '\xDC'______i) '\"'______ j) '\\' ______
k) 'F' ______  l) 0 ______ m) '\0'______

2 - O que é uma variável, na linguagem C?

3 - Quais os 5 tipos básicos de variáveis em C?

4 - O tipo float ocupa o mesmo espaço que ________ variáveis do tipo char.

5 - Escreva um programa que contenha uma única instrução e imprima na tela:

             Esta é a linha um.
                     Esta é a linha dois.
                     um

        dois
                                           tres                             

Obs: para escrever a letra ‘é’ utilize o código \202, da tabela ASCII extendida.



4 - OPERADORES
A linguagem C é rica em operadores, em torno de 40. Alguns são mais usados que outros, como 

é o caso dos operadores aritméticos que executam operações aritméticas.
Os tipos de operadores são: Aritméticos, Relacionais, Lógicos, Bit a Bit, de Atribuição, de 

Atribuição Reduzida, Pré e Pós-Fixados e Condicionais.

Operadores Aritméticos - Representam as operações aritméticas básicas de soma, subtração, 
divisão e multiplicação; além dos operadores unários (operam apenas sobre um operando) de sinal 
negativo e positivo. São eles:

Binários
    +            Soma
     -            Subtração
     *            Multiplicação
     /            Divisão
     %          Módulo   (devolve o resto da divisão inteira)
Unário
     -            Menos unário
     +            Mais unário

Ex:
Expressão Tem     o     valor  
 5 + i                        5 somado ao valor da variável i

             22.3 * f                       22,3 multiplicado pelo valor da variável f
              k/3                            o valor de k dividido por 3 *
  x-y                            o valor de x menos o valor de y
  22/3                           7 ( como é divisão de inteiros o resultado é truncado)

 22%3      1 ( este operador devolve o resto da divisão inteira)
                -a                               -1 multiplicado ao valor da variável a

Ex2:
          #include <stdio.h>

void main(void)
{ 
    int ftemp, ctemp;
    printf("Digite a temperatura em graus Celsius: ");
    scanf("%d", &ctemp);
    ftemp = 9./5 * ctemp   + 32;  // porque este ponto aqui???
    printf("Temperatura em graus Fahrenheit é  %d", ftemp);
}    

Resultado:

Digite a temperatura em graus Celsius: 21
Temperatura em graus Fahrenheit é 69

Operadores Relacionais - São assim chamados porque são utilizados para comparar, relacionar 
dois operandos. São eles:

>           Maior 
>=         Maior ou Igual 
<           Menor
<=         Menor ou Igual
==         Igualdade



!=          Diferença
O resultado da comparação será sempre igual a 0 (Falso) ou 1 (Verdadeiro).
Ex:

Expressão Tem     o     valor  
 5< 3           0
 3 < 5         1
 5 == 5       1
 3 == 5       0
 i <= 3 0, se i>3 e 1, caso contrário

Ex2:
          #include <stdio.h>

void main(void)
{   int verdad, falso;
    verdad = (15 < 20);
    falso =   (15 == 20);
    printf("Verdadeiro= %d, falso= %d \n", verdad, falso);
}     

Note que o operador relacional "Igual a" é representado por dois sinais de igual. Se for usado 
apenas um sinal, o compilador entenderá como uma atribuição e não como comparação.

Ex: 
x = = 2 está comparando se x é ou não igual a 2
x=2                       está atribuindo o valor 2 à variável x (expressão verdadeira, por definição)

Operadores Lógicos - São chamados de "lógicos" porque seguem a Lógica Booleana de 
operação com bits. A diferença básica é que a rigor, a Álgebra Booleana só utiliza dois algarismos: o "0" 
e o "1", o "não" e o "sim", o "falso" e o "verdadeiro", o "espaço" e a "marca", etc. E em C, considera-se o 
número 0 como "falso" e todos os outros números como "verdadeiros". Os operadores lógicos são:

&& AND
|| OR
! NOT

A operação "E" (ou "AND") representada pelo símbolo "&&", exige que todos os operandos sejam 
verdadeiros para que sua saída seja verdadeira.

A operação "OU" (ou "OR") representada pelo símbolo "||", exige que ao menos um dos 
operandos seja verdadeiro para que sua saída seja verdadeira.

A operação "NÃO" ( ou "NOT") representada pelo símbolo "!", inverte o operando. Se for falso, 
sua saída é verdadeira e vice-versa.

Abaixo temos as Tabelas-Verdade da Lógica Booleana:

operando1 operando2 AND OR
falso falso falso falso
falso verdadeiro falso verdadeiro

verdadeiro falso falso verdadeiro
verdadeiro verdadeiro verdadeiro verdadeiro

operando NOT
falso verdadeiro

verdadeiro falso

Ex:
Expressão Tem     o     valor  
 5 || 3               1
 5 || 0         1
 5 && 3       1



 5 && 0       0
 0 || 0         0
 i || j 0, se i e j forem 0 e 1, caso contrário
   !5       0
   !0       1

Operadores Bit a Bit - Realizam as mesmas operações que os lógicos, só que bit a bit do 
número. Operam apenas em números inteiros, em sua forma binária (tal como estão armazenados na 
memória), casa binária, por cada binária, por isto o nome.

São eles:

& AND
| OR
^ XOR
<< deslocamento à esquerda
>> deslocamento à direita
~ complemento de um (unário)

A operação "OU-EXCLUSIVO" (ou "XOR") representada pelo símbolo "^", exige que ou um ou 
outro dos operandos seja verdadeiro para que sua saída seja verdadeira, nunca todos ao mesmo 
tempo.

A operação de "deslocamento à esquerda" de bits x<<y literalmente desloca os bits do número 
binário x, y vezes para a esquerda. Isto equivale a multiplicar um número binário x por 2, a cada 
deslocamento. Ou, em outras palavras: x × 2y. Os espaços criados no deslocamento são preenchidos 
com 0's.

A operação de "deslocamento à direita" de bits x>>y literalmente desloca os bits do número 
binário x, y vezes para a direita. Isto equivale a dividir um número binário x por 2, a cada deslocamento. 
Ou, em outras palavras: x / 2y. Os espaços criados no deslocamento são preenchidos com 0's.

A operação de "complemento de um" inverte todos os bits do número binário. Os que são "0" 
passam a ser "1" e vice-versa, e o correspondente valor binário é utilizado.

operando1 operando2 XOR       
falso falso falso
falso verdadeiro verdadeiro
verdadeiro falso verdadeiro
verdadeiro verdadeiro falso

Ex:
                   Expressão           Em     binários                                     Tem     o     valor                      .  

 1 | 2 0000.0001 | 0000.0010 0000.0011 = 3
 0xFF & 0x0F    1111.1111 & 0000.1111 0000.1111 = 0x0F
 0x0D << 2 0000.1101 << 2 00110100 = 0x34
 0x1C >> 1 0001.1100 >> 1 0000.1110 = 0x0E
 ~0x03 compl(0000.0011) 1111.1100 = 0xFC
3 ^ 2 0000.0011 ^ 0000.0010 0000.0001 = 1

Operador de Atribuição - Em C, o sinal de igual não tem a interpretação dada em matemática. 
O que acontece é que o resultado ou valor do operando do lado direito é copiado, atribuído para a 
variável ou endereço, o operando do lado esquerdo. O operador de atribuição é:

= Igual a
Ex:
                   Expressão           Operação                                                                     

i = 3         coloca o valor 3 em i
i = 3 + 4coloca o valor 7 em i
i = (k=4) coloca o valor 4 em k e depois de k para i
i =(k=4) + 3 coloca o valor 4 em k,a adição é feita e o valor 7 é colocado em i 
3 = i operação inválida! a variável deve estar do lado esquerdo



Operadores de Atribuição Reduzida - Compactam operações quaisquer seguidas de operação 
de atribuição e tornam o código mais rápido pois a variável utilizada só é procurada uma vez na 
memória.

Formato: 
operação = 

Ex:
     Expressão                         É     equivalente     a                                                                        .  
   a += 2 a = a+2
   j <<= 3 j = j << 3
   q/= 7 + 2 q = q / (7+2)

Operadores Pré e Pós-Fixados - Realizam incremento ou decremento do valor de uma variável 
antes de seu valor ser utilizado, no caso de operador pré-fixado, ou depois de seu valor ser utilizado, no 
caso de operador pós-fixado. A vantagem de se utilizar estes operadores, e não o tradicional "variável = 
variável + 1;" é que além da praticidade e da compactação do código, torna o programa muito mais 
rápido.

++ incrementa de 1 seu operando
-- decrementa de 1 seu operando

Ex: Suponhamos a  variável i = 5:
Expressão                         Valor     expressão                             Valor     de     i     depois                           .  

  5 + i++ = 10 6
  5 + i-- = 10 4
  --i + 5 = 9 4
++i + 5 = 11 6

Operador Condicional - Substitui com vantagens o loop: "Se expressão1 é verdadeira Então 
expressão2,  Senão expressão3". Sua sintaxe é:

exp1 ? exp2 : exp3

Ex:
     Expressão                                                     Valor                                                                                .  

5? 1 : 2  1
i? i+j : k+j valor de i+j, se i não é zero e k+j, caso contrário

   (m>7)? 3:4 3, se m maior que 7 e 4, caso contrário
c=(a>b)? a: b devolve o maior valor, entre a e b, à variável c
d=(a>b)? ((a>c)? a:c): ((b>c)? b:c)) devolve o maior valor, o maior entre a, b e c, para d
e=(a>b)?((a>c)?((a>d)?a:d):((c>d)?c:d)):((b>c)?((b>d)?b:d):((c>d)?c:d));   maior entre a,b,c e d

Exemplos:
/*****************************************************/
/****      EXEMPLO 1:  Programa que mistura tipos int e char **/
/*****************************************************/
#include <stdio.h>
void main(void)
{  char c = 'a', ans;
   printf("O valor de c+3 = %c", c + 3);
   ans = c % 3;
   printf( “\n\nResto da divisão inteira = %d\n”, ans);
}



/*******************************************************/
/*** EXEMPLO 2: Programa sobre o operador aritmético % */
/******************************************************/
#include <stdio.h>
void main(void)
{   printf( "\n13 resto 3 = %d", 13 % 3);
     printf("\n-13 resto 3 = %d", -13 % 3);
     printf("\n13 resto -3 = %d", 13 % -3);
     printf("\n-13 resto -3 = %d", -13 % -3);
}

/********************************************************/
/**** EXEMPLO 3: Programa para demonstrar operadores  ****/
/**** relacionais - Números primos                ****/
/*******************************************************/
#include <stdio.h>
#include <math.h>
 void gera_primos(int limite);

void main(void)
{     int maximo;
      printf("\n Gerar numeros primos ate ?");
      scanf( "%d", &maximo);
      gera_primos (maximo);
      printf("\n");
}
void gera_primos (int limite)
{  int divisor;
   int candidato;
   int r=1;
   if (limite >=7)
   {    if (limite%2 == 0)       /* O limite superior é par */
            limite--;
        for(candidato = 3; candidato <= limite; candidato +=2)
        {        divisor = 3;
                 while (divisor <= sqrt(candidato) && (r=candidato % divisor)!= 0)
                       divisor +=2;
                 if (r !=0)
                     printf("%8d", candidato);                      /* numeros primos */
        }
    }
}

/***********************************************************/
/****** EXEMPLO 4: Programa para exibir o padrao de bits de um  */
/*****        inteiro sem sinal                                                                  */
/**********************************************************/
#include  <stdio.h>
void mostra_bits( unsigned especimen);

void main(void)
{ unsigned valor;

mostra_bits (0);
mostra_bits (5);
mostra_bits (13);
mostra_bits (117);



 mostra_bits (132);
   printf("\n\n Entre um numero: ");

scanf("%u", &valor);
printf("\n"); 
mostra_bits(valor);

}

void mostra_bits(unsigned especimen)
{  const int pos_max = 15;

int posicao_bit;
   printf("\n\b O número  %d na base binária \202: \n", especimen);

for (posicao_bit = pos_max; posicao_bit >=0; posicao_bit--)
         printf("%d", especimen >> posicao_bit & 1);
}

Exercícios:

Implemente o programa que lê valores para duas variáveis inteiras, X e Y, e depois, dependendo 
da escolha do usuário, implementa uma das operações a seguir e imprime a resposta: (a) X AND Y; (b) 
X (OU-EXC bit-a-bit) Y; (c) X deslocado Y vezes para a direita.

5 - CONVERSÕES DE TIPOS
Apesar do tipo de cada variável e constante ser definido no início das funções, eventualmente 

uma variável ou constante precisará ser convertida para outro tipo, no meio do programa. 
Uma conversão pode ocorrer porque definimos um operando como sendo de um tipo e depois 

precisamos compará-lo ou realizar alguma operação aritmética com este e outro operando de outro 
tipo. Ou então porque o tipo do operando não foi suficiente para armazená-lo durante todo o correr do 
programa. O fato é que conversões de tipos de variáveis e constantes acontecem e podem ser:

Conversão Automática - Ocorre quando tipos diferentes aparecem numa mesma expressão. A 
regra geral é converter o tipo "menor" para o tipo "maior".

Ex: 
       int  x=5;
          float y = 2.4;
     ...         soma = x + y;        /* Nesta linha o inteiro x é convertido para o valor real 5.0 */ 

Conversão Forçada - Também conhecida como conversão "cast". Ocorre quando um tipo 
específico for necessário e o operando não foi definido como tal. A sintaxe é:

(tipo)  expressão

onde tipo é o tipo para o qual será convertido o operando e expressão é uma expressão que 
contém a variável  ou constante a ser convertida.

Ex:
                float r = 3.5;
                 int i;
        ....     i = (int) r;        /* Nesta linha o valor 3 (truncamento do real r) foi atribuído a i */"



Conversões de tipos são perigosas, pois além de poderem gerar um código não-portátil (pois o 
tamanho dos tipos varia de máquina para máquina), podem criar problemas de armazenamento dos 
operandos. Por exemplo, quando um número real muito grande, cuja representação da parte inteira 
exceda 16 bits (por exemplo 3.24e14), for convertido para inteiro, o resultado será imprevisível, pois 
não se pode determinar o que será feito com a parte inteira que não couber nos 16 bits de um int.

As regras para conversões automáticas são:

Tipo Char e Short - São convertidos automaticamente para Int. Utiliza-se o código ASCII do 
caractere. Se o caractere contém o bit MSB em 1, o inteiro resultante poderá ser negativo, ou não, 
dependendo da máquina. Se o caractere for unsigned, o inteiro será positivo e os bits de maior ordem 
serão preenchidos com zeros.

Tipo Float - É convertido para Double.
Conversão de Operandos Aritméticos - o tipo "maior", dentre os tipos da expressão será o do 

resultado. A regra é:     double > long > unsigned > int.
Conversão de Operandos de Atribuição - o lado direito será convertido para o tipo do lado 

esquerdo. A regra é:

Operando     à     direita     Operando     à     esquerda     Conversão
Double Float com arredondamento
Float Int trunca parte frac., se o  número não couber

em int: resultado indeterm.
Long Int elimina os bits MSB
Int Char elimina os bits MSB

Exemplo 1 – diferentes tipos numa mesma expressão:
char ch;
int i;
float f;
double d;

result = ( ch / i ) + ( f * d) - ( f + i);

  int    double double  double

       int    double        double

        double

     double

double                   

Exemplo 2:
#include <stdio.h>
void main(void)
{     int i;
      for (i = 1; i <= 100; ++i)
      {    printf("%d/3 é: %f \n", i, (float) i/3);
            if(!(i%20))   getch();  //mostra vinte linhas e espera usuário teclar para continuar

        }
               }

Exemplo 3:

A expressão: (float) x/2     , converte x e, por consequência, o 2 para float
Já a expressão: (float) (x/2)   , converte o resultado inteiro de x/2 para float



6 - PRECEDÊNCIA 
Os operadores obedecem uma certa ordem de precedência. Isto é: operações de maior 

precedência são realizadas antes das de menor precedência. O operador de mais alta precedência é o 
abre e fecha-parênteses ("()"), portanto, tudo que estiver entre eles será realizado primeiro. Por 
exemplo:

primeiro  *=   segundo  <= terceiro

Primeiramente o segundo operando é comparado ao terceiro e depois a atribuição ao primeiro é 
feita, porque o operador "<=" tem uma precedência maior que o "*=". Esta expressão é equivalente a:

primeiro *= (segundo <= terceiro )

Observe que a expressão (segundo <= terceiro) tem valor zero ou um.
No caso da expressão:

primeiro = segundo -= terceiro

os operadores "=" e "-=" têm igual precedência, mas o segundo operando é avaliado antes do 
primeiro porque os compiladores C costumam avaliar expressões condicionais e de atribuição da direita 
para a esquerda.

Existem 15 classes de precedência, ou seja, todos os operadores pertencentes à mesma classe 
têm igual precedência. Neste caso, valem as regras de associatividade, para determinar-se quais 
operações serão realizadas primeiro.

A tabela abaixo mostra as classes de precedência dos operadores, em ordem decrescente:

Operador Nome do Operador Precedência Associatividade

( ) Chamada de função

1 esq. p/ dir.[ ] Elemento Matriz
-> Ponteiro para Membro Estrutura
. Membro de Estrutura
! Negação Lógica

2 dir. p/ esq.

~ Complemento de um
++ Incremento
-- Decremento
- Menos unário

(tipo) Cast
* Ponteiro
& Endereço

sizeof Tamanho do Objeto
* Multiplicação

3 esq. p/ dir./ Divisão
% Resto da Divisão
+ Adição 4 esq. p/ dir.- Subtração

<< Deslocamento à Esquerda 5 esq. p/ dir.>> Deslocamento à Direita
< Menor Que

6 esq. p/ dir.<= Menor ou Igual a
> Maior Que

>= Maior ou Igual a
== Igualdade 7 esq. p/ dir.!= Desigualdade



& AND, Bit a Bit 8 esq. p/ dir.
^ XOR, Bit a Bit 9 esq. p/ dir.
| OR, Bit a Bit 10 esq. p/ dir.

&& AND Lógico 11 esq. p/ dir.
|| OR Lógico 12 esq. p/ dir.
?: Condicional 13 dir. p/ esq.
= Atribuição 14 dir. p/ esq.op= Atribuição Reduzida
, Vírgula 15 esq. p/ dir.

7 - ORDEM DE AVALIAÇÃO

A ordem de avaliação de uma expressão indica se a operação será avaliada da direita pra 
esquerda ou o contrário.

Os operadores "&&", "||", e "," sempre são avaliados da esquerda para a direita. Fora este caso, a 
ordem de avaliação dependerá do compilador. 

Ex:
          int i=5;
...            y = (++i) + (--i);      ...

Neste caso, y poderá receber o valor 5+4= 9, 6+5 = 11 ou até 10(???)!!! Dependerá do 
compilador.

8 - COMANDOS DE CONTROLE DE FLUXO

Considera-se comando válido em C, qualquer expressão válida, seguida por um ponto-e-vírgula 
(;), ou expressão entre chaves ({}).

Ex: 
   a = 5; 

Neste capítulo, entretanto, trataremos de comandos de controle de fluxo. 
Pode-se dividir os comandos de controle de fluxo do C, em três categorias:  instruções 

condicionais (if e switch), comandos de controle de loop (while, for e do-while) e instrução de desvio 
incondicional (goto).

8.1 - O COMANDO IF

A forma geral da declaração if é:

if(condição_de_teste)
comando;

A interpretação é: "Se a condição_de_teste for verdadeira (não-zero), executa comando". Caso 
contrário, a execução é transferida para a instrução seguinte ao comando if. 

Ex: 
    if (x==5)  y=3;   



Se comando contiver mais de uma instrução, o bloco deve ser colocado entre chaves ( {} ):

if(condição_de_teste)
{ comando1;

comando2;
comando3;

                                ...
}

8.2 - O COMANDO IF-ELSE

A forma geral da declaração if-else é:

if(condição_de_teste)   
                               comando1;

else comando2;

A interpretação é: "Se a condição_de_teste for verdadeira (não-zero), executa comando1, Senão, 
executa comando2".

Ex:
             if ( x < 6)   
                      y = 1;
             else
                      y = 2;     

Os comandos if e if-else podem ser aninhados!!!
Isto ocorre quando uma série de testes sucessivos tem que ser feita, para fazer-se a escolha da 

instrução a ser executada. A sintaxe pode ser tal como:

if(condição1)
if(condição2)

                 comando1;  //instrução executada quando condição1 e condição2 forem V
                else
        comando2;  //instrução executada quando condição1 for V e condição2 for F

else

if(condição3)
                 comando3;  //instrução executada quando condição1 for F e condição3 for V
                else
        comando4; //instrução executada quando condição1 e condição3 forem F

Exercício: Um professor de educação física especificou a tabela abaixo que define o tempo de 
treinamento para alunos do sexo feminino e masculino, jovens ou adultos. Escreva o programa que 
implementa a tabela abaixo, isto é, lê a idade e sexo do usuário e devolve o tempo de treinamento 
recomendado.

Sexo:
Idade: Feminino Masculino
≤ 30 anos t = 15’ t = 45’
> 30 anos t = 25’ t = 60’

Mas há que se ter cuidado com o que é interno, o que é externo e a qual if pertence cada else e 
com a endentação!!!!!



Ex:  
O algoritmo: é diferente de: e de: e de:  ...
           if ( i > 2)            if ( i > 2)  if (i > 2); if (i > 2)
                 if ( j == 3)            {        if( j == 3)  if( j == 3) {         if( j == 3);
                         y = 4;                 y = 4;         y = 4;            y = 4;
                 else  y = 5;             } else y = 5;    else y = 5;  } else y = 5;

No primeiro caso, o else refere-se ao if mais interno e no segundo caso, ao if externo, pelo uso 
das chaves. No terceiro caso e no quarto casos, o ponto-e-vírgula “terminou” a instrução if, antes que 
esta executasse qualquer comando interno.

Obs: 
             if (a > b)   c = a;                                 
             else           c = b;           É equivalente a:        c = ( a > b ) ? a : b ;    
Obs2:  Em expressões condição_de_teste não-relacionais deve-se tomar cuidado:
            if (i == 3)  y = 5;  → se i for igual a 3, y igual a 5
            if (i = 3)    y = 5;  → se i=3 for não zero , y igual a 5 (i=3 é TRUE).
Obs3: 
            if ( i != 0)  y = 3;    é equivalente a       if (i) y = 3;  

Exercício:

Crie um programa de adivinhação, utilizando os comandos if e if-else. O programa pede um 
número ao usuário, verifica se este é igual ao número mágico (previamente definido) e imprime " ** 
Certo **", caso a pessoa tenha acertado ou " ** O número mágico é maior que .... ** " o número que a 
pessoa digitou, ou ainda " ** O número mágico é menor que ... ** " o número digitado.

Exemplos

/**********************************************************************/
/***                   Programa 1:   Exemplo de Conversão Automática                            **/
/**********************************************************************/
#include <stdio.h>
void main(void)
{      
       char ch;
       int i;
       float fl;

      fl = i = ch = 'A';                                                            // o caractere 'A' é armazenado 
      printf("ch = %c, i = %d, fl = %2.2f \n", ch, i, fl);         // como 65 (em i) e 65.00 (em fl)
      ch = ch + 1;                                                                // converte ch para int, soma 1 e reconverte para char
      i = fl + 2 * ch;      // converte ch para int, multiplica 2, transforma em float, soma a fl e  converte para int 
      fl = 2.0 * ch + i;                               // converte ch em float, multiplica por 2.0, i é convertido em float  e
      printf("ch = %c, i = %d, fl = %2.2f \n", ch, i, fl);          //somado a ch, o resultado é armazenado em fl
      ch = 5212205.17;                                                          // o valor excede 8 bits, portanto é truncado e o código 
      printf ("Agora ch = %c\n", ch);                                     //ASCII é armazenado em ch
}

/**********************************************************************/
/*** Programa 2: Demonstrar Conversão Forçada de Dados       (Cast)               ******/
/**********************************************************************/
#include <stdio.h>
void main(void)
{       int valor1, valor2;
         valor1 = 1.6 + 1.7;
    valor2 = (int) 1.6 + (int) 1.7;



    printf("valor1 = %d\n", valor1);
    printf("valor2 = %d\n", valor2);
}

/**********************************************************************/
/***  Programa 3:  Demonstrar Estrutura IF - ELSE                                               ****/
/**********************************************************************/
/*   Este programa localiza a percentagem de dias abaixo gelados!!                              */
#include <stdio.h>
#define ESCALA "celsius"
#define GELANDO 0
int main(void)
{
    float temperatura;
    int gelando = 0;
    int dias =0;
    
    printf("Entre com a relacao das temperatura dos dias gelados.\n");
    printf("Use escala %s, e entre s para sair.\n", ESCALA);
    while (scanf("%f", &temperatura) == 1)
    {     dias++;
           if(temperatura < GELANDO)
               gelando++;
    }
    if (dias!=0)
        printf("Do total de %d dias: %.1f\% foram abaixo de zero.\n", dias, 100.0*(float) gelando/dias);
    else
        printf("Nao foi fornecido nenhum dado!\n");
   return 0;
}

8.3 - O COMANDO WHILE

A forma geral da declaração while é:

while( expressão_de_teste)
comando;

A interpretação é: "Enquanto expressão_de_teste for verdadeira; execute comando". No 
momento em que expressão_de_teste deixa de ser não-zero, a execução continua na linha de 
comando seguinte ao laço while.

Se houver vários comandos internos ao loop while, estes devem estar entre chaves ({ }).
Ex:
          i=0;
...       while(i < 10)
          {   a = b * 2;
              chama_função( );
              i++;
           } 

É importante salientar que se a expressão_de_teste não for verdadeira já no primeiro teste do 
laço este não será executado nenhuma vez e que o comando while é mais apropriado para laços onde 
o número de interações não é conhecido de antemão. Por exemplo, como saber quantas vezes o 
usuário vai digitar caracteres para um número ou uma string de entrada?

Ex:



#include  <stdio.h>
   #include <conio.h>
    void main(void)
   { int cont=0;
     printf("Digite uma frase: \n");
     while(getche()!= 13)          /* O caractere com ASCII igual a 13 é a tecla enter (return) */
         cont++;
     printf("\nO numero de caracteres é %d", cont); } 

Ex2:
 i = 0;                                                                 i = 5;
... while (i<5)            É equivalente a            ... while (i)
       i++; ...                                                           i--;  ...

8.4 - O COMANDO DO-WHILE

A forma geral da declaração do-while é:
            do 
                  comando;
              while(expressão_de_teste);   
    
A interpretação é: "Faça comando enquanto expressão_de_teste for verdadeira".O comando do-

while faz quase o mesmo que o while, com a diferença que no primeiro, o loop é executado pelo menos 
uma vez, já que o teste da expressão é feito no final da interação. Ou seja, se expressão_de_teste for 
falsa já na primeira interação, comando é executado uma vez e em seguida a execução continua fora 
do loop, na próxima linha de comando. Caso expressão_de_teste seja verdadeira, comando será 
executado até que esta se torne falsa.

Exercício:

Adapte o programa do número mágico, para uso com estrutura do-while.

8.5 - O COMANDO FOR

A forma geral da declaração for é:

           for(inicialização;teste;incremento)
                    comando;

Em sua forma mais simples, inicialização é uma instrução de atribuição (p.e.: i = 0) e é sempre 
executada uma única vez antes do laço ser inicializado.

O teste é uma instrução condicional que controla o laço. Comando será executado até que teste 
seja falso.

A expressão de incremento (ou decremento) define a maneira como a variável de controle do laço 
será alterada a cada interação.

Ex:
   for( i = 0; i < 5; i++)               →   Para i de 0 até 4: 
        j++;                                               incrementa j a cada interação e incrementa i
   for(i = 5; i > 0; i--)    →   Para i de 5 até 0:

      j = j * 2;                                      novo valor de j é j * 2  e decrementa i
   for(;;)  { ... }                                →   Loop eterno
   for(i = 0; i< 5; i++)                        É equivalente a           for (i = 0; i< 5; j++, i++);"
         j++; 
 



Exercícios                      

 1 - Faça um programa que imprima os números de 1 a 10, utilizando:
      a)  comando while,
      b)  comando do-while,
      c)  comando for.

2 - Faça um programa que imprima os números de 0 a 9, de 2 em 2, utilizando o comando for.
3 - Faça um programa que imprima o fatorial de um número solicitado ao usuário, utilizando o 

comando while. 

8.8 - O COMANDO SWITCH

A forma geral da declaração switch é:

switch (exp_int)
               {    case rot1: 
                                     cmd1    
                    case rot2: 
                                    cmd2
                    ...
                    default:
                                    cmdn
                }

* Os comandos cmd1, cmd2, etc e a declaração default são opcionais no bloco.

Este comando testa o valor da expressão inteira exp_int, comparando-a com rot1, rot2, etc, até 
encontrar um rótulo que se iguale. Quando encontra, começa a executar de cima para baixo os 
comandos cmd1, cmd2, etc, até o final do bloco. Se não encontra, executa o comando do bloco default, 
cmdn.

Ex:     switch (i)
            {   case 1:  j = j + 5;
                 case 2:  
                 case 3:  j = j + 3;   }  
    
              Valor     de     i                                    Comandos     executados  
                   1                                            j = j + 5;   e  j = j + 3;
                2 ou 3                                        j = j + 3;
           qualquer outro                                 nenhum.

Utiliza-se a instrução break para que apenas o comando referente a cada rótulo seja executado.
Ex:    switch ( i )
           { case 1:   j = j + 5;
                          break;
             case 2:   
             case 3:   j = j + 3;
                           break;
              default:  j = j+ 1;    }

             Valor     de     i                                   Comandos     executados  
                     1                                           j = j + 5;
                 2 ou 3                                       j = j + 3;
           qualquer outro                                j = j + 1;

* Atenção!!!



Exercícios

/*************************************************************************/
/****        Programa que imprime números de 1 a 10 utilizando laço while:               *****/
/************************************************************************/
#include <stdio.h>
void main(void)
{  int contador = 1;
   while (contador <= 10)
   {    printf("%d\n", contador);
        contador++;
   }
}

/*************************************************************************/
/****     Programa que imprime números de 1 a 10 utilizando laço do-while                ****/
/************************************************************************/
#include <stdio.h>
void main(void)
{   int contador = 1;
    do
    {  printf("%d\n", contador);
       contador++;
    }
    while (contador <= 10);
}

/*************************************************************************/
/***    Programa que imprime números de 1 a 10 utilizando laço for                           *****/
/*************************************************************************/
#include <stdio.h>
void main(void)
{    int contador;
     for( contador = 1; contador <= 10; contador++)
         printf("%d\n", contador);
}

/*************************************************************************/
/****       Programa que imprime números de 0 a 9, de 2 em 2                                   *****/
/************************************************************************/
#include <stdio.h>
void main(void)
{    int i;
      for ( i = 0; i <= 9; i+=2)
          printf("%d\n", i);
}

/*************************************************************************/
/*****    Programa que calcula o fatorial de um número                                         *******/
/************************************************************************/
#include <stdio.h>
#include <conio.h>
void main(void)



{     int numero, j;
      char ch;
      double fat=1;

      for(;;)
      { fat=1;
        printf("Entre com um número positivo:  \n");
        scanf("%d", &numero);
        if(numero== 0 || numero == 1)
            printf("O fatorial de %d é: %.0f\n", numero, fat);
        else
        {    j = numero; 
              while(j)
              {   fat  *=  j;
                    j--;
               }
               printf("O fatorial de %d é: %.0f\n", numero, fat);
        }
      }  
}       

/*************************************************************************/
/***     Programa que gera a tabuada de 2 a 9                                                          ******/
/************************************************************************/
#include <stdio.h>
void main(void)
{   int i, j, k;
     printf("\n");
     for (k = 0; k <= 1; k++)
     {   printf("\n");
          for( i = 1; i < 5; i++)
              printf("TABUADA DO %3d  ", i+4*k+1);
          printf("\n");
          for( i = 1; i <= 9; i++)
          {    for( j = 2 + 4 *k; j <= 5 + 4*k; j++)

       printf("%3d x %1d = %3d\t", j, i, j*i);
               printf("\r");
           }
     }     
} 

/*******************************************************************/
/****  Programa da feira  de frutas                                                                   ****/
/******************************************************************/
#include <stdio.h>
#include <conio.h>
void main(void)
{  int i, opcao;
      printf("\n");
      for(i = 1; i <= 53; i++)

     printf("*");
      printf("\n*****\t\tPROGRAMA DA FEIRA!!\t\t*****\n");
      for(i = 1; i <= 53; i++)

     printf("*");
      printf("\n\n\t\t Escolha sua opção: \n");
      printf("\n\n\t\t(1) Uva; \n");



      printf("\n\t\t(2) Maça; \n");
      printf("\n\t\t(3) Banana; \n");
      printf("\n\t\t(4) Laranja; \n");
      scanf("%d",&opcao);
      switch(opcao)
      {  case 1:  printf("O cacho de uvas custa R$1.00");
                       break;

     case 2:  printf("A unidade de maças custa R$0.50");
                       break;

     case 3:  printf("O kilo de bananas custa R$0.70");
    break;

     case 4:  printf("A duzia de laranjas custa R$0.90");
                       break;

     default: printf("Desculpe, mas não temos esta fruta!!");
      }
}

Exercícios

1) Um certo Centro Acadêmico está tentando realizar um plebiscito para escolha do 
logotipo do curso, dentre 3 propostas. Faça o programa que implementa a “urna 
eletrônica”, a qual vai contabilizar os votos dos estudantes e professores em cada 
logotipo, os votos brancos e nulos; calcular os percentuais de votos válidos em cada 
logotipo e imprimir qual foi o logotipo vencedor.

2) Faça um programa-calculadora de 4 funções, ou seja, o usuário entra com dois números 
e estes são somados, subtraídos, multiplicados ou divididos.

9 - FUNÇÕES

Uma função é uma unidade de código de programa autônoma projetada para cumprir uma tarefa 
particular. Funções permitem grandes tarela, fas de computação em tarefas menores e permitem às 
pessoas trabalharem sobre o que outras já fizeram, ao invés de partir do nada.

A linguagem C em si, não possui funções pré-definidas. Todas as funções utilizadas em C foram 
projetadas pelos próprios usuários e algumas mais usadas já foram incorporadas às bibliotecas de 
alguns compiladores. Um exemplo de função em C é printf(), que realiza saídas dos programas sem 
que o usuário precise preocupar-se como isto é feito, pois alguém já fez isto e vendeu sua idéia aos 
outros usuários.

A principal razão da existência de funções é impedir que o programador tenha de escrever o 
mesmo código repetidas vezes. 

 As funções em C são utilizadas como funções (retornam valores; podem ser chamadas de 
dentro de uma expressão e não recebem parâmetros) e subrotinas ( não retornam valores; são 
chamadas por um comando CALL e recebem parâmetros) das outras linguagens. No entanto, não pode 
haver aninhamento de uma função dentro de outras funções. Cada bloco de um programa em C é uma 
e somente uma função.

Sintaxe:
          
         tipo  nome_da_função(declaração de parâmetros formais)
         {     declaração de variáveis
                comandos
         }

Onde:



tipo - tipo do valor de retorno da função. Se uma função não retornar nenhum valor deve-se usar 
o tipo "void", pois, por default, as funções em C/C++ retornam um inteiro. Ex: "void main(void)".

nome_da_função - nome da função. Como qualquer identificador em C, o nome não pode ser uma 
palavra reservada da linguagem (a não ser no caso da função main()), pode ser composto por letras, 
números e o caractere de sublinhado ( também chamado underscore: "_"), mas deve iniciar com uma 
letra ou com o underscore.

declaração  de  parâmetros  formais  - neste campo são declarados os parâmetros que a função 
recebe. Se a função não receber nenhum parâmetro, em alguns compiladores exige-se a utilização de 
"void", em outros, basta a omissão (quando então os parâmetros são assumidos como inteiros). Os 
nomes dos parâmetros devem ser separados por vírgulas. Ex: " int sqrt(x, y)".

Em alguns compiladores (como é o caso do Turbo C),  a declaração das variáveis utilizadas na 
função deve, obrigatoriamente, preceder quaisquer comandos da função. Deve vir logo depois do 
caractere de abre-chaves ("{"). Existem outros compiladores que aceitam esta declaração em qualquer 
linha da função, desde que precedendo a utilização das mesmas.

comandos  - Além dos comandos do corpo da função, este bloco pode conter o comando return 
que  finaliza a execução da função e retorna o valor para a expressão que a chamou. Caso não haja 
"return", este será assumido quando o compilador encontrar o caractere de fecha-chaves ("}") e o valor 
retornado será indefinido.

Ex:
     somaum ( int  numentra)
     { int numsai;
        numsai = numentra + 1;
        return numsai;
     }  

Exercício: 
Escreva a função que recebe, calcula e devolve a média de 4 valores.

9.1 - CHAMADA DA FUNÇÃO

Vimos até agora, como é a sintaxe da execução do corpo de uma função chamada em um 
expressão. Mas qual é a sintaxe da chamada de uma função? Seja numa expressão, ou não, a sintaxe 
é:

        nome_da_função(argumentos);

Na chamada de função em C não se utiliza CALL. Note que o que diferencia a chamada de uma 
função, da declaração da mesma é a utilização do ponto-e-vírgula (";"). Os argumentos são valores 
passados para a função. Quando não houver argumentos a serem passados, deixa-se este espaço em 
branco.

Ex:
   somaum(5)                                              → Retorna o valor 6
   maior = acha_num_maior(4,7,2,5);                → Retorna o valor 7 para a variável maior.

9.2 - PARÂMETROS E ARGUMENTOS

Argumento é o valor passado para uma função.
Parâmetro (Formal) é a variável que recebe valor do argumento.
Ex:
   #include <stdio.h>

mult(int,int);
void main(void)

     {   int a=4, b=5;
         printf(" O valor da multiplicação de %d por %d é  %d\n", a, b, mult(a,b)); 

  }

argumentos



     mult(int x, int y) 
     {  int resultado;
         resultado = x * y;
         return resultado;
     }     

  
Normalmente, C utiliza passagem de parâmetros "por valor" para funções. Isto é, os argumentos 

recebem cópias dos valores das variáveis na expressão. Temos isto ilustrado no exemplo acima. 
Quando a função mult(), recebe os argumentos a e b, na verdade apenas cópias dos valores de a e b 
são enviados para a função mult(). Em resumo, as variáveis a e b não tem seus valores modificados 
após terem sido utilizadas como argumentos de uma função.

Se deseja-se que a própria variável seja passada para a função que vai modificar seu valor 
utilizamos a passagem "por referência". Neste caso, o argumento recebe o endereço de memória da 
variável e a função chamada modifica o conteúdo deste endereço diretamente. Para passar valores por 
referência, utiliza-se os operadores "&"  e "*":

&  - " o endereço de "  - endereço da variável
*   - " no endereço de" - o que está contido no endereço da variável.

Ex:
   int saida = 5;
      ...
      incrementa(&saida);
      ...
      incrementa(int *numentra)        /* numentra contém o endereço e não o valor de saida  */
/* conteúdo do endereço numentra é do tipo int */
      {  (* numentra)++;               /* incrementa o conteúdo de numentra  */
         return;
      }                                        → No final da função incrementa(), saida tem o valor 6 

9.3 - VALORES DE RETORNO

Quando o tipo de valor de retorno da função não é especificado, por default a função vai retornar 
um valor inteiro.

Quando a função deve retornar um tipo que não o int, é necessário declarar-se o mesmo.
Quando a função não retorna nada, no caso de compiladores C ANSI, o tipo deve ser void.

9.4 - ESCOPO DE VARIÁVEIS

Um programa em C é um conjunto de uma ou mais funções, sendo que uma destas funções é a 
principal (main()), que será a primeira a ser executada. Como saber a que função pertence determinada 
variável, como seu valor muda de função para função e em qual(is) função(ões) ela existe?

Variáveis Locais ou Automáticas

São todas as variáveis declaradas dentro de uma função. Como só existem enquanto a função 
estiver sendo executada, são criadas quando tal função é chamada e destruídas quando termina a 
execução desta. Parâmetros formais são variáveis locais.

Somente podem ser referenciadas pela função onde foram declaradas e seus valores se perdem 
entre chamadas da função.

Ex:
      void func1(void)
       {  int x;               → O x da func1() e o x da func2() são duas variáveis diferentes, armaze-
           x = 10; }               nadas em posições de memória diferentes, com conteúdos diferentes,
       void func2(void)        apesar do mesmo nome.
       { int x;                   
         x = -199;       }    

Uma variável local deve ser declarada no início da função (antes de qualquer comando), por 
motivos de clareza e organização do código e porque alguns compiladores assim o exigem. Existem 

parâmetros formais



compiladores, no entanto, que permitem que a declaração seja feita em qualquer ponto do corpo da 
função, desde que antes da utilização da variável.

Variáveis Globais

São variáveis declaradas e/ou definidas fora de qualquer função do programa. Podem ser 
acessadas por qualquer função do arquivo e seus valores existem durante toda a execução do 
programa. Também por motivos de clareza convenciona-se declará-las no início do programa, após os 
comandos do pré-processador e das declarações de protótipos de funções.

Ex:
    ...
      int conta;                /* conta é global  */
      void main(void)
      {    conta = mul(10,123);
      ...  }
     func1()
     { int temp;
       temp = conta;
     ...   }
     func2()
     {   int conta;
         conta = 10;      /* esta conta é local   */
     ...   }     

Variáveis externas
                 
Um programa em C pode ser composto  por um ou mais arquivos-fonte, compilados 

separadamente e posteriormente linkados, gerando um arquivo executável. Como as várias funções do 
programa estarão distribuídas pelos arquivos-fonte, variáveis globais de um arquivo não serão 
reconhecidas por outro, a menos que estas variáveis sejam declaradas como externas.  A variável 
externa deve ser definida em somente um dos arquivos-fonte e em quaisquer outros arquivos deve ser 
referenciada mediante a declaração com a seguinte sintaxe:

     extern  tipo_var  nome_var;

onde tipo_var é o tipo da variável e nome_var, o nome desta.
Ex:
                 Arquivo     1                                              Arquivo     2  
           int x, y;                                                           extern int x, y;
             char ch;                                                              extern char ch;
             void main(void)                                                 func23()
             { ...  }                                                                  {   x = y/10;
             func1()                                                                }
             {     x = 123;                                                       func24()
             ...    }                                                               {  y = 10; } 

Variáveis Estáticas

São variáveis reconhecidas e permanentes apenas dentro dos arquivos-fonte ou funções onde 
foram declaradas. Uma variável estática mantém seus valores entre chamadas da função o que é muito 
útil quando se quer escrever funções generalizadas (sem o uso de variáveis globais) e biblioteca de 
funções. A sintaxe é:

             static tipo_var  nome_var;

onde tipo_var é o tipo da variável e nome_var, o nome desta.



Ex:
           static int rand(void)
             {     static int semente = 1;
                   semente = (semente * 25173+ 13849)%65536;     /* formula magica  */
                   return (semente);
              }    
              ...
              void main(void)
              {    int c;
                   for(c=1; c<=5; c++)
                        printf("Número randômico: %d \n", rand());
              }

 A saída deste programa será:
               Número randômico:  -26514
               Número randômico:  -4449
               Número randômico:  20196
               Número randômico:  -20531
               Número randômico:  3882

Variáveis Registradores

Uma variável declarada com o modificador register indica ao compilador para utilizar um 
registrador da CPU, ao invés de alocar memória para a variável. Variáveis armazenadas em 
registradores são acessadas muito mais rápido que as armazenadas em memória, o que aumenta 
muito a velocidade de processamento. Se o número de variáveis designadas como register exceder o 
número disponível de registradores da máquina, então o excesso será tratado como variáveis 
automáticas.

Variáveis registradores não podem ser globais e geralmente aplicam-se aos tipos int e char.
Obs: Existem programadores que costumam colocar variáveis contadoras em registradores, para 

tornar o processamento o mais rápido possível.
Ex:

/************************************************/
// Este programa mostra a diferença que uma variável register 
// pode fazer na velocidade de execucao de um programa
/************************************************/
#include <stdio.h>
#include <time.h>
unsigned int i;   // variável não-register
unsigned int delay;

void main(void)
{   register unsigned int j;
    long t;
    t = time('\0');
    for(delay = 0;delay < 50000; delay++)
       for(i = 0; i< 64000; i++) ;
    printf("tempo de loop não register: %d \n", time('\0')-t);
  getch( );
    t = time('\0');
    for(delay = 0; delay < 50000; delay++)
       for(j=0; j< 64000; j++) ;
    printf("tempo do loop register: %d \n", time('\0')-t);
}



10. MATRIZES

São grupos (de uma ou mais dimensões) de variáveis indexadas, do mesmo tipo. Matrizes 
unidimensionais são mais conhecidas por vetores ou "arrays".

Sintaxe:

                        tipo  nome[tamanho]   =  { elem0, elem1, ... , elemn} ;

onde,
tipo: tipo dos elementos da matriz;
nome: nome da matriz;
tamanho: número de elementos da matriz;
= {  }  : termo opcional. Representa a definição de uma matriz, já na declaração. Caso a matriz 

seja definida na declaração é desnecessário especificar-se o tamanho desta.
elemx: elemento da matriz de índice x.
Todas as matrizes e vetores em C iniciam pelo elemento de índice 0 (zero). Elementos não-

inicializados recebem o valor 0 (zero) por default.
Os elementos da matriz são referenciados individualmente pela especificação do nome da matriz, 

seguido do  índice do elemento entre colchetes:

                           nome[índice]

Ex:
Matriz que armazena as notas das 4 provas de um aluno:
    float notas[4] = {9.5, 5.0, 10, 6.8};
       ...
       notas[0] = 9.5;
       notas[2] = 10;
       ...           
ou
    float notas[4];
       ...
       notas[0] = 9.5;
       ...
       notas[3] = 6.8;  
ou
     float notas[] = { 9.5, 5.0, 10, 6.8};
        ...
        notas [0] = 9.5;
        ...                      
                       

10.1 - STRINGS

Uma string em C equivale a um vetor de caracteres sempre terminado pelo caractere NULL ('\0'). 
Para inicializar-se um vetor de caracteres pode-se fazê-lo individualmente, elemento a elemento, 

ou não. Mesmo que se esqueça de incluir o caractere NULL, este será acrescentado à string. Além 
disto, deve-se sempre lembrar de dimensionar o tamanho da string como o número de caracteres da 
expressão + 1 (para o caractere NULL).

Exs:   
       char matcar[] = "ABCD";  
onde:
       matcar[0] = 'A';
       matcar[1] = 'B';
       matcar[2] = 'C';
       matcar[3] = 'D';



       matcar[4] = '\0';

ou
       char matcar[5] = { 'A', 'B', 'C', 'D', '\0'};  

se: 
      char matcar[10] = "ABCDE"; 
temos:
        matcar[0] = 'A';
        matcar[1] = 'B';
        ...
        matcar[4] = 'E';
        matcar[5] = '\0'; 
        matcar[6] = '0';
        matcar[7] = '0';
        matcar[8] = '0';
        matcar[9] = '0'

A string nula ("") é:   { '\0'}.

10.2 - MATRIZES MULTIDIMENSIONAIS

Para representar, por exemplo, a matriz bidimensional "Mat", abaixo:
                               
                                       2    4    6    8   
                 Mat =             1    2    3    4   
                                       7    8    9    0  

utilizamos a sintaxe:

                              tipo   nome [ número_linhas ]  [número_colunas  ]; 

ou seja, no primeiro par de colchetes indicamos o número de linhas da matriz e no segundo par, o 
número de colunas. O tamanho da matriz será: 

                             número_linhas X número_colunas

No caso de matrizes multidimensionais, a sintaxe é:

                            tipo   nome [ tamanho1 ]  [tamanho2 ] ... [ tamanhon];

onde tamanhoX é o número de elementos da X-ésima dimensão.
Ex:
      int mat [3] [4] =   {  { 2, 4, 6, 8 },
                                      { 1, 2, 3, 4 },
                                      { 7, 8, 9, 0 }  } ;  
onde:
     elemento mat [0] [0] = 2;
     elemento mat [2] [3] = 0;
     elemento mat [1] [2] = 3;
     etc.

Exercícios

Faça um programa que cria uma matriz de 3 dimensões (2 x 4 x 2) e atribui valores a mesma.



10.3 - MATRIZES PASSADAS PARA FUNÇÕES

Na linguagem C, o nome de uma matriz é equivalente ao endereço do primeiro elemento da 
matriz! Isto significa que quando queremos passar uma matriz como argumento ("por     referência  ") a 
uma função, basta utilizar o nome da matriz, sem os colchetes e índices. Se apenas um elemento da 
matriz deve ser modificado, então utiliza-se seus índices em colchetes.

Ex:
/********************************************/
/*** Programa que converte uma string para maiúscula ***/
/********************************************/
 #include <ctype.h>
#include <stdio.h>
void imprime_maius(char[81]);
void main(void)
{  char s[81];
   printf(“Digite uma frase”);
   gets(s);
   imprime_maius(s);
}
void imprime_maius(char string[])
 {  register int t;
    for(t=0;string[t]; t++)
    {   string[t] = toupper(string[t]);

       printf("%c", string[t]);
    }
 }     

/************************************/
/*** MATRIZ DO JOGO DA VELHA        ***/
/*************************************/
#include <stdlib.h>
#include <stdio.h>

void pega_mov_jogador(void);
void pega_mov_computador(void);
void exibir_matriz(void);
int check(void);

char matriz[3][3] = { ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' ', ' '};

void main(void)
{  char feito;

   printf(" ** Este e' o jogo da velha!! ***\n");
   printf(" Voce vai jogar contra o computador \n");
   feito = ' ' ;
   do
   {    exibir_matriz();

pega_mov_jogador();
feito = check();   // verifica quem ganhou
if(feito != ' ' )
   break;
pega_mov_computador();
feito = check();    // verifica quem ganhou

   }while (feito == ' ' );
   if (feito== 'X' ) printf(" Voce venceu!*** \n");



   else printf(" Eu ganhei!!\n");
   exibir_matriz();     // mostra posicoes finais
}

void pega_mov_jogador(void)
{   int x, y;
    int ok = 0;
    printf(" Digite as coordenadas para o seu X: " );
    do
    {  scanf(" %d %d", &x, &y);
       x--; y--;
       if (matriz[x][y] != ' ')

  printf(" Movimento invalido, \nTente de novo.\n");
       else

   {     matriz[x][y] = 'X';
          ok = 1;}

    }while(!ok);  }
void pega_mov_computador(void)
{  register int t, i;
   // procura lugar nao usado ainda
   for(t=0;t<3;t++)
      for(i=0;i<3;i++)

if(matriz[t][i] == ' ')
    if(t*i==9)
    {  printf(" Empate!! \n");
       exit(0);  // terminar o programa
    }else
    {matriz[t][i] = 'O';
     t=3; i=3;

             }
}

void exibir_matriz(void)
{  int t;
   for(t=0;t<3;t++)
   {   printf(" %c | %c | %c " , matriz[t][0], matriz[t][1], matriz[t][2]);
       if(t!=2) printf("\n---|---|---\n");
   }
   printf("\n");
}

// verifica se existe um ganhador; caso contrario, retorna ' '
int check(void)
{  int t;
   for(t=0;t<3; t++)
     if(matriz[t][0]==matriz[t][1] && matriz[t][1]==matriz[t][2])
       return matriz[t][0];
   for(t=0;t<3;t++)
     if(matriz[0][t]==matriz[1][t] && matriz[1][t]==matriz[2][t])
       return matriz[0][t];
   if(matriz[0][0]==matriz[1][1] && matriz[1][1]==matriz[2][2])
      return matriz[0][0];
   if(matriz[0][2]==matriz[1][1] && matriz[1][1]==matriz[2][0])
      return matriz[0][2];
   return ' ';
}



10.4 - ORGANIZAÇÃO DE MATRIZES NA MEMÓRIA

Como já foi dito, o nome de uma matriz contém o endereço do primeiro elemento da matriz (ou 
seja, é um ponteiro para o primeiro elemento) . Além disto, os elementos são armazenados um em 
seguida do outro, em endereços consecutivos. Ou seja, numa matriz de caracteres (variáveis de 1 
palavra), se o endereço do primeiro elemento (índice 0) for 1500, por exemplo, o endereço do segundo 
(índice 1) será 1501 e assim por diante.

Quando utilizamos o nome de uma matriz como parâmetro para uma função, não estaremos 
passando a matriz, mas na verdade apenas o endereço do primeiro elemento desta, e por 
consequência, os outros.

Ex:
char alfa[27];
   ...
   alfa[0] = 'A';
   alfa[1] = 'B';
    ...
   alfa[25] = 'Z';
    ...
    escreve(alfa);
   ...      
Note que, apesar de termos reservado 27 bytes para a matriz 'alfa', utilizamos apenas 26. Como 

trata-se de uma string, o último lugar é reservado para o caractere NULL ('\0').
Na memória, a representação desta matriz seria (suponha o endereço de 'alfa' como sendo 1492 

e do primeiro elemento, alfa[0] como sendo 1500):

1490 1491 1492 1493 1494 1495 1496 1497 1498 1499
X X alfa X X X X X X X
X X 1500 X X X X X X X

1500 1501 1502 1503 1504 1505 1506 1507 1508 1509
alfa[0] alfa[1] alfa[2] alfa[3] alfa[4

]
alfa[5] ... ... ... ...

65 66 67 68 69 70 ... ... ... ...

...
1520 1521 1522 1523 1524 1525 1526 1527 1528 1529
... ... ... ... alfa[24] alfa[25] alfa[26] X X X
... ... ... ... 89 90 00 X X X

onde o valor 65 é o código ASCII do caractere 'A' , 90 é o código do caractere 'Z' e 00 é o código 
do caractere NULL.

Observação Importante sobre Matrizes:

A linguagem C não verifica se alguma matriz tomar espaço de memória que não devia. Por 
exemplo:

int notas[30];
...
for(i=0; i<40; i++)

    scanf("%d", notas + i);            E
No exemplo acima, declaramos a matriz notas como tendo 30 elementos e depois, por descuido 

provavelmente, atribuímos 40 valores a esta (notas[0] a notas[39]). Neste caso, 10 espaços de memória 
seguintes ao espaço ocupado pela matriz, serão apagados e receberão valores de notas. Isto pode 



danificar dados importantes do programa, ao apagar os valores de variaveis ou constantes, ou mesmo 
partes do código. Não se pode prever o que aconteceria.

A responsabilidade do programador redobra, portanto, ao lidar com matrizes e vetores e é preciso 
muita atenção.

Outro erro que poderia ocorrer no exemplo acima, seria pedir a entrada de valores tipo float 
(usando "%f", por exemplo) em scanf() para elementos de uma matriz de inteiros. Como o tipo float é 
maior que o tipo int, cada elemento não caberia no espaço reservado para si e tomaria memória do 
elemento seguinte.

 *  Note que utilizamos aqui a expressão   " scanf("%d", notas + i);   ",  ao invés de "scanf("%d", 
&notas[i]);"  ou mesmo "scanf("%d", notas[i]);" . Porque? Todas estas expressões são aceitas? Qual a 
diferença entre elas??? 

Exercícios

Faça um programa que lê 4 notas para cada um dos 30 alunos de uma turma, armazena-as em 
uma matriz, calcula e devolve a média de cada aluno.

11 - PONTEIROS

Uma das características mas poderosas oferecidas pela linguagem C é o uso de ponteiros. Mas 
também é visto como um do tópicos mais complexos da linguagem. Isto ocorre principalmente porque 
os conceitos embutidos em ponteiros podem ser novos para muitos programadores (tendo-se em vista 
que nem todas as linguagens utilizam ponteiros), mas também porque os símbolos usados para 
notação de ponteiros em C não são tão claros; por exemplo, o mesmo símbolo ("*") é usado para duas 
diferentes finalidades.

Mas, o que são ponteiros? 
Ponteiros proporcionam um modo de acesso a variáveis sem referenciá-las diretamente, através 

do seu endereço. Basicamente, um ponteiro é uma representação simbólica de um endereço. 
Para declarar uma variável como ponteiro, a sintaxe é:

tipo  * nome_da_variável;

onde tipo é o tipo de variável para qual o ponteiro vai apontar e nome_da_variável é o nome do 
ponteiro. Ou seja, a variável ponteiro nome_da_variável vai conter o endereço de uma outra variável do 
tipo tipo. Além disto, quando quisermos definir o ponteiro, utilizaremos o operador "&" para atribuir "o 
endereço de" uma variável ao ponteiro. 

Ex:   
          int  * pont_i ;                    // pont_i é uma variável ponteiro para variáveis int
                float * pont_f;                   //  pont_f é uma variável ponteiro para variáveis float
                int i=5;
                ...
                pont_i = &i;                     // coloca o endereço de i em pont_i     

A variável pont_i  agora "aponta para i". Caso precisemos acessar o conteúdo do endereço 
apontado por pont_i, ou seja, o conteúdo de i, utilizaremos o operador "*", que neste caso significa 
"valor no endereço de":

  *pont_i = 5;         // coloca o valor 5 no endereço apontado por pont_i  (faz i = 5) 

Os ponteiros podem ser inicializados já na declaração, como qualquer variável:

   int *pi = &i;     
Além disto, os ponteiros podem ser utilizados na maioria das expressões válidas em  C.              



Ponteiros são usados em situações em que a passagem de valores é difícil ou indesejável. 
Algumas razões para o uso de ponteiros são:

1 - fornecem maneiras com as quais as funções podem realmente modificar os 
argumentos que recebem;

2 - para passar matrizes e strings mais convenientemente de uma função para outra;
3 - para manipular matrizes mais facilmente através da movimentação de ponteiros 

para elas;
4 - para criar estruturas de dados complexas, como listas encadeadas e árvores 

binárias, onde uma estrutura de dados deve conter referências sobre outra;
5 - para comunicar informações sobre memória, como na função malloc() que retorna a 

localização de memória livre através do uso de ponteiro;
6 - a notação de ponteiros compila muito mais rapidamente, tornando o código mais 

eficiente.
Outra coisa muito importante, é lembrar que podemos passar vários valores como argumentos 

para uma função, porém apenas sabemos como retornar um único valor (através do comando "return"). 
Mas como fazer para que uma função altere mais de um valor para a função chamadora? Visto que não 
há mecanismos próprios para isto, devemos contar com o uso de ponteiros.

Ex:
#include <stdio.h>
void main(void)
{     int x=4, y=7;
      int *px, *py;

                     printf("x é:   %d,  y é:  %d. \n", x, y);
      px = &x;

                     py = &y;
                     printf(" O endereço de x é: %u, e o de y é:  %u \n", px, py);
                     *px = *px + 10;                        // pode-se usar  *px += 10;
                     *py = *py + 10;                       // e também    (*py ) +=10
                      printf(" Agora x é:  %d  e y é:  %d \n", x, y);

  printf(" ... e agora px aponta para: %u, e py para: %u\n", ++px, ++py);
  printf(" ... que contém os valores: %d, %d \n", *px, *py);
}        

 
Um operador "&" pode ser aplicado somente a variáveis e elementos de matrizes. Construções 

tais com "&(x+1)" e "&(3)" são ilegais.
Ponteiros são sempre inicializados com o valor 0 (NULL) que não é um endereço válido, 

obrigando portanto, que inicializemos sempre nossos ponteiros antes de utilizá-los.

11.1 - PONTEIROS E MATRIZES

Existe uma correspondência muito grande entre ponteiros e matrizes. O nome de uma matriz é 
equivalente ao endereço do primeiro elemento na matriz. Como isto é imutável, podemos chamar o 
nome de uma matriz de "ponteiro constante". Já um ponteiro comum tem conteúdo variável, pode 
conter qualquer endereço, sendo porisso chamado de "ponteiro variável". Pode-se fazer, portanto:

    int imat[5] = {5,7,31,18,22};
       int *ip;
       ...
       ip = imat;          //   OU  ip=&imat[0];  

e teríamos, por exemplo, "*(ip+n)" como sendo  o valor do n-ésimo elemento da matriz imat. 
Isto porque o significado da adição ou subtração de um inteiro com um ponteiro é adicionar ou subtrair 
o tamanho de memória do tipo da variável (sizeof) para o qual o ponteiro foi declarado. Em outras 
palavras, ip não vai ser incrementado de n bytes de memória, mas de 2 bytes * n, pois o tipo int ocupa 2 
bytes. A disposição na memória, por exemplo, seria:



Variável Endereço Valor
imat 567 630
imat[0] 630 5
imat[1] 632 7
imat[2] 634 31
imat[3] 636 18
imat[4] 638 22
ip 802 630
então:
Expressão Valor Explicação
ip 630 endereço de imat[0]
*ip 5 valor em 630
ip + 1 632 endereço de imat[1]
*(ip+1) 7 valor em 632
*ip + 1 6 valor em 630 mais 1
imat[0] 5
*(imat) 5
imat[1] 7
*(imat+1) 7

Com strings é a mesma coisa:

    char  *pc="ABC";   

define um ponteiro para a série de caracteres "ABC" (terminada com "\0"). O ponteiro pc tem 
portanto, como valor, o endereço do primeiro elemento da série, o caractere 'A'.

Pode-se ter, também, matrizes de ponteiros:

    static char *cp[3] = {"XYZ", "QRS", "KLM"};   

por exemplo, declara cp como sendo uma matriz de 3 ponteiros para caracteres e já inicializa-os, 
fazendo-os apontar para as três sequências de caracteres.

Na memória isto ficaria:

Variável Endereço Valor
constante 731 'X'
constante 732 'Y'
constante 733 'Z'
constante 734 '\0'
constante 735 'Q'
constante 736 'R'
constante 737 'S'
constante 738 '\0'
constante 739 'K'
constante 740 'L'
constante 741 'M'
constante 742 '\0'
cp[0] 900 731
cp[1] 902 735
cp[2] 904 739

11.2 - ARITMÉTICA DE PONTEIROS

Existem poucas operações que devem ou podem ser efetuadas com o valor dos ponteiros. Essas 
operações são a atribuição de valores a outros ponteiros, soma e subtração de inteiros, e comparação 
de igualdade com outro valor de ponteiro. Ponteiros podem ser adicionados e subtraídos de outros 
ponteiros, quando estes ponteiros apontam para elementos diferentes de uma mesma matriz. Por 
exemplo:



 static int imat[10];
    int *ip= &imat[0];
    int *iq= &imat[4];
    ...
    distancia = iq - ip;     // distancia= 4 e significa o número de elementos int entre iq e ip    
   
Os operadores unários utilizados em ponteiros são "++" e "--". Supondo um ponteiro para ponto 

flutuante p1, com valor atual de 2000. Após a operação:

   p1++;  

o conteúdo de p1 será 2008 e não 2001. Para cada incremento de p1, este apontará para o 
double seguinte, que na maioria dos computadores tem 8 palavras de comprimento.

O mesmo vale para decréscimos:

 p1--;    

fará com que p1 tenha o valor 1992.
Pode-se comparar ponteiros, através dos testes relacionais ">=, <=, < e >". Deve-se, no entanto, 

tomar cuidado para não comparar ponteiros que apontam para tipos diferentes de variáveis, pois os 
resultados serão sem sentido.

Não se pode multiplicar, dividir, deslocar os bits, somar ou subtrair floats e double aos ponteiros.

11.3 - PONTEIROS PARA MATRIZES USANDO FUNÇÕES

Vamos analisar como uma função pode usar ponteiros para acessar elementos de uma matriz 
cujo endereço é passado para a função como argumento.

Como exemplo, vamos ver a função adcon1(), que adiciona uma constante a todos os elementos 
de uma matriz.

#include <stdio.h>
 #define TAM 5

void adcon1(int *, int, int);

  void main(void)
  {    static int matriz[TAM] = { 3,6,7,9,11};
       int c=10;
       int j;

       adcon1(matriz, TAM, c);
       for(j=0; j<TAM; j++)
              printf("%d", *(matriz+j));
}

 // adcon1() - adiciona constante a cada elemento da matriz
void adcon1(int *ptr,int num,int con)
{    int k;
     for(k=0; k<num; k++)
     {    *ptr = *ptr + con;   ptr++;  }
}     



A saída será:
13 16 17 19 21 

Na definição da função adcon1(), a declaração " int *ptr; " é equivalente a " int ptr[]; ". Em outras 
palavras, a primeira declaração cria um ponteiro variável, enquanto a segunda, um ponteiro constante.

Exercícios

1 - "Os ponteiros permitem a passagem de valores por referência para uma função". Demonstre 
esta propriedade através de um programa.

 
2 -  Faça um programa que calcule a média aritmética de um número arbitrário de notas de 

provas, usando matrizes.

3 - Repita o programa acima, agora utilizando ponteiros.

Exemplos

/******************************************************************************/
/***** Programa que procura um caractere em uma "string"                               **************/
/******************************************************************************/
#include <stdio.h>
#include <conio.h>

char *procstr(char *, char);

void main(void)
{
    char *ptr;
    char ch, lin[81];

    puts("Digite uma frase:  ");
    gets(lin);
    printf("Digite o caractere a ser procurado:  ");
    ch = getche();
    ptr = procstr(lin, ch);
    printf("\n A string comeca no endereço %u.\n",lin);
    if(ptr)
    {   printf("Primeira ocorrencia do caractere: %u.\n", ptr);
        printf("E a posição: %d", ptr-lin);
    } 
    else     printf("\n caractere nao existe. \n");
    getche();
}

char *procstr(char *linha,char c)
{  while(*linha != c && *linha != '\0')
            linha++;
    if(*linha != '\0') 
            return(linha+ 1);
    else 
            return(0);
}



12 - TIPOS DE DADOS COMPLEXOS E ESTRUTURADOS

A linguagem C permite que o usuário "crie" seus próprios tipos complexos de variáveis. 
Enumerações, uniões, estruturas e definição de tipos serão os tópicos estudados neste capítulo.

12.1 - ENUMERAÇÕES

Enumerações são classes, conjuntos de valores relacionados, criados para melhorar a 
legibilidade do código-fonte. Uma variável de um tipo enumeração somente pode receber valores que 
foram declarados para aquele tipo. A sintaxe da declaração de um tipo enum é:

enum rótulo {enum1, enum2, ..., enumn};

onde rótulo é uma identificação para esta enumeração e enum1, enum2, ..., enumn são os 
valores possíveis para rótulo.

A sintaxe para a definição de uma variável como sendo de um tipo rótulo é:

enum rótulo nome_variável;

onde nome_variável é o nome da variável que vai assumir algum valor dentre os valores 
possíveis da enumeração rótulo.

Como qualquer tipo em C, a definição de uma variável como sendo de um certo tipo enumeração 
rótulo, pode ser feita na própria declaração do tipo.

enum rótulo {enum1, enum2, ..., enumn} nome_variável;

Ex:
enum dias { seg, ter, qua, qui, sex, sab, dom}; (1)
...
enum dias hoje, dia_semana; (2)

ou
enum dias { seg, ter, qua, qui, sex, sab, dom} hoje, dia_semana; (3)

Neste exemplo, definimos uma enumeração dias (1), que pode ter os valores seg, ter, qua, qui, 
sex, sab, dom. Logo abaixo, (2), declaramos as variáveis hoje e dia_semana, como sendo do tipo dias. 
Pode-se fazer os dois passos ao mesmo tempo, como na linha (3) do exemplo.

A definição da variável será feita com a seguinte sintaxe:

nome_variável = enumx;

onde enumx é qualquer um dos n valores contidos na enumeração. 
Ex:

dia_semana = ter;

Cada valor possível na enumeração recebe um valor inteiro com o qual pode ser representado. 
Caso não seja explicitado, o primeiro valor vai receber o inteiro 0, o segundo, o inteiro 1 e assim por 
diante. Isto é feito para que se possa comparar cada valor da enumeração. Por exemplo, na 
enumeração dias:

Identificador                      Valor  
    seg    0
    ter    1
    quar    2
    qui    3
    sex    4
    sab    5



    dom    6
se fizermos:

Expressão                         Valor  
dia_semana == seg  1 se dia_semana for seg, 0 caso contrário
hoje > sex 1 se hoje for sab ou dom, 0 caso contrário
ter > quar 0 (falso)

Alguns compiladores permitem que se altere o inteiro atríbuido a cada valor da enumeração.
Exs:

enum estações { primavera = 1, verão = 2, outono = 3, inverno = 4} estação;

enum fim_de_semana { sab = 6, dom ); 
  
No exemplo acima, dom terá automaticamente, o valor 7.

12.2 - ESTRUTURAS

Estrutura é um grupo de variáveis, cujo formato é definido pelo programador e ao contrário das 
matrizes, pode ser composto por tipos diferentes. Em outras linguagens, por exemplo Pascal, estruturas 
são conhecidas como registros.

O exemplo tradicional de uma estrutura é o registro de uma folha de pagamento: um funcionário é 
descrito por um conjunto de atributos tais como  nome (uma "string"), o número do seu departamento 
(um inteiro), salário (um float) e assim por diante. Como provavelmente existirão vários funcionários, 
pode-se criar uma matriz desta estrutura como sendo o banco de dados completo de pagamentos.

Definição 

A definição de uma estrutura é feita da seguinte forma:

struct rótulo
                        {   declaração da variável1;
                             declaração da variável2;
                             ...
                             declaração da variáveln;
                         };

onde rótulo é uma identificação para esta estrutura e como veremos mais tarde, é opcional. As 
linhas de comando declaração da variável são declarações de variáveis de tipos convencionais (int, 
float, char) que vão compor os campos da estrutura.

Declaração de uma variável do tipo estrutura:

A declaração de uma variável como sendo do tipo estrutura rótulo é feita com a seguinte sintaxe:

struct rótulo nome_variável;

O exemplo acima declara a variável nome_variável como sendo uma estrutura do tipo rótulo. A 
declaração da variável pode ser feita já na definição do tipo estrutura:

struct rótulo
                        {   declaração da variável1;
                             declaração da variável2;
                             ...
                             declaração da variáveln;
                         }  nome_variável;

como usualmente é feito.



Ex:

struct registro
{ char nome[20];

int departamento;
float salário;

};
struct registro meu_registro; 
...
struct registro folha_pagamento[50];

Neste exemplo, definimos a estrutura registro que contém dados sobre um determinado 
empregado, como nome, número de departamento e salário.  Declaramos também, a variável 
meu_registro como sendo do tipo registro, ou seja, uma estrutura de dados. 

Matriz de estruturas:

A seguir, no exemplo acima, declaramos a matriz de estruturas folha_pagamento, como tendo 
50 elementos. Isto significa que a folha de pagamento da empresa conterá 50 registros, cada qual com 
o nome, número de departamento e salário do empregado.

A sintaxe para a declaração de uma matriz de estruturas é:

struct rótulo nome_mat_estrut[dimensão];

onde nome_mat_estrut é o nome da matriz de estruturas e dimensão é o número de elementos 
da matriz.

Rótulo da estrutura:

O rótulo de um tipo estrutura é opcional quando declaramos uma estrutura na própria definição do 
seu tipo.  Caso façamos a declaração da variável em linha de comando subsequente ou queiramos 
declarar outras estruturas como sendo daquele tipo deve-se utilizar o rótulo.

Inicialização da estrutura:

A inicialização de estruturas assemelha-se à inicialização de matrizes:

static struct registro meu_registro = { "Fernanda Marques", 21, 10000};
ou 

static struct registro meu_registro = { { 'F', 'e', 'r', 'n', 'a', 'n', 'd', 'a' , ' ', 'M', 'a', 'r', 'q', 'u', 'e', 's',  
'\0'}, 21, 10000};

ou 

static struct registro meu_registro = {  'F', 'e', 'r', 'n', 'a', 'n', 'd', 'a' , ' ', 'M', 'a', 'r', 'q', 'u', 'e', 's', '\0',  
0, 0, 0, 21, 10000};

Na memória, os campos de uma estrutura são armazenados um ao lado do outro. Portanto, o 
endereço da estrutura  é o endereço do primeiro byte do primeiro campo desta. Os 3 zeros (entre o 
caractere nulo, '\0', e o valor do segundo campo, 21) na inicialização da estrutura meu_registro acima, 
foram justamente acrescentados para completar o espaço de memória alocado na declaração do 
campo nome (string de 20 bytes).

Acessando membros da estrutura:

Para acessar individualmente cada campo de uma estrutura, utilizamos o operador de seleção ".". 
A sintaxe é:

estrutura.campo = valor;



onde campo é cada variável declarada na estrutura estrutura.
Exs:

meu_registro.nome =  "Fernanda Marques";
meu_registro.nome[0] = 'F';

Atribuições entre estruturas:

Na maioria dos compiladores mais modernos é possível igualar-se duas estruturas do mesmo 
tipo da seguinte forma:

estrutura1 = estrutura2;

Note que não foi preciso igualar cada campo individualmente! 

Endereço da estrutura:

A sintaxe do endereço de uma estrutura, como um todo, é:

&nome_estrutura

Passando e devolvendo estruturas para funções:

Para passar (por valor) uma estrutura como argumento para uma função simplesmente 
passamos o nome da estrutura:

   ...
        struct xyz {                      /*   tipo estrutura xyz, com dois campos: a (inteiro) e b (caractere)  */
            int a;
            char b;
        }  estr1, estr3(struct xyz);          /* declaração da  variável global estr1 e função estr3() como tipo xyz */ 

     ...
        void main(void)
        {   struct  xyz estr2;       /*  declaração da variável local estr2 como tipo xyz  */
            ...
            estr1.a = 234;             /*   atribuição ao campo a da variável estr1
            estr1.b = 'J';                /*   atribuição ao campo b da variável estr1
            estr2 = estr3(estr1);      /* atribuição do valor retornado pela função estr3 à variável estr2...
            ...                                      /* ... (ambos os campos). O argumento é uma cópia de estr1
         }
        struct xyz estr3(struct xyz estr) /* função estr3 - recebe (estr) e retorna (estrlocal) vars xyz */
         {   struct xyz estrlocal;                  /*  declaração da variável local estrlocal  */
             estrlocal.a = estr.a + 1;              /*  atribuição ao campo a da variável estrlocal  */
             estrlocal.b = estr.b + 2;             /*   atribuição ao campo b da variável estrlocal  */
              ...
              return(estrlocal);                       /*   retorna valor atualizado de estrlocal   */
         }            

O algoritmo acima não é trivial e devemos fazer algumas considerações sobre o mesmo:
1) Note que o tipo estrutura xyz foi definido como global;
2) A variável global estr1 e a função estr3() foram definidas como sendo do tipo xyz;
3) Dentro da função main() foi declarada uma variável local, str2, do tipo xyz;
4) Os campos a e b da variável estrutura estr1 recebem valores em main();
5) A variável estr2 vai receber o valor retornado pela função estr3(), que por sua vez 

recebeu o valor de estr1 como argumento;
6) Na declaração da função, deve-se colocar "struct xyz estr3(argumentos)", para que o 

programa saiba que o tipo retornado pela função também é uma estrutura;



7) Também na lista de argumentos, "(struct xyz estr)", deve-se especificar que o tipo 
recebido pela função é uma estrutura xyz;

8) Dentro da função estr3() foi declarada uma variável local, estrlocal, do tipo xyz;
9) Os campos a e b da variável estrutura estrlocal recebem valores (no caso, o inteiro 235 e 

o caractere 'L') em estr3();
10) No final, a função estr3() retorna a estrutura estrlocal para a expressão chamadora.

Estruturas aninhadas:

Assim como podemos ter matrizes de matrizes (várias dimensões), podemos também ter 
estruturas que contém outras estruturas.

Ex:

             /*******************************************************************************/
             /* Programa para biblioteca que separa livros em dois grupos: Dicionario e Literatura                  */
             /*                  mostra o uso de estruturas aninhadas                                                                      */
             /*****************************************************************************/

...
struct livro {

                    char titulo[30];
     int regnum;
};
struct grupo {
     struct livro dicionario;
     struct livro literatura;
};
struct grupo grupo1 =  {  {"Aurélio", 134}, 

                                                             {"Iracema", 321}     };

void main(void)
{

                         printf("\nDicionario: \n");
         printf("  Titulo: %s \n", grupo1.dicionario.titulo);
         printf("   No. do registro: %03d\n", grupo1.dicionario.regnum);
         printf("   \nLiteratura: \n");
         printf("   Titulo: %s\n", grupo1.literatura.titulo);
         printf("    No. do registro: %03d\n", grupo1.literatura.regnum);
}

Considerações:

1) Quando uma matriz de várias dimensões é inicializada, usamos chaves dentro de 
chaves; do mesmo modo inicializamos estruturas dentro de estruturas;

2) Para acessar um elemento da estrutura que é parte de outra estrutura utilizamos:
grupo.dicionario.titulo

No exemplo acima temos o elemento titulo da estrutura dicionario, que por sua vez é um 
elemento da estrutura grupo;

Para compor um banco de dados completo, vamos utilizar tudo o que aprendemos até agora: 
matrizes de estruturas, passagem de estruturas para funções, estruturas aninhadas, etc. Seguindo o 
exemplo da livraria, temos:

/*****************************************************************************/
/***       PROGRAMA LIVRARIA - Demonstra como criar bancos de dados em C, utilizando */
/***      estruturas         *********************************************************/
#include <stdlib.h>                             /* para a função atof(), que transforma uma string em float */
#include <stdio.h>



#include <conio.h>
void novonome(void);
void listatot(void);

struct lista
{      char titulo[30];
        char autor[30];
        int regnum;
        double preco;
};

struct lista livro[50];                         /* declara uma matriz com 50 livros (estruturas do tipo lista)  */

int n=0;
void main (void)
{      char ch;
           
                   for(;ch != 's';)

    {    printf("\nDigite: 'e' para adicionar um livro\n");
  printf("\t'l ' para listar os livros\n");

                          printf("\t's' para sair:\n");
  ch = getche();

                         printf("\n");
         switch(ch)

                        {      case 'e' :  novonome();   break;
case 'l' :  listatot();  break;

                                case 's' :  printf("Fim do programa");  break;
default :  puts("\nDigite somente opções válidas: ");

          }
     }

}

/***** FUNÇÃO NOVONOME   - adiciona um novo livro ao arquivo    ***/
void novonome(void)
{        char numstr[81];
          printf("\n Registro   %d. \nDigite titulo:   ", n+1);
       gets (livro[n].titulo);

      printf("Digite autor:  ");
      gets(livro[n].autor);
      printf("Digite o número do livro (3 digitos):  ");
      gets(numstr);
      livro[n].regnum = atoi(numstr);              /* função atoi() converte uma string para inteiro */
      printf("Digite preço:");
      gets(numstr); 
      livro[n++].preco = atof(numstr);
      printf("\n_______________________________\n");

}
/***** FUNÇÃO LISTATOT - lista os dados de todos os livros      *****/
void listatot(void)
{
          int i;
          if( !n)
               printf("\n\nLista vazia!!\n");
          else
               for( i=0; i<n; i++)
              {   printf("\n Registro %d.\n", i+1);
                printf("Titulo: %s. \n", livro[i].titulo);
                   printf("Autor: %s.\n", livro[i].autor);



                   printf("Numero do registro: %3d.", livro[i].regnum);
                   printf("Preço: %4.2f. \n\n", livro[i].preco);

      }
          printf("\n_______________________\n");

}

Note que para acessarmos cada elemento da matriz de estruturas utilizamos "livro[2].titulo", por 
exemplo. Isto mostra que o índice da matriz é atribuído à livro e não ao campo, título. Se tivéssemos a 
construção "livro[2].titulo[3]", por exemplo, estaríamos referindo-nos ao quarto elemento (caractere) da 
string titulo, da terceira estrutura de livros.

Campos de bits

Uma estrutura pode conter campos de bits, em vez de bytes. Estes campos são normalmente 
utilizados para acessar valores dependentes da máquina (como registradores, por exemplo). Campos 
de bits são uma alternativa à utilização dos operadores bit a bit no acesso individual de bits dentro de 
um inteiro. 

A sintaxe é:

struct{
unsigned int var1: num_bits1;
unsigned int var2: num_bits2;
...
unsigned int varn: num_bitsn;

         } var_estrut;

onde unsigned int é o tipo de todos os campos da estrutura; var1, var2,..., varn são os campos da 
estrutura; num_bits é o número de bits que cada campo tem e var_estrut é a variável declarada como 
estrutura de campos de bits. Um campo não pode ser ultrapassar o tamanho de um int. Se isto ocorrer, 
o campo será alinhado no próximo inteiro.

Um exemplo de uma declaração para campos de bits é:
          struct {
                    unsigned int pronto: 1;
      unsigned int desligado: 2;

     unsigned int outros: 5;
       } modem;                            

Isto declara modem como sendo uma estrutura de 8 bits com os membros:
Membro               Referência
modem.pronto primeiro bit
modem.desligado próximos dois bits
modem.outros próximos cinco bits

Estas expressões podem ser utilizadas em qualquer lugar onde um inteiro unsigned possa ser 
utilizado. modem terá a distribuição de memória mostrada no diagrama abaixo (assumindo que ints são 
obrigatoriamente alinhados em bytes pares e que bits, em nossa máquina-exemplo, são atribuídos da 
esquerda para a direita, já que isto depende do computador):

0     1      2      3     4      5      6      7      8     ...

pronto desligado outros

Bit

O operador de endereço (&) não pode ser utilizado com campos.



Ponteiros para Estruturas:

Existem diversos motivos para se usar ponteiros para estruturas. Assim como ponteiros são mais 
rápidos e fáceis de manipular que matrizes, também os ponteiros para estruturas são melhores que 
matrizes de estruturas. Várias representações de dados que parecem fantásticas são constituídas de 
estruturas contendo ponteiros para outras estruturas. 

A sintaxe da declaração de um ponteiro para estrutura é:

struct rótulo *nome_ponteiro;

onde rótulo é o identificador para o tipo de estrutura e nome_ponteiro é o nome do ponteiro que 
aponta para tipos estrutura. Na verdade, a sintaxe é a mesma de qualquer declaração de ponteiro.

Ex:
struct lista *ptrl;

declara o ponteiro ptrl que pode apontar para qualquer estrutura do tipo lista.
A sintaxe da definição de um ponteiro para estrutura é:

nome_ponteiro = &estrutura;

onde estrutura é uma estrutura qualquer do tipo que o ponteiro nome_ponteiro pode apontar.
Ex:

ptrl = &livro[0];
define o conteúdo de ptrl como sendo o endereço do primeiro elemento da matriz de estruturas 

livro.
Sabemos que se conhecemos o nome de uma dada variável estrutura, podemos acessar seus 

campos usando seu nome acompanhado do operador ponto. 
Para acessar os campos de uma estrutura através do ponteiro não teria sentido utilizar-se a 

construção "ptrl.preco", por exemplo, porque ptrl é um ponteiro e não um nome de estrutura.
Temos duas formas de acessar os campos:
1) Utilizando a construção:

(*ptrl).preco

que indica "o campo preco da estrutura apontada por ptrl ". Isto é equivalente a "livro[0].preco", se 
ptrl == & livro[0] !

ou
2) Utilizando o operador "->" (sinal de "menos" seguido pelo sinal "maior que"):

ptrl -> preco
Este é o método mais comum e tem o mesmo significado da primeira opção: ptrl é um ponteiro 

para estrutura, mas "ptrl -> preco" é uma variável double.

12.3 - LISTAS ENCADEADAS

A lista encadeada ou "lista ligada" é uma estrutura de dados abstrata que pode ser criada em C, 
utilizando-se o mecanismo de ponteiros para estruturas. Uma lista encadeada assemelha-se a uma 
corrente em que as estruturas estão penduradas sequencialmente. Isto é, a corrente é acessada 
através de um ponteiro para a primeira estrutura, chamado "cabeça", e cada estrutura contém um 
ponteiro para a sua sucessora. O ponteiro da última estrutura tem valor NULL ("\0"), indicando o fim da 
lista.

 Normalmente uma lista encadeada é criada dinamicamente na memória. O diagrama abaixo 
ilustra a grosso modo como ficaria uma lista encadeada na memória:



 estrA

 estrB

 estrC

 estrD

X X

X

X

XX X

X

X

X X X XX

X X X

X

XX X

X X

...

...

... ...

...

... ...... ......... ... ...

onde cada flecha é um ponteiro apontando para a próxima estrutura da lista. Esta  "flecha"  é um 
campo da estrutura, criado como tipo ponteiro, que conterá o endereço da estrutura seguinte.

Abaixo temos o exemplo "Livraria", utilizando-se listas ligadas, ao invés de matrizes de estruturas:

/*******************************************************************************/
/***       PROGRAMA LIVRARIA 2 - Demonstra como criar bancos de dados em C, utilizando   */
/***      estruturas  e listas ligadas                                                                                                 */
/*******************************************************************************/
#include <stdlib.h>                             /* para a função atof(), que transforma uma string em float */
#include <stdio.h>
#include <conio.h>
#define TRUE 1

void novonome(void);
void listatot(void);

struct prs                                            /*  estrutura básica para listas ligadas    */
{      char titulo[30];
        char autor[30];
        int regnum;
        double preco;
        struct prs *ptrprox;
};

struct prs *ptrprim, *ptratual, *ptrnovo;       /* declara estruturas tipo prs para montar a lista encadeada   */

void main (void)
{      char ch;
           

   ptrprim = (struct prs *) NULL;        /*  sem dados ainda   */
                   for(;ch != 's';)

    {    printf("\nDigite: 'e'  para adicionar um livro\n");
          printf("\t'l '  para listar os livros\n");

                          printf("\t's'  para sair:\n");
                         ch = getche();
                         printf("\n");

         switch(ch)
                        {      case 'e' :  novonome();   break;

case 'l' :  listatot();  break;
                                case 's' :  printf("Fim do programa");  break;

default :  puts("\nDigite somente opções válidas: ");
          }
     }



}

/***** FUNÇÃO NOVONOME   - adiciona um novo livro ao arquivo    ***/
void novonome(void)
{        char numstr[81];

                      ptrnovo = (struct prs *) malloc (sizeof(struct prs));      /* novo ponteiro p/  estrut. da lista  */
  /* reserva espaço na memória (malloc)  para armazenar estrutura do tamanho (sizeof)  de prs   */
                      if (ptrprim == (struct prs *) NULL)          /* se o 1o. ponteiro da lista tem conteudo NULL */
                                 ptrprim = ptratual = ptrnovo;         /* lista ainda não tem dados */
                      else
                      {         ptratual = ptrprim;                          
                                 while(ptratual -> ptrprox != (struct prs *) NULL)          /* procura novo item  */

            ptratual = ptratual -> ptrprox;
ptratual -> ptrprox = ptrnovo;
ptratual = ptrnovo;

       }

                    printf(" Digite titulo:   ");
       gets (ptratual -> titulo);

      printf(" Digite autor:  ");
      gets(ptratual -> autor);
      printf(" Digite o número do livro (3 digitos):  ");
      gets(numstr);
      ptratual -> regnum = atoi(numstr);              /* função atoi() converte uma string para inteiro */
      printf(" Digite preço:");
      gets(numstr); 
      ptratual -> preco = atof(numstr);
      printf("\n_______________________________\n");

                      ptratual -> ptrprox = (struct prs *) NULL;                               /* último       */
}

/***** FUNÇÃO LISTATOT - lista os dados de todos os livros      *****/
void listatot(void)
{
           if(ptrprim == (struct prs *) NULL)
          {      printf("\n\nLista vazia!!\n");
                  return; 
          }
          ptratual = ptrprim;
          do
          {       printf("Titulo: %s. \n", ptratual -> titulo);
                   printf("Autor: %s.\n", ptratual -> autor);
                   printf("Numero do registro: %3d.", ptratual -> regnum);
                   printf("Preço: %4.2f. \n\n", ptratual -> preco);

   ptratual = ptratual -> ptrprox;
          } while(ptratual != (struct prs *) NULL);

          printf("\n_______________________\n");
    }                            

A grande vantagem neste último programa "Livraria", que utiliza listas ligadas, é que a memória 
necessária para armazenar as estruturas é alocada à medida que a lista aumenta. No primeiro 
programa "Livraria", foi necessário alocar 50 espaços de memória, cada um do tamanho de uma 
estrutura, o que representa um enorme disperdício se entramos com apenas 3 registros, por exemplo, 
ou que pode ser insuficiente (e tomar espaços indevidos na memória), se um desavisado resolve entrar 
com 100 registros!



A função malloc()

Note que no programa acima utilizamos a função malloc(), para alocar memória e armazenar  as 
estruturas criadas dinamicamente. Isto significa que só alocamos memória, quando for realmente 
necessário! A função malloc() toma como argumento um inteiro sem sinal que representa a quantidade 
de bytes de memória requerida. A função retorna um ponteiro para o primeiro byte do bloco de memória 
disponível que foi alocado. Se não houver memória suficiente para alocar, malloc() devolverá um 
ponteiro NULL.

A função sizeof()

O operador unário sizeof() devolve o tamanho, em bytes, do argumento que recebe.
Utilizamos no programa acima o operador sizeof() para determinar o tamanho da estrutura prs e 

poder alocar memória para armazená-la.

12.4 - UNIÕES

Uniões são localizações de memória usadas para agrupar um número de variáveis de tipos 
diferentes juntas, tal como as estruturas. Porém, enquanto os membros (campos) de uma estrutura são 
armazenados em espaços diferentes de memória, numa união os membros compartilham da mesma 
localização de memória. Ou seja, a união é uma forma de tratamento de uma área de memória 
contendo um tipo de variável numa ocasião e um outro tipo de variável noutra ocasião.

A sintaxe de definição e a de uso de uma união é a mesma que a de uma estrutura:

         union rótulo
               {     declaração1;
                     declaração2;
                     ...
                     declaraçãon;
                }  var_união;

onde rótulo é uma identificação para a união e declaraçãox é uma declaração de variável, um 
membro da união. A variável var_união é declarada, na sintaxe acima, como sendo uma união do tipo 
rótulo. O tamanho de uma união será o tamanho do maior de seus membros.

Ex:
union demo

               {    char inicial;
                    int idade;
                    float salario;
               }     
               ...
               union demo pessoal;   

declara uma variável de nome pessoal do tipo union demo e para esta variável foram reservados 
4 bytes de memória tendo em vista que o maior de seus membros é do tipo float.

Para acessar um membro da união, utilizamos  o operador ponto (.), como em estruturas:

var_união.membro

onde membro é qualquer membro declarado na união var_união.
Ex:
" pessoal.idade              

Uma das razões para se utilizar uniões é a possibilidade de se usar um único nome para dados 
de tipos diferentes. Por exemplo, se queremos utilizar um mesmo dado em funções diferentes, que 
aceitam argumentos de tipos diferentes, declaramos este dado como união dos dois tipos passados 
como argumentos para as funções.



APÊNDICE A -    ROTINAS DE ENTRADA E SAÍDA (I/O)

Geralmente os programas desenvolvidos têm alguma forma de entrada e saída de dados. Por 
exemplo, num programa que calcula o fatorial de um número fornecido pelo usuário, o dado de entrada 
seria este número e a saída, o fatorial deste.

As funções de entrada e saída mais utilizadas são, respectivamente, scanf() e printf(). Neste 
apêndice veremos com detalhes a utilização destas e outras funções de I/O importantes da linguagem 
C.

Obs: Como cada compilador possui conjuntos de comandos de I/0 diferentes, convém procurar-
se no Help de cada um quais as funções mais convenientes para cada caso. No Turbo C, deve-se 
teclar no menu "Help" (ou digital Alt-h),  depois no submenu "Index" (ou Alt-i) e por último no botão 
"Search" (ou Alt-s). No quadro de texto deve-se digitar scanf, printf, gets, getchar, etc, que a busca será 
feita automaticamente. Quando o tópico procurado for encontrado, clica-se em "Show Topics " e 
finalmente "Goto".

A função printf()

A função printf(), assim como scanf(), é uma função formatada de I/O, no caso, entrada de 
dados. A sintaxe é:

printf("expressão_de_controle", lista_de_argumentos);

A expressão de controle consiste de dois tipos de itens. O primeiro tipo será feito de caracteres 
que serão impressos na tela. O segundo tipo contém comandos de formatação que definem a maneira 
como os argumentos subsequentes são apresentados. Deve existir o mesmo número de comandos de 
formatação que o número de argumentos e os comandos de formatação e os argumentos são 
combinados em ordem. Por exemplo:

printf("Oi, %c %d %s \n", 'c', 10, "alunos!");

apresenta na tela:

 Oi, c 10 alunos!  

Os códigos de formatação da função printf() (que valem também para scanf()) são:

Código Função
    %c um único caractere
    %d um inteiro decimal
    %e um número em notação científica
    %f um número em ponto flutuante
    %o um inteiro octal
    %s uma série de caracteres (string)
    %x um número hexadecimal
    %u um decimal sem sinal
    %l um inteiro longo

Obs1: Os códigos de controle poderão ter modificadores que especifiquem a largura do campo, o 
número de casas decimais e um indicador de alinhamento à esquerda. Um inteiro colocado entre o 
sinal "%" e o comando de formatação atua como um especificador de largura-de-campo mínimo, o que 
preenche a saída com brancos ou zeros para assegurar que tenha ao menos um comprimento mínimo. 
Caso uma série ou um número sejam maiores que o mínimo, serão completamente impressos. O 
preenchimento normal é feito com espaços. Caso queira-se preencher com zeros, basta colocar um 
zero antes do especificador de largura-de-campo. Por exemplo, "%05d" vai preencher um número com 
menos de 5 dígitos com 0's.



Obs2: Para especificar o número de casas decimais impressas para um número em ponto 
flutuante, coloque um ponto decimal seguido do número de casas decimais que se quer apresentar. Por 
exemplo, "%10.4f" apresenta um número com pelo menos 10 caracteres de comprimento, com 4 casas 
decimais. No caso de strings, "%5.7s" apresenta uma série com pelo menos cinco caracteres, mas não 
excedendo sete (o resto é truncado).

Obs3: Como condição normal, toda saída é alinhada pela direita do campo. Para forçar-se o 
alinhamento pela esquerda, coloca-se um sinal de menos ("-") logo após o "%". Por exemplo, "%-10.2f" 
forçará um alinhamento à esquerda de um número em ponto flutuante, com duas casas decimais e um 
campo de 10 caracteres de largura.

Exemplos de formatação da saída printf()
Declaração print() saída
("%-5.2f", 123.234) |123.23       |
("%5.2f", 123.234)                |       123.23|
("%10s", "hello") |          hello|
("%-10s", "hello") |hello          |
("%5.7s", "123456789") |     1234567|
("%010d", 1234)                                                                       |0000001234|

A função scanf()

A função scanf() realiza a  operação de formatação nas entradas a partir da entrada padrão 
(teclado). Existem inúmeras funções da família scanf() que permitem a leitura de dados formatados de 
outras entradas. Por exemplo, fscanf() lê os dados em um arquivo, e não do teclado. A sintaxe é:

                     scanf( "expressão_de_controle", lista_de_argumentos)

A expressão_de_controle contém códigos de formatação, precedidos por um sinal "%", indicando 
qual o tipo de dado será lido. Se após o sinal "%" colocarmos um sinal "*" indica que o dado será lido 
mas não será atribuído a variável nenhuma, neste caso a lista de argumentos não existe. Isto é útil 
quando se tem um conjunto de entradas mas somente uma parte da entrada será lida pelo programa.

A lista de argumentos contém um endereço de variável para cada dado lido e formatado pela 
expressão_de_controle. Se a variável é simples, e não um nome de matriz, ou um ponteiro (que já tem 
endereços associados ao seu próprio conteúdo), é necessário acrescentar-se o operador "&" 
("endereço de"), para especificarmos o endereço de cada variável.

Por exemplo:

                      scanf("%f", &anos);

indica que será lido um dado do tipo float e atribuído à variável anos.
Ex2: 
                     scanf("%3d/%2d",&int_arg1, &int_arg2);

Neste caso, se for digitado "345/67" e Enter, int_arg1 receberá o valor 345 e int_arg2 o valor 67.

Obs1: O modificador de máxima largura de campo pode ser aplicado aos códigos de formatação. 
Por exemplo, se deseja-se ler um máximo de 20 caracteres para a string address, escreve-se:

scanf("%20s", address); 
Obs2: Espaços, tabulações e caracteres de linha-nova apenas são utilizados como separadores 

de campo, quando não se estiver lendo caracteres simples. Neste caso, serão lidos como caracteres 
mesmo, e não como separadores. Por exemplo, com uma lista de entrada "x y":

scanf("%c%c%c", &a, &b, &c); 
voltará com o caractere "x" em a, um espaço em b e o caractere "y" em c.
Obs3:  Qualquer outro caractere na expressão de controle (inclusive espaços, tabulações e 

caracteres de linha-nova) será usado para comparar caracteres da lista de entrada. Caso sejam iguais, 
serão descartados. Por exemplo, dada a lista de entrada "abcdttttttefg":

scanf("%stttttt%s", &name1, &name2);
colocará os caracteres "abcd" em name1 e os caracteres "efg" em name2.



Entradas e Saídas Não-Formatadas:

As funções getchar() e putchar()

São as funções mais simples de I/O em C. A função getchar() lê um caractere da entrada padrão 
(normalmente o teclado). Quando o programa encontra esta instrução, a execução pára e aguarda até 
o pressionamento de uma tecla, para em seguida devolver seu valor. Normalmente getchar() ecoa o 
caractere digitado para o vídeo. A sintaxe é:

getchar()

Já a função putchar() escreve um argumento de caractere no vídeo do computador, se o 
argumento for parte do conjunto de caracteres que o computador pode apresentar. A sintaxe é:

putchar()

O exemplo abaixo ilustra a utilização das duas funções, lendo caracteres pelo teclado e 
imprimindo-os em modo reverso: maiúsculas em minúsculas e vice-versa. O programa pára ao se 
digitar um ponto:

 #include <stdio.h>
  #include<ctype.h>

             void main(void)
    {   char ch;
        do
        {     ch = getchar();
              if( islower(ch))  putchar( toupper(ch));
              else putchar(tolower(ch));
        } while(ch != '.');       /* use ponto para parar */
    }     

As funções gets() e puts()

Estas funções permitem que se leia e escreva séries de caracteres (strings).
A função gets() retorna uma série terminada por nulo em seu argumento de vetor de caracteres 

("nome_string"). Isto significa que quando utiliza-se gets() pode-se digitar caracteres no teclado até a 
operação de retorno de carro (Enter). O retorno de carro coloca um terminado nulo no fim da série e 
gets() retorna. A sintaxe é:

gets(nome_string)

A função puts() escreve uma série no vídeo. Esta função reconhece os mesmos códigos de 
sequências de escape ("\n", "\t", etc) que printf(). Apesar de ser pouco utilizado por não permitir 
formatação da saída, conversões de formato, nem colocação de números, a função puts() é muito mais 
rápida e simples que printf(), quando trata-se de apenas imprimir strings simples. A sintaxe é:

puts(string)

onde string pode ser uma sequencia de caracteres propriamente dita (delimitada por ""), ou o 
nome de uma.

Ex:
    #include <stdio.h>
      #include <stdlib.h>
      #define is_digit(x)  ((x >= '0'  && x <= '9') ?  1:0 )
      
      number(char *s)
     
      {    int t;
           for(t = 0; s[t]; ++t)



                  if (!is_digit(s[t]))
                       return 0;
           return 1;
      }

      getnum()
      {    char num[80], n;
            do
            {   
                 gets(num);
                 if(!number(num))
                 {         puts("Deve ser numero.\n");
                           n = 0;
                 } else n=1;
            } while(!n);
        return(atoi(num));
      }
    
     void main(void)
    {     puts("Entre com um numero\n");
          printf("%d",getnum());
    }        



APÊNDICE B - PROGRAMA-EXEMPLO PARA ROTINAS 
GRÁFICAS

/***********************************************************/
//  TWINDOW.C - Teste para as funcoes de janela no modo texto
/***********************************************************/
#include <stdio.h>
#include <stdlib.h>
#include <conio.h>
#include <graphics.h>

#define H_LINE '\xC4'    /* ASCII estendido da IBM */
#define V_LINE '\xB3'
#define DH_LINE '\xCD'
#define DV_LINE '\xBA'

#define TLC  '\xDA'   /* caractere para canto superior esquerdo, etc */
#define TRC  '\xBF'
#define BLC  '\xC0'
#define BRC  '\xD9'
#define DTLC '\xC9'
#define DTRC '\xBB'
#define DBLC '\xC8'
#define DBRC '\xBC'

#define SINGLE_BORDER 1
#define TWIN_BORDER   2
#define UNDERLINE  textcolor(YELLOW); textbackground(BLACK);
/* alternativa para underline() */

   struct text_info mytext; /* global: fornece o status da janela,atributos, etc */

// as funcoes a seguir mostram como os atributos para texto interpretam aqueles usados para a selecao //de 
cor
void magenta(void)
{   textcolor(MAGENTA);
    textbackground(BLACK); }
void green(void)
{   textcolor(GREEN);
    textbackground(BLACK); }
void underline(void)
{   textcolor(BLUE);
    textbackground(BLACK); }
void reversevideo(void)
{   textcolor(BLACK);
    textbackground(WHITE); }
void hide(void)
{   textcolor(BLACK);
    textbackground(BLACK); }

/** Somente para modo texto   **********/
/* MY_HLINE() desenha uma linha horizontal com o caractere se
lecionado de (startx, starty) a (endx, starty). Retorna com
 o numero de caracteres desenhados. startx pode ser maior
 que endx. O cursor ficará na posicao imediatamente seguinte



 ao ultimo caractere exibido. As coordenadas sao relativas
 a janela ativa.    */

 int my_hline(int startx, int starty, int endx, char line_char)
 {
      int i;
      gotoxy(startx, starty);
      if(startx == endx) return (0);
      if(startx < endx)
      {   for ( i = startx; i <= endx; i++)

    putch(line_char);
  return(i - startx);

      }
      gotoxy(endx, starty);
      for( i = endx; i <= startx; i++)

    putch(line_char);
      return(i- endx);
 }

 /**** Somente para modo texto   *********/
 /* MY_VLINE() desenha uma linha vertical de (startx, starty) a
 (startx, endy). starty pode ser maior que endy. line_cahr é o
 simbolo selecionado para a linha. As coordenadas são relativas
 a janela ativa  */

 int my_vline(int startx, int starty, int endy, char line_char)
 {
      int i;
 // nao e' necessario o gotoxy aqui
      if(starty == endy)  return (0);
      if(starty < endy)
      {     for(i=starty; i<=endy; i++)

    { gotoxy(startx, i);
putch(line_char);

    }
    return (i-starty);

      }
      for( i = endy; i <= starty; i++)
      {   gotoxy(startx, i);

  putch(line_char);
      }
      return (endy-i);
 }

 /**** Somente para o modo texto   ******/
 /** MY_RECT() desenha um retangulo com coordenadas (tlx, tly)
 para o canto superior esquerdo e (brx, bry) para o canto
 inferior direito. style=1 fornece uma borda simples, style =2
 fornece uma borda dupla   */

 int my_rect(int tlx, int tly, int brx, int bry, int style)
 {
      int w, h;
      char hline_ch, vline_ch, tlc, trc, brc, blc;

      switch(style)
      {   case 1:



  case 0:
 hline_ch = H_LINE;
 vline_ch = V_LINE;
 tlc = TLC; trc = TRC;
 brc = BRC; blc = BLC;
 break;

  case 2:
 hline_ch = DH_LINE;
 vline_ch = DV_LINE;
 tlc = DTLC; trc = DTRC;
 brc = DBRC; blc = DBLC;
 break;

  default:
 return(0);

      }
      gotoxy(tlx, tly);
      putch(tlc);
      w = my_hline(tlx+1, tly, brx-1, hline_ch);
      putch(trc);
      h = my_vline(brx, tly+1, bry-1,vline_ch);
      gotoxy(brx, bry);
      putch(brc);
      my_hline(brx-1,bry, tlx +1, hline_ch);
      gotoxy(tlx, bry);
      putch(blc);
      my_vline(tlx, bry-1, tly+1, vline_ch);
      return(w*h);        /* area delimitada  */
 }

  void main(void)
 {    int graphmode;
      int graphdriver;
      int himode, lomode;
      char savewin1[300], savewin2[300];

      directvideo = 1;
 // = 0 significa que usa as chamadas a ROM BIOS; = 1 usa o
 // acesso direto ao video

 /******    detectgraph(&graphdriver, &graphmode);*****/
 // verifica o hardware do video -- encontra o modo de maior
 // resolucao

   //   getmoderange(graphdriver, &lomode, &himode);
      textmode(C4350);
 // ajusta para colorido VGA em 80x25 - somente texto - sem
 // grafico

      gettextinfo(&mytext);
 // pega o modo texto atual e a posicao da janela
      clrscr();
      magenta();
      my_rect(9,7,49,25,SINGLE_BORDER);

      green();
      my_rect(10,8,48,13,TWIN_BORDER);
      window(11,9,47,12);



      gotoxy(2,1);    /* coordenadas relativas  */
      normvideo();
      // reversevideo();
      cprintf("driver = %d,maior modo = %d", graphdriver, graphmode);
      gettext(12,9,47,11, savewin1);
 // salva a janela de texto no array savewin1
      normvideo();

      window(1,1,80,25);
      my_rect(10,14,48,19,TWIN_BORDER);
      window(11,15,47,18);

      gotoxy(2,1);   /* =12,15 em coordenadas absolutas  */
 // underline() ou MACRO
      UNDERLINE
      cprintf("TxtModo =%d, Winleft =%d, Wintop =%d",mytext.currmode,
 mytext.winleft, mytext.wintop);
      gotoxy(2,2);   /* = 12,16 em coordenadas absolutas */
      normvideo();
      cprintf("Modo baixo= %d, Modo alto = %d", lomode, himode);
      gettext(12,15,47,17, savewin2);
 // salva uma determinada area de texto no array savewin2
      underline();
      highvideo();
      cputs("<cr>."); getch();

 // pausa de tempo - ate' pressionar uma tecla
      gotoxy(1,1);
      clrscr();     // limpa a janela de texto 2
      puttext(12,15,47,17,savewin1);
 // troca a janela 1 para a janela 2
      window(1,1,80,25);
      window(11,9,47,12);
      gotoxy(1,1);
      clrscr();
      puttext(12,9,47,11,savewin2);
 // troca a janela 2 para a janela 1
    closegraph();
 }



Apêndice C - DIRETIVAS DO PRÉ-PROCESSADOR

É possível incluir várias instruções para o compilador no código-fonte de um programa em C. 
Essas instruções são chamadas diretivas do pré-processador e embora não sejam realmente parte da 
linguagem C, ampliam o escopo do ambiente de programação C.

Este apêndice contém uma lista de diretivas e detalhes sobre as mais utilizadas.
De acordo com o padrão ANSI, o pré-processador contém as seguintes diretivas:

#define
#else
#elif
#endif
#error
#if
#ifdef
#ifndef
#include
#line
#pragma
#undef

O comando #define

Utiliza-se #define para definir um identificador e um valor (ou string). O compilador substituirá o 
identificador pelo valor cada vez que aquele for encontrado no arquivo-fonte. O padrão ANSI proposto 
refere-se ao identificador como nome de macro e ao processo de substituição como substituição de 
macro. A sintaxe é:

#define  identificador  valor

Note que este comando não contém ponto e vírgula, encerrando-se portanto, com o final da linha.
Ex:

#define VERDADEIRO 1
...
printf("%d ", VERDADEIRO);

O que causará a impressão da constante 1, no comando printf().
Por convenção, escreve-se as macros em letras maiúsculas, o que ajuda a distingui-las dentro do 

código-fonte, normalmente escrito em minúsculas.
Ex2:

#define xyz "isto é um teste"
...
printf(xyz);

Neste exemplo, será impressa a string "isto é um teste", no comando printf().
Pode-se utilizar a diretiva #define para pequenas funções:
Ex3:

#define min(a,b)  ((a < b)? a:b )

Ou seja, toda vez que o programa encontrar a macro min(x, y), vai devolver o valor mínimo entre 
x e y.



O comando #include

Esta diretiva instrui o compilador para incluir um arquivo-fonte ao arquivo que contém o #include.
A sintaxe é:

#include  "arquivo"         ou        #include <arquivo>

onde arquivo é o arquivo-fonte a ser incluído. Se forem utilizadas as aspas, o compilador 
procurará o arquivo primeiro no diretório de trabalho atual, depois nos diretórios especificados na linha 
de comando e por último nos diretórios padrões. Se forem utilizados os sinais de "maior e menor que" o 
compilador procurará o arquivo primeiro nos diretórios especificados na linha de comando do 
compilador, depois nos diretórios padrões e por último, no diretório de trabalho atual.

Esta diretiva é muito utilizada para acessar-se as funções já incorporadas aos compiladores 
tradicionais (como Turbo C, Borland C) e facilitar a vida do programador que não precisará recriar 
funções, como por exemplo, de entrada e saída (printf(), scanf(), puts(), gets(), etc). Estas funções 
encontram-se em arquivos que convencionou-se chamar de "Header" (porisso a extensão ".h") e o 
conteúdo de cada arquivo varia de compilador para compilador.

Comandos de compilação condicional (#if, #else, #elif, #endif)

Estas diretivas permitem que se compile de forma seletiva partes do código-fonte do programa.
Na diretiva #if, se a expressão constante que vem depois de #if for verdadeira, então o 

processador compilará o código entre esse comando e a diretiva #endif. A sintaxe é:

#if expressão_constante
      sequência de comandos
#endif

A diretiva #else funciona como um "senão" do C à diretiva #if e a diretiva #elif, como um "senão 
se".

Os comandos #ifdef e #ifndef (ou #if defined  #if !defined)

Estas diretivas, que podem tomar os formatos acima, dependendo do compilador, selecionam o 
que será compilado "se algo foi definido" ou "se algo não foi definido".

Ex:
#if defined( _Windows )

             #error BGI graphics not supported under Windows
#endif

Ou seja, se (_Windows) foi definido, a diretiva #error (que obriga o compilador a parar a 
compilação e apresentar a mensagem de erro " BGI graphics not supported under Windows") é 
executada. Caso contrário, o compilador não entra no bloco #ifdef.



BIBLIOGRAFIA - LINGUAGEM C

MIZRAHI, VICTORINE V. - Treinamento em Linguagem C - Módulos 1 e 2 - , McGraw-Hill, São 
Paulo, 1990.

KELLY-BOOTLE, STAN - Dominando o Turbo C - 2a. ed. -  Ed. Ciência Moderna, Rio de Janeiro, 
1989.

PUGH, KENNETH - Programando em Linguagem C - McGraw-Hill, São Paulo, 1990.

SCHILDT, HERBERT - Turbo C: Guia do Usuário - 2a. ed. revisada - McGraw-Hill, São Paulo, 
1988.

PAPPAS, CHRIS H. & MURRAY, WILLIAM H.  - Turbo C++: Completo e Total - McGraw-Hill, São 
Paulo,  1991.

SCHILDT, HERBERT - Linguagem C: Guia do Usuário - McGraw-Hill, São Paulo, 1986.

RITCHIE, DENNIS M. & KERNIGHAN, BRIAN W. - C, a linguagem de programação - Ed. 
Campus, Rio de Janeiro; Edisa, Porto Alegre; 1986.

WIENER, RICHARD S. - Turbo C, passo a passo - Ed. Campus, Rio de Janeiro, 1991. 


	1 - INTRODUÇÃO
	1.1 - HISTÓRICO
	1.2 - CARACTERÍSTICAS DA LINGUAGEM

	2 - PROGRAMA-EXEMPLO
	3 - TIPOS DE VARIÁVEIS E CONSTANTES
	3.1 - CONSTANTES
	3.2 - TIPOS DE VARIÁVEIS

	4 - OPERADORES
	5 - CONVERSÕES DE TIPOS
	6 - PRECEDÊNCIA
	7 - ORDEM DE AVALIAÇÃO
	8 - COMANDOS DE CONTROLE DE FLUXO
	8.1 - O COMANDO IF
	8.2 - O COMANDO IF-ELSE

	9 - FUNÇÕES
	10. MATRIZES
	11 - PONTEIROS
	12 - TIPOS DE DADOS COMPLEXOS E ESTRUTURADOS
	APÊNDICE A - ROTINAS DE ENTRADA E SAÍDA (I/O)
	APÊNDICE B - PROGRAMA-EXEMPLO PARA ROTINAS GRÁFICAS
	Apêndice C - DIRETIVAS DO PRÉ-PROCESSADOR
	BIBLIOGRAFIA - LINGUAGEM C

