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1 — CALCULO DAS REAGOES

1.1 — Tipos de suportes (ou apoios)

a) Articulagao: (Resiste a uma forga em apenas uma diregao)

pinos /

rolete

i A viga

ey

Ra

c) Pino: (Resiste a uma for¢ga que age em qualquer dire¢ao)

pino
RAx
— A = A -~
RAx i
B S
RAY RAy

d) Engastamento: (Resiste a uma forca que age em qualquer diregdo e a um

momento)

Ma

DN

RAx
—{ ]

M\
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1.2 — Tipos de carregamentos

a) Forgas concentradas

k

\\

b) Carga uniforme distribuida

Calculo das reagoes

I

Rax
>A =y
T l T
Ray W  Re
w(kgf/m)
oy b by
>
L Rs
h >

Observagao: Para o calculo das reagbes de apoio, a carga uniforme distribuida &

substituida por uma forga concentrada equivalente W igual a area da figura

geomeétrica da carga e que passa pelo seu centroide: W=p . L

c) Carga uniformemente variavel

carga

N

B

w (kgf/m)
R m
|

> L
Rt s
Ray L L Rs
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Observacao: Para o calculo das reagdes de apoio, a carga uniforme variavel é
substituida por uma forga concentrada equivalente W igual a area da figura

geométrica da carga e que passa pelo seu centroide: W= (p . L) /2

d) Momento concentrado

] ' RAx

w
A _ > | ° |
| | B d” %—%ﬁ T

/\ f#)_ ' M=W.d

s W PR, Ray Rs
<4— L
1.3 — Classificagao de vigas
a) Simplesmente apoiadas
l P w (kgf/m)
| | |
;@% L ;ffffjfffx:f T L wxf:l/fm
< > <

b) Bi-engastada (fixa)

Y |l

A

AN RRARR

c) Engastada- Apoiada

Y Pl lp |

L ?ffff]/ffx}
™

A



4 Calculo das reagoes

d) Em balanco

w (kgf/m)

A4 111

< L »
e) Em balango nas extremidades

P w (kgf/m)

| iy
_0O

?fffxliffxi L mirm

1.4 — Célculo das reagbes nas vigas

Equacbes de equilibrio estatico (forcas aplicadas em um plano): ZFX =0,

2F,=0e XM, g=00u}F =0,3M, =0e}M =0

Exemplo 1.1: Calcular as reagdes nos apoios da viga. Desprezar o peso da viga.

200 kgf.m l100 kgf 1160 kgf
A »o | B
A N o

Wo’sm

| 0,5m 0,5m 05m’m

Diagrama de corpo livre (D.C.L.):

200 kgf.m 100 kgf 160 kgf
RAx A ’
—>| \o | B

0,5m 0,5m 0,5m 0,5m
Ray |° R Rs
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—> ZFX =0 => RAx =0
v)ZMA:O , 200+100.14160.1,5-Rg.2=0 = Rg= 270 kdf

TZFy=O, Ray-100-160+270 =0 = Ray=-10kgf

Verificagao:

V) ZMB:O =2 -10.2+200-100.1-160.0,5 =0 OK

Observacao: Nenhum momento é transmitido por uma junta articulada, apenas as

forcas horizontais e verticais sdo transmitidas.

L/2 P /articulagéo

| %

A | © %
S B c %
. L Je @ %

< 7

Diagrama de corpo livre (D.C.L.):

L/ P l P/2
| B | : M, = P/2.a

CA
L P/2 2 P/2

A
A

P/2




6 Diagramas de forca axial, cortante e de momento

2 - DIAGRAMAS DE FORCA AXIAL, CORTANTE E DE MOMENTOS

2.1 — Método das secdes

O método das secdes estabelece procedimentos para a determinacdo dos
esforgos internos ao longo do comprimento da viga. O conceito de equilibrio das

partes de um corpo ¢ utilizado quando o corpo com um todo esta em equilibrio.

a | P,
| wy
> gl ST
a:Aﬁﬁf’fﬁ_RAX %;ﬁ
|
i
P: .Mi P %
!
!V P+
— B

|
v ViA
|
i

RAx

Figura 2.1 — Esforgos internos em vigas

onde V é a forca cortante, P é a forca axial e M € o momento fletor.

2.1.1 — Forga cortante nas vigas (V)

A forca cortante V, perpendicular ao eixo da viga, deve ser introduzida na

secao: A-A para satisfazer a equacao de equilibrio Z F y = 0.
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A forca cortante é definida positiva quando girar a secao no sentido anti-

horario.

12 b
+V # # +V
|a bl

Figura 2.2 — Forga cortante
2.1.2 — Forga axial nas vigas (P)

A forca axial P, paralela ao eixo da viga e que passa pelo centréide da secéo,

deve ser introduzida na secdo A-A para satisfazer a equagdo de equilibrio
ZF =0 .
X

A forga axial é definida positiva ou de tragdo quando agir de dentro para fora

da sec¢ao e negativa ou de compressao em caso contrario.
12 b,
+P % % +P
| I
a b

Figura 2.3 — Forga axial

2.1.3 — Momento fletor (M)

O momento fletor M, que gira em torno de um eixo perpendicular ao plano que

contém a viga, deve ser introduzido na seg¢dao A-A para satisfazer a equagao de

equilibrio ZMZ =0. Para isto, 0 momento provocado pelas forcas € normalmente

calculado em torno do ponto de intersecéo de V e P.
O momento fletor é definido positivo quando tracionar a parte interior da viga

e comprimir a parte superior da viga , € negativo em caso contrario.
+M€ 2 by §+M
|a b|

Figura 2.4 — Momento fletor
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2.1.4 — Diagramas de forgas cortante e axial e do momento fletor

Os diagramas de esforgos internos sado tracados para se determinar a
evolugdo das forgas cortante e axial e do momento fletor ao longo da viga,
respectivamente.

Exemplo 2.1: Tragar os diagramas de forgas cortante, forca axial e de momento
fletor para a viga abaixo, sujeita a forga inclinada de P = 5t . Desprezar o peso da
viga.

P=5t
4
3
A | B
0
S e

’4 5m * 5m >|

a - Determinar as reagdes de apoio.

Diagrama de corpo livre (D.C.L.):

4t
t
Rax Lis

> | |
Ray T RBT

—)ZF)(:O 1RAX_3=0 sRAX=3t

CZMB:O,RAy.1O—4.5=O , Ray=2t
T2F,=0,2-4+Rp=0 , Rg=2t

Verificagao:

( SM, =4.5-2.10 =0 (OK)

b - Determinar as forgas cortante e axial e o momento fletor em se¢des entre duas
forcas concentradas.

Secgao c-c (0<x<5):
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>F =0, P+3=0, P=-3 ()
> F, =0, V+2=0, V=-2 ()

YM_=0, 2.x+M=0, M=2x (tm)

Segaod-d (5<x<10):

\ 4

i |
id
2t

2t

M=

>F =0, P=0
>F,=0,-V+2=0, V=2

>M, =0, 2.(10-x)+M=0, M=-2x+20 (tm)

c - Tragar os diagramas de forga cortante, forga axial e do momento fletor.



10 Diagramas de forca axial, cortante e de momento

4t
3t ‘ 3t

i A
21 | 2t
! N1+ +2
Forca cortante (t) 2 - 4 :
Forga axial (t) -3 ! } 3 E
! | 10 ;

Conclusdes Importantes:

» Ponto de for¢ca concentrada vertical = Discontinuidade no diagrama de forga
cortante igual a for¢a concentrada vertical.

» Ponto de forca concentrada axial = Discontinuidade no diagrama de forca axial

igual a for¢ca concentrada axial.

Exemplo 2.2: Tragar os diagramas de forga cortante e de momento fletor para a viga

apresentada abaixo, sujeita a uma forga distribuida e a um momento concentrado.

w=2t/m
M=8tm
| Y Y Y A
—o— N —AB
A
R QR

| 2m 2m | 2m

a - Determinar as reagdes nos apoios (D.C.L.):
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4t

2 t/m 8tm

|
|
|
Y A4

Y A

N

| 2m 2m ] 2m
Ra

—> zFx:O ,RBx=0

( DMz =0 ,-4.5+Ry4+8=0 , Ra=3t

T sz=o, -4+3+Rg, =0, Rg =1t

Verificagao:

( SM, =-4.1+8-1.4 =0 (OK)

2 - Determinar as forcas cortante e o momento fletor em sec¢des entre forgcas e
momentos concentrados e ao longo de uma carga distribuida.

Secdoc-c (0 <x<2):

c i
2 t/m : 8tm
Y Y Yi v AO
AR \
X |3t 1t
I2x :

| |
1| M
Y k v!l V§ P

YF, =0, -2x+V=0, V=2x ()

YM;=0, 2.x.x/2+M=0, M=-x* (tm)
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Secgao d-d (2 < x < 4):

di
2 tm i 8t.m
Y y Y \i i AO
PR
x (3t 1t
I 41
t i
! M
v v*v y i VS P
A
3t

SF, =0, -4+3+V=0, V=1()

M =0, 4.(x-1)-3.(x-2)+M=0, M=-x-2 (tm)

Secéoe-e (4 <x<06):

|e
2 tm 8t.m !
\ Y A Y 'O ! I
A N
D e
X 1t
3t i
P M
@ —

SF, =0, -V+1=0, V=1()

M =0, -1.(6-x)+M=0, M=-x+6 (tm)
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c -Tragar os diagramas de forga cortante e do momento fletor.

2 t/m

Forga cortante (t)

Momento fletor (t.m)

Conclusdes Importantes (além das anteriores):
» Ponto de momento concentrado — Discontinuidade no diagrama de momento

fletor igual ao momento concentrado.

Exemplo 2.3: Os skis suportam um homem de 80 kg. Se o carregamento da neve na
superficie inferior de um ski € trapezoidal como mostrado abaixo, determine a
intensidade w e trage os diagramas de for¢a cortante e de momento fletor para um

ski. Tome g=10 m/s>.

P
<«—1m
A B ¢ D =
|
A A A
3 o

<“05mMe——1m —><+05m—»

0 ZFy:O , 0,25w+w+0,25w—-400=0 , w=266,67 N/m



14 Diagramas de forca axial, cortante e de momento

Trecho AB

5

<«— W=wx/05

:w’x/2

SF =0, 2XX,v=-0,V=-26667x (N)
y 05 2

p/x=0,V=0
p/x=05 ,V=-6667N
+M=0, M=88,89x*> (N.m)

p/x=0M=0
p/x=05 ,M=1111Nm

Trecho BC
0,5 X

M
"o
A A ALY A
I
1
I

wo05/2 |
| W . X

>F, =0, W20’5+w x+V =0, V=-26667x—66,67 (N)

p/x=0,V=-66,67N
p/x=05 ,V=-200N

Y M=0, —WTO’5[0,5%+XJ—W x§+|v|=o, M = 133,34x° + 66,67x +11,11

p/x=0,M=1111Nm
p/x=05 ,M=77,78 Nm
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Devido a simetria temos:

Forca cortante (N)

Momento fletor (N.m) i

Exemplo 2.4: Determine os diagramas de for¢a cortante e de momento fletor para a

viga abaixo.
4t 1t
€ 25m
—» 0
o
|
Forgca total Forga total
A © © |
_0O D _0O @)
S g ;ﬁ;%x? S S
m - 25m c | 3,75m
'~°.| o | ol
o N

~

Diagrama de Corpo Livre (DCL):
Viga CDE:



16 Diagramas de forca axial, cortante e de momento

4t 1t

25m

!
0,5m

D D’
2,5m 25m

- ZFX:O, Rex— Rex =0 = Rex = Rex
(( DMc=0,Re.25-1.3-4.05=0 = Rg =2t

Viga ABC:
I&
A}r Y *’ i vB(JC
A A
3m E‘
T}
o

- ZFXZO, Rex—Rcx =0 = Rex = Rex
g >Mp =0, Rgy.3-6.15-R,.35=0 = Rg =65t

Viga EFG:

3,75m

1,25 m
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_)ZFXZO, Rex=0 = Rex=Rcx=Rex=0
(( YMe =0, 2.(125+375)~Re,.375+1.375/3=0 = Re, =3t

T SF, =0, —6+Rpy—1+Rgy=0 = Rg =0t

Viga ABC

Trecho AB (0 <x<3):
w . 3 =6t (forga total)
12x
i

w =2 v M
=12

X \

w=2t/m

2,5

YF, =0, 25-2x+V=0 = V=2x-25 ()

p/x=0, Va=—25t
p/x=3, Vg=3,5t

DM=0, —-25x +2xx/2+M=0 = M=-x+25x (t.m)
p/x=0, Ma=0tm
p/x=3, Mg=-1,5tm

Momento maximo: c(;—I\/I:O, -2x+25=0 = x=1,25m
X

Mumax (X = 1,25m) = — (1,25)2+2,5.1,25 = Mmax = 1,5625 (t.m)

Trecho BC (0 <x<0,5):

>F =0, -=3-V=0= V=-3 ()



18 Diagramas de forca axial, cortante e de momento
p/x=0, Vg=-3t
p/x=05, Vc=-3t
ZM=0, -3.05-x)-M=0 = M=3x-1,5 (t.m)
p/x=0, Mg=-1,5tm
p/x=05, Mc=0tm

Viga CDE
Trecho CD (0 <x<0,5):

M

>

\%
3|
ZFyzO, 3+V=0 = V=-=-3 (1)
p/x=0, VC=—3t
p/x=0,5, Vp=-3t
ZMzo, -3x+M=0 = M=3x (tm)

p/x=0, Mc=0tm
p/x=05, Mp=15tm

Trecho DE (0 <x <2):

ZFy=O,—V+2=O:> V=2 ()
p/x=0, Vp=2t
p/x=2, Vg=2t
ZM=0, 2.2-x)-M=0 = M=-2x+4 (tm)
p/x=0, Mp=4tm
p/x=2 , Mg=0tm
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Viga EFG
Trecho EF (0 <x < 1,25):

ZFy:O, -2+V=0= V=2 ()
p/x=0, Vg=2t
p/x=125, Vp=2t

ZMzO, 2x+M=0 = M=-2x (t.m)

p/x=0, Mg=0tm
p/x=125, Mg=-25tm

Trecho FG (0 <x < 3,75):
w.3,75
2

=1 (total)

2

YF, =0, —2+3-wx/2+V=0=V-= —x (1)

3,752
p/x=0, Ve=-1t

p/x=375, Vg=0t

3
S M=0, 2.(1,25+x) = 3x+ (W x/2)xI3+M=0= M=

3 3752 +X-25 (t.m)

p/x=0, Mg=-25tm
p/x=3,75, Mg=0tm
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Viga ABC:
Rcy = 3 t
Ay v v v B C
| © «¢
A A '
RAy |

Forga cortante (t) 25 W -3
1,5625

Momento fletor (t.m)

-1,5
Viga CDE

5t

C 25tm E

O] N ot—
T i T
THHHTHTHTHTH 2t
Forga cortante (t) 3t !

Momento fletor (t.m)

Viga EFG:



Curso de Mecanica dos Soélidos A

3
Forga cortante (t) 2 1

Momento fletor (t.m) T([[
-2,5 ]

2.2 — Método do somatario.

2.2.1 — Equacdes diferenciais de equilibrio

Considere a viga com uma carga distribuida w(x).

y 4 w(x)
i Wﬁ\ 7
T I
VAN _ O
R _ | Ax TR,
+W(X)
y i
M V+AV
o & M+AM
N A
v AX
«—>

21



22 Diagramas de forca axial, cortante e de momento

Pelas condicbes de equilibrio das forgas verticais (ZFy:O) e dos

momentos (> M =0) temos:
YF =0 ,-V+W.AX+(V+AV)=0 = — =-w (2.1)
y AX

SM, =0, M-V.ax+w. Ax. X Mramy=0 = Mo viw & 22
A 2 AX 2

As egs. (2.1) e (2.2) sendo avaliadas no limite, quando Ax = 0, fornecem as

duas equacgdes diferenciais basicas:

X
lim AV = v =-w = V(X)= —_[w(x) .dx + C; (2.3)
Ax—0 AX  dX 0
e
. AM _dM 1
im —=—=-V M(x) = —| V(x) . 24
A)I(TO AX  dx = M) j (). dx+C, 24)

0

Exemplo 2.5: Tragar os diagramas de forga cortante e momento fletor para a viga

usando o método do somatorio.

N SR

_Q
——— T ——"
L/4 L/2 L/4
RA RB

a - Determinar as reag¢des nos apoios.
L 3L -
\)ZMA:O ,—P.Z—P.T'FRB.L:O :>RB—P

T 2F, =0, Ra-P-P+P=0 = Ra=P

Da eq. (2.3), sabendo que w(x) = 0 = V(x) = constante = V. Da eq.(2.4),
como V é constante, a equacéo de momento fletor no trecho é da forma: M(x) = -V x
+ C»
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b - Tracar os diagramas de forga cortante e momento fletor.

N Voo

i ! O
s ! :' xﬁﬁ’%ﬁﬁf
A ' !
P i :'
| | +P
Forca Cortante ' |
_P I

§”$

PL/4
mﬂmm }

Exemplo 2.6: Construir os diagramas de forga cortante e momento fletor para a viga

Momento Fletor

com o carregamento mostrado abaixo, usando o método do somatorio.

2 t/m \l\’\ KA 1t/m
Y Y Y A

é";ﬁfﬁx}"’

RSl e NEIALY

O

a - Determinar as reag¢des nos apoios.

10t
13t 8t: 12t
|
2 t/m | 61 1tm
" o e e
[0)
C Rax A D B E F G




24 Diagramas de forca axial, cortante e de momento
- ZFXZO y RAX_6=0 = RAX=6t
Y 2M,=0,3.2-8.3+Rs.4-2.6=0 = Rg=75t

b - Determinar as fungdes da forga cortante V(x) e do momento fletor M(x) para cada
trecho da viga.

Partir da extremidade mais a esquerda, ponto C:

Trecho C-A:

V(x) = —](. w(x) dx + C1
0

p/x=0,w=-2=b=-2
w(x)=ax+b---

w|N

p/x=3,w=0=>a=

w(Xx) = %x -2 (t/m)

(2 2 x2
V(X)=—||=x-2|dx+C1 = VX)=———+2x+C1 (1)
3 32
0

p/x=0, Vc=0 = C1=0 (nado ha forca concentrada em C)

2
X
V(X)=—-——+2x
(x)=-73

p/x=3 = Va=3t

X X 2
M(x) = ~[ V(x) dx + C2 :M(x):—j{—§%+2x]dx+C2
0 0
3
M(x) = -2 X 1242 | o
33 2

p/x=0, Mc=0 = C2=0 (ndo ha momento concentrado em C)

M(x) = % —x2 (tm)

p/x=3 = Ma=-6t. m
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forca axial: P=0
Trecho A-D:
V(x) = J.w(x ) dx + C1

comow(x)=0 = V(x)=constante=C1=-25t

X
M(x)=—jV(x) dx+C2 , M(x)= 25 dx+C2 = M(x)=25x+C2

O'—.X

p/x=0, Mpa=-6 = C2=-6 (naoha momento concentrado em A)

M(x)=25x—-6 (t.m)
p/x=3 => Mp=15t. m

forca axial: P=-61

Trecho D-B:
X

V(x) = —.[ w(x) dx + C1

comow(x)=0 = V(x)=constante=C1=55t
X X

M(x) = —jV(x) dx+C2 , M(x) = —j5,5 dx +C2 = M(x)=-55 x + C2
0 0

p/x=0, Mp=1,5 = C2=1,5 (ndo ha momento concentrado em D)
M(x) =5,5x+1,5 (t.m)
p/x=1 =>Mg=-4t.m

Forga axial P =0

Trecho B-E:

V(x) = J.w(x ) dx + C1

25



26 Diagramas de forca axial, cortante e de momento

comow(x)=0 = V(x)=constante=C1=-2 = V=-2t

M(x) = —}(‘V(x) dx +C2 , M(x) = —T(—z) dx+C2 = M(x)=2x+C2
0 0

p/x=0, Mg=-4 = C2=-4 (nao ha momento concentrado em B)
M(x)=2x-4 (t.m)
p/x=1 =>Mg=-2t. m

Forga axial P =0

Trecho E-F:

V(x) = —]Ew(x) dx+C1 , V(x)= —T(—1) dx+C1 = V(x)=x-C1
0 0

p/x=0, Ve=-2 = C1=-2 (nao ha forca concentrado em E)
V(x)=x-2

p/x=2 => V=0

2

M(x)z—}('V(x)dx+C2 , M(x)=—-|(x-2)dx+C2 = M(x):—%+2x+C2
0

O — X

p/x=0, Mg=-2 = C2=-2 (nao ha momento concentrado em E)
2

M(x):-%+2x—2 (t.m)
p/x=2 =>Mg=0t. m
Forca axial P =0

nao ha forcas e momentos concentrados: V=0,M=0,P=0

Tragar os diagramas de forgas cortante e axial e de momento fletor.
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1t/m

y
0

Y

2 t/m

Momento
fletor (t.m)
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3 -TENSAO

3.1 — Defini¢cdo de Tenséo

Considere um o corpo seccionado, submetido a forcas externas P, e P, e a

forcas internas AP atuantes em areas infinitesimais AA, Fig.3.1.

Figura 3.1 — Esforgos externos einternos num corpo seccionado

A tensao normal a face seccionada € por definicdo da forma:

. APy
Tyx = Ox = lim

3.1
AA—0 AA (3.1)

e, as tensdes de cisalhamento que atuam na face seccionada sao por definicdo da

forma:
AP
Ty = lm —2
AA—0 AA (3.2)
T, = lim AP,
X2 A0 AA

O primeiro indice da tensao de cisalhamento indica o eixo que é perpendicular

a face onde atua a tensdo e o segundo indica a diregdo da tenséo.

3.2 — Tensor de Tensées
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Considere um elemento infinitesimal de dimensdes Ax, Ay e Az com todas as

tensdes que atuam sobre ele, Fig. 3.2.

y

Ox

Figura 3.2 — Elemento infinitesimal solicitado triaxialmente

O tensor de tensdes € uma matriz de dimensao (3x3) onde séo colocadas

todas as tensdes atuantes num elemento infinitesimal:
Tyx Oy  Tyz (3.3)

Verifica-se que o tensor de tensdes € Simétrico: tyx = Txy , Tex = Txz , Tyz = Tzy-

Demonstracao:

QZMeixoz =0 , (tyx - AX . AZ) AY - (Ty . Ay . AZ ) AX =0 = Tyx = Ty

3.3 — Tensées em membros com carregamento axial

3.3.1 — Carga axial

Considere uma barra sem peso e em equilibrio, sujeita a duas forcas F

(tracao ou compressao) em suas extremidades.
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Vo5

PR S
=15
4 = ——
/
= /
g

T o

Figura 3.3 — Barra solicitada axialmente

A area da secdo transversal no ponto onde se seccionou a barra é A e a forca
interna é igual a P e positiva (se tracionada) ou negativa (se comprimida), logo a

tensdo normal é da forma:

o = K (34)

No caso da barra estar sendo comprimida, seu comprimento deve ser

suficientemente pequeno para que nao ocorra flambagem.

3.3.2 — Tensao média de cisalhamento

Considere um corpo sendo arrastado sobre outro corpo por uma P.

Figura 3.4 — Corpo sendo cisalhado
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Se o corpo que esta sendo arrastado tem area A na interface de contato entre

0s corpos, a tensdo média de cisalhamento' é da forma:

S (3.5)

A eq. (3.5) é frequentemente utilizada para dimensionar pinos, parafusos,
rebites, etc. que estdo sendo solicitados por esforgos cisalhantes.

Corpos podem ser cisalhados de formas diferentes. Um corpo pode estar
sendo submetido a um cisalhamento simples quando, Fig. 3.5:

— =

| P

I

Figura 3.5 — Corpo submetido a um cisalhamento simples

O rebite que une os dois corpos que estao sendo tracionados é cisalhado na
interface da seguinte forma, Fig. 3.6:

A
V=P

Figura 3.6 — Rebite com cisalhamento simples

Se o rebite tem area A na interface e a forga cortante V é P, a tensdo de
cisalhamento média é:
vV P
_v_r 3.6
Tm A A (3.6)
Um corpo pode estar sendo submetido a um cisalhamento duplo quando, Fig.
3.7:

' A tens&o de cisalhamento é média pois a for¢ga que atua em cada area infinitesimal ndo € a mesma.
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P/2

“«— = —T ] | p
| P — —

4+— — P | !

P/2 | —

Figura 3.7 — Corpo submetido a um cisalhamento duplo

O rebite que une os trés corpos que estdo sendo tracionados é cisalhado na

interface entre cada corpo é da forma, Fig. 3.8:

V=P/2 A

V=P —
A

Figura 3.8 — Rebite com cisalhamento duplo

Se o rebite tem area A na interface entre cada corpo, e a forga cortante V é
P/2, a tensao de cisalhamento média é:

LV _P
mA 2A

(3.7)
Exemplo 3.1: A barra abaixo tem largura de 35 mm e espessura de 10 mm,
constantes ao longo de seu comprimento. Determine as tensdes normais nos

diferentes trechos da barra para o carregamento abaixo.

5 9kN C 4kN
12 kN A ¢ > D 2okn
44— | =P
|| — =P
9 kN 4 kN
Trecho AB:
12kN - A P =12 kN
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12099 N _ 34285714

P
A 0035.0010 m?2 m

OpB =

oa = 34285714 Pa = 34,3 MPa

Trecho BC:
B 9kN
12 kN A l
<4+ —
|| —
9 kN
GBC =E= 30000 N = 85,7 MPa
A 0035.0010 m?2
Trecho CD:
_ D
P =22 kN 29 kN
@ ]
ocp = E = 22000 N =62,4MPa
A 0035.0010 m?2

P =30 kN

33

Exemplo 3.2: Determine as tensdes nos pinos localizados em A e B com didmetros d

= 8 mm e a tensao na barra BC para o conjunto abaixo:

ﬁ—% !

S
>

o)

L 2m
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DCL da Barra AB:

. 15 kN Re
i R/_\ RAV
i l B A 3

1 7 4

CZMA=0, RB%.s ~15.2=0 = Rg=16,7kN

T SFy =0, RAy—15+RB%=O — Ray=5kN

5 YF=0, - Rpy+Rgg=0 = Ry=134KN
Pino A:
Ra =5% +134% =143 kN
) Ra= 14,3 kN
— T |
—H = >
'-I-..
V = Ra/2
Ra=14,3 kN
V = Ry/2

__V_14300/2 N
ATA 182 mm?2

4

A= 142,2 MPa

Pino B:

<
I

Py

o

Re = 16,7 kN
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T =X= 16700 N tec = 332,2 MPa

A 182 mm?

4
Barra BC:
P = RB
RB/
oag ~ P 1700 N oy,
A 105 mm

3.4 — Tensbées Admissiveis; Fator de seguranga

Para garantir a segurangca de uma estrutura, € necessario escolher uma
tensdo admissivel que restrinja a carga aplicada, a uma que seja menor que aquela
que a estrutura possa suportar. Ha varios motivos para isso:

» impreciséo de calculo,

» imperfei¢des oriundas do processo de fabricacéo,

» variabilidade nas propriedades mecanicas dos materiais,
>

degradacao do material, etc.

Uma das maneiras de especificar a tensao admissivel é definir um coeficiente

de segurancga dado por:

_ Oescoamento

n
G admissivel
(3.8)
G'ruptura
n=———
G admissivel

As tensbes de ruptura sdo determinadas experimentalmente e o coeficiente

de seguranga € selecionado baseado no tipo de estrutura e em suas aplicagdes.
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3.5 — Projeto de membros e pinos com carregamento axial

Exemplo 3.3: Determine o didmetro da barra BC, se a tensdo admissivel é cagm =

155 MPa. A viga é assumida ser parafusada em A.

15 kKN/m m

o)
4

| A

A
y

D.C.L da barra AB:
225kN | : 11,25 kN

ull

| ' ' |
2 1
Rg <« Ra

C SMp =0, —Rg.45+225.25+1125.1=0 = Rg=15kN

Gaam =SB 155 N2=15000 = dgc=11,1mm
Asc mm?  mdgc
4

Exemplo 3.4: Duas vigas de madeira sdo conectadas por um parafuso em B.
Assumindo que as conexdes em A, B, C, e D exercem somente forgas verticais nas
vigas. Determine o didmetro do parafuso em B e o didmetro externo de sua arruela
se a tens&do admissivel do parafuso € caimp. = 150 MPa e a tens&do admissivel da

madeira é cagmm. = 28 MPa.
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1,5 kN

3 kN 2 kN
2m 15m|15m| 1,5m |15m
2m < > —p|—p|a—»
‘4—» C
[
A v - [
' = B
B
D.C.L. da Viga AB:
3 kN Re

!

.

T

CZMA=O . 3.2-Rc.4+Rg.55=0 = R.=1375Rs—15

D.C.L. da Viga CD:

|

1,5 kN 2 kN

f

CZMD:O , ~Rc.6+Rg.45+15.3+2.15=0

Te

-(1,375Rg-1,5).6 +Rg.45+45.3+3=0 = Rg=4,4kN

Parafuso:

RB
CadmP. = >
TCdp

4

Arruela:

150 =

4400
TCdp
4

= dp=6,1Tmm

\
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de
Rs , 26-= 4400 = dea=154 mm

nd%eA ndp2 n d%e A _7I6,12
4 4 4 4

CadmP. =

Exemplo 3.5: Determine a maxima forga F que pode ser aplicada na estrutura se as

areas das segoes transversais das barras sdo A = 5000 mm? e a tensdo admissivel
de tracd0 é Gagmt = 14 kgf/mm? e a tensdo admissivel de compressao € Gagm ¢ =
10,5 kgf/mm?.

<4
il

9m

Y B C
3 mI

A P
Rax  mmm

3m % 9m
RAVV RDy

- ZFX:O = Ra=0

(, XM, =0 , Ro,.3-F.12=0 = Rp,=4F

T YF, =0 ,Rag*Rp-F=0 = Ra=3F

Ponto E:

T E cosezi , senezE
0 5 5
(i
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T sz =0 ,-F-Fcgcos45—-Fgesen0=0 = Fe=-5,66F (compressio)
— > F =0 ,-Fgecos0—Fcesend45 =0 = Fpe=5F (tragéo)
Ponto C:
Fc
Fce C 45°

T

l Fco

) ZFy =0 ,Fcp—Fcesen45 =0 = Fcp=-4F (compressao)

N ZFX =0 ,Fcg—Fcecos45 =0 = F¢=-4 F (compresséo)

Ponto B:

N ZFX =0 ,—Fgpcos45—Fgc+Fgecos® =0 = Fgp=0

Tsz:O ,Fea+Fgesen® =0 = Fga=-3F (tragéo)

Ponto A: TFBA
A Fap
—»o _>
RAx
v

—)Zszo , Rax+Fap =0 = Fap=0

TZFy:O ,—RAy+FBA=O = FBA=3F(tragéo)
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barra CE:

_Fce
Cadmc = A

barra BE:

_Fge
Cadmt = A

barra CD:

Feo

Gadmc = A
barra CB:

Fcs

CGadmec = A

barra BA:

Fea

Cadmt =

A

105=206F £ 9076 kgt
5000

C14=2F  F 212,000 kef
5000

C105=2F  F=13.125kgf
5000

105=—2F  F=13.125kgf
5000

C14=3F  F=23333Kgf
5000

Tensao

Resposta: A maxima forca F é a de F = 9.276 kgf, pois qualquer forga maior que esta

produziria uma tens&o superior a tensdo admissivel.

Exemplo 3.6: A estrutura trelicada abaixo suporta duas for¢cas de 12 t. Se as tensdes

admissiveis s30 Gagm t = 14 kgf/mm? em tragdo e caum o = 10,5 kgf/mm? em

compressao, determine a menor secio transversal possivel para as barras.

T

R ax ?ffx?izmc

>

- YF =0 = Ra=0

2m
>

V 12t

F

E FErrrry

2m Pl
V12t R Fy

(, XM,=0 , Ry .6-12.4-12.2=0 = Rp=12t

0 2F,=0 , Ray+Rp-12-12=0 = Ru=12F
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Fas
'/\6 CosO=—> | senf=—>
25 25

> O > 3 )
Ra E Fac

0 ZFy =0 , Ray—Fagsen6=0 = Fag=20t(compressao)

Ponto A:

—>ZFX=0 , Rax—Fagcos 0+ Fac =0 = Fac= 16t (tragéo)

Ponto C:

T sz:O , FBc—12=0 = Fgc=12t1 (tracédo)

N ZFX =0 ,—Fac+Fce=0 = Fce= 161 (tragéo)

Ponto B:
B

T o—1— P>
Ok/‘lv\{lzso
Fa Fac Fae
0 sz:O , Fassen 0 —Fgc+Fgesen6=0 = Fge=0t
— > F =0, Fagcos 0 —Fgecos 6 +Fgp=0 = Fgp=-16t (compressao)

Ponto D:

Fep D
> o

a2
Foe For

N ZFX =0 ,Fep—Fprcos06=0 = Fpr=20t(compressao)

41



42 Tensao

0 ZFy:O , —Fpe+Fprsen0=0 = Fpg=12t(tragéo)

Ponto E:
Fge

Y.
lE Fer

0 ZFy:o , —12+Fpe+Fgesen06=0 (ok)

- ZFX =0 ,—Fce —FgecosO0+Fgr=0 = Fgr=161 (tragéo)

Ponto F:

Fer

0 ZFy =0 , pr—FDFsen9=O (Ok)

N Zszo —Fer+ Fprcos =0 (ok)

barra AB:
F 3
Gadmec =—AB , 105= 2010 , Apg =1904,8 mm?
A A
AB AB
barra AC:
F 3
Sagmi =-AC | 14=10107 a = 11429 mm?
A A
AC AC
barra BC:
F 3
Gadmt:LC ) 14:12.10 , Apc =857,2 mm?
A A
BC BC
barra CE:
Fce 16.10°

14 = . Ace = 1142,9 mm?

Oadmt =
Ace Ace
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barra BD:
3
Gadmc :FB—D , 10,5:16.10 , Agp = 1523,8 mm?
App Agp
barra DF:
3
Gadmc :FD—F , 105= 20.10 . Aok = 1904,8 mm?
A A
DF DF
barra DE:
3
Gadm’t:FD—E ) 14:12.10 , Ape =857,2 mm?
A A
DE DE
barra EF:
3
O adm t _Ter ; 14:16'10 . Agr = 1142,9 mm?
A A
EF EF

Resposta: A menor area possivel é a de 1904,8 mm?, pois qualquer area menor que

esta produziria uma tensao superior a tensao admissivel.
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4 - DEFORMAGAO

4.1 — Significado fisico da deformagéo

Um corpo sélido se deforma quando sujeito a mudancgas de temperatura ou a
uma carga externa, como mostrado abaixo.

—_—>
p ‘4 Lo ‘ P

<+ | >

‘4 L >‘

Figura 4.1 — Representacao grafica da deformacao linear

Se Lo é o comprimento inicial e L € o comprimento final do corpo sob tracao,
o alongamento € AL = L - Lo e o alongamento por unidade de comprimento,

chamado deformacéao linear, é definido como:

L
e [db_Ab 4.1)
LO I_O

[0}

4.2 — Definigdo matematica de deformagéo

Considere dois pontos localizados em uma direcdo x de um corpo soélido na

qual uma deformacéo linear esta sendo considerada.

A A B B’
0 + o L g e 'y >
KN urau| X, u
AX
< |

Figura 4.2 — Representacdo matematica da deformacao linear

Assim a definicao de deformacéo linear no ponto A quando A x — 0 é definida

como:.
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e lim Au_du (4.2)
Ax—0 AX  dx

Se ¢ > 0 = Alongacéo e ¢ < 0 = Contragao.

Se o corpo se deforma em trés diregdes ortogonais X, y, e ze u, v, € W sdo as

trés componentes do deslocamento nestas diregdes, as deformacdes lineares sao

respectivamente:

. _ou

X ox

gyzﬁ_" (4.3)
oy

oW

;2

Além da deformacgéo linear, um corpo pode sofrer uma deformagao angular,

como mostrado na Fig. 4.3.

o u +@dy u
oy oy

MY

E // //
/,/ ///// a_v
dy e TR X
v
A |y C & v+ ax
dx OX

Figura 4.3 — Representacgéo grafica da deformagao angular

Assim, para pequenas mudangas de angulo, a deformacao angular associada
ao plano xy é definida por:
ov adu

Yxy = Yyx :5_X+5 (4.4)
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Se o corpo se deforma em mais planos ortogonais xz e yz, as deformacgdes
angulares nestes planos s&o:

_., _ow _du
YXZ YZX 8X 82 (4 5)
OW oV |

= = — 4+ —
Yyz =Vzy oy oz

4.3 — Propriedades mecanicas dos materiais isotropicos

4.3.1 — Diagrama tensao-deformacgao

Muitas propriedades de um material podem ser determinadas a partir de um
ensaio de tracdo ou compressao, a partir de uma amostra do material, Fig. 4.4. O

resultado desse ensaio pode ser representado num diagrama tensao-deformacéo.
T P

Lo

—
|

b

Figura 4.4 — Corpo-de-prova padronizado para ensaios de tragéo

O diagrama tensdo-deformagdo €& executado num corpo-de-prova
padronizado, tendo como dimensdes originais, a segao transversal Ay e 0

comprimento Ly. A tensdo considerada no diagrama € a forga aplicada P na segéo
transversal original Ao:
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s P (4.6)

Da mesma forma, a deformacdo € obtida diretamente da leitura do

extensdmetro, ou pela divisdo da variagdo de comprimento AL pelo comprimento

original Lo.
€= AL (4.7)
Lo

O diagrama tensao-deformacao é o grafico dos correspondentes valores de o
e g, onde o0 eixo das ordenadas representa as tensdes o € 0 eixo das abcissas
representa as deformacgdes ¢. E importante ressaltar que dois diagramas de dois
corpos- de-prova de um mesmo material ndo sdo exatamente idénticos, pois 0s
resultados dependem de varias varidveis como, composicdo do material,
imperfeicdes microscopicas, fabricagdo, velocidade de aplicagdo da carga e
temperatura do ensaio. A Fig. 4.5 apresenta um diagrama tensao-deformagcao de um

aco usualmente utilizado na engenharia, no qual pode-se distinguir diferentes

regides.
tensdo de
ruptura T Ty
verdadeira .
tensdo
altimag..<
---------- tensdo de
e ruptura
Ou | limite de 3
proporcionalidade
limite elastico
OR tenséo de -
fescoamento ...... ’
(e2% *
op
Hr._/\ v I — — ~
regiao | escoamento deformagéao especifica estriccan
elastin de endurecimento
comportamento comportamento plastico

Figura 4.5 — Diagrama tensao-deformagao em um ensaio de tragcao
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O comportamento do corpo-de-prova pode ser de diferentes formas,
dependendo da intensidade da carga aplicada e do seu grau de deformacéo.

» Comportamento elastico: Quando o corpo-de-prova retorna a sua forma original
quando a carga aplicada é removida. O material € considerado linearmente
elastico até o limite superior da tensdo, chamado de limite de proporcionalidade,
op. Até esse limite de proporcionalidade, a lei de Hooke, que relaciona a tensdo o
com a deformacéo ¢ pelo moédulo de elasticidade E do material é valida:

oc=E¢ (4.8)

O material pode ainda se comportar elasticamente até o limite elastico, mesmo
se exceder ligeiramente este limite de proporcionalidade. Neste caso porém, o
comportamento ndo € mais linear.

» Escoamento: Um leve aumento na tensdo, acima do limite elastico, resultara
numa acomodac¢ao do material causando uma deformacgao permanente. A tenséo
que causa o escoamento € chamada de tensdo de escoamento, oy. Neste caso,
mesmo se a carga for removida, o corpo-de-prova continuara deformado. O
corpo-de-prova podera continuar a se alongar mesmo sem qualquer aumento de
carga. Nesta regido, o material € denominado perfeitamente plastico.

» Deformacao especifica por endurecimento: Se ao término do escoamento, uma
carga adicional for aplicada ao corpo-de-prova, a tensdo continuara a aumentar
com a deformacgao especifica continuamente até atingir um valor de tensao
maxima, referida por tensdo ultima, oy. Durante a execugdo do ensaio nesta
regido, enquanto o corpo-de-prova é alongado, sua area da secao transversal
diminui ao longo de seu comprimento nominal, até o ponto que a deformagao
corresponda a tensao ultima.

» Estriccdo: Ao atingir a tensdo ultima, a area da secgéo transversal comega a
diminuir em uma regiao localizada do corpo-de-prova, e ndo mais ao longo do
seu comprimento nominal. Este fenbmeno é causado pelo deslizamento de
planos no interior do material e as deformacdes reais produzidas pela tensio
cisalhante (necking). Uma vez que a area da secgdo transversal diminui
constantemente, esta area s6 pode sustentar uma carga menor. Assim, 0O
diagrama tens&o-deformagédo tende a curvar-se para baixo até a ruptura do

corpo-de-prova com uma tensio de ruptura, org.
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O comportamento do corpo-de-prova pode ser de diferentes formas,
dependendo da intensidade da carga aplicada e do seu grau de deformacéo.

» Comportamento elastico: Quando o corpo-de-prova retorna a sua forma original
quando a carga aplicada é removida. O material € considerado linearmente
elastico até o limite superior da tensdo, chamado de limite de proporcionalidade,
op. Até esse limite de proporcionalidade, a lei de Hooke, que relaciona a tensdo o

com a deformacéo ¢ pelo moédulo de elasticidade E do material é valida:
oc=E¢ (4.8)

O material pode ainda se comportar elasticamente até o limite elastico, mesmo
se exceder ligeiramente este limite de proporcionalidade. Neste caso porém, o
comportamento ndo € mais linear.

» Escoamento: Um leve aumento na tensdo, acima do limite elastico, resultara
numa acomodac¢ao do material causando uma deformacgao permanente. A tenséo
que causa o escoamento € chamada de tensdo de escoamento, oy. Neste caso,
mesmo se a carga for removida, o corpo-de-prova continuara deformado. O
corpo-de-prova podera continuar a se alongar mesmo sem qualquer aumento de
carga. Nesta regido, o material € denominado perfeitamente plastico.

» Deformacao especifica por endurecimento: Se ao término do escoamento, uma
carga adicional for aplicada ao corpo-de-prova, a tensdo continuara a aumentar
com a deformacgao especifica continuamente até atingir um valor de tensao
maxima, referida por tensdo ultima, oy. Durante a execugdo do ensaio nesta
regido, enquanto o corpo-de-prova é alongado, sua area da secao transversal
diminui ao longo de seu comprimento nominal, até o ponto que a deformagao
corresponda a tensao ultima.

» Estriccdo: Ao atingir a tensdo ultima, a area da secgéo transversal comega a
diminuir em uma regiao localizada do corpo-de-prova, e ndo mais ao longo do
seu comprimento nominal. Este fenbmeno é causado pelo deslizamento de
planos no interior do material e as deformacdes reais produzidas pela tensio
cisalhante (necking), Fig. 4.6. Uma vez que a area da secéo transversal diminui
constantemente, esta area sO6 pode sustentar uma carga menor. Assim, 0O
diagrama tens&o-deformagédo tende a curvar-se para baixo até a ruptura do

corpo-de-prova com uma tensio de ruptura, org.
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Figura 4.6 — Estriccdo da sec¢ao transversal do corpo-de-prova

A area sob a curva tensdo-deformacao representa a energia de deformacéo
absorvida pelo material. Quando a tensao atinge o limite de proporcionalidade, cp, a
energia de deformagdo € denominada modulo de resiliéncia. Quando a tenséao
atingir a tensdo de ruptura, or, a energia de deformacdo é denominada de
tenacidade. Os materiais com alta tenacidade sdo os mais utilizados em projetos
estruturais, pois materiais com baixa tenacidade podem romper subitamente sem

dar sinais de um rompimento iminente.

Exemplo 4.1: O diagrama tensdo-deformagao de um material € mostrado abaixo. Se
um corpo-de-prova é carregado até 600 MPa, determine a deformagao permanente
remanescente quando o corpo é descarregado. Calcule também o moddulo de

resiliéncia antes e apos a aplicagdo do carregamento.

O moddulo de elasticidade E é obtido pela inclinacédo da reta OA:

oy  450MPa
ey 0,006 mm/mm

=75 GPa

Do triangulo CBD, temos:

_BD _600MPa
CcD CD

E =75GPa = CD =0,008 mm/mm
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c (MPa)
600
ov= 450
[
E /
0 /C 1D | |
( 0,p1 002\ 003 0,04
e (mm/mm)
ev = 0,006 0,023
€oc

A deformacéo dada pelo segmento CD é a deformacgéo elastica recuperada. A
deformacéo permanente, goc, € portanto:

eoc = 0,023 — 0,008 = 0,0150 mm/mm

Os modulos de resiliéncia inicial e final sdo:

Uinicial :%GYSY =%450 % 0,006 mm/mm=1,35 ml;lnz
Utinal :%GPSP = %600 % 0,008 mm/mm = 2,40 ml:lnz

4.3.2 — Coeficiente de poisson para materiais isotropicos

Considere um corpo solido submetido a uma forga axial como mostra a Fig.
4.7. Pela definicdo, a deformacéao axial do corpo € da forma:

AL

€
X
LO

(4.9)

e, a deformacao lateral do corpo € da forma:
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e 410
€y b, (4.10)
y
Lx <+ bi :
P bo P
Lo
< >
< L |

Figura 4.7 — Corpo solido solicitado uniaxialmente

A relacdo entre o valor da deformacao lateral e a deformacao axial é

conhecida como coeficiente de poisson:

v=- Y- %z (4.11)

4.3.3 — Lei de Hooke para materiais isotropicos (Estado triaxial de tensdes)

Considere um corpo submetido a um estado triaxial de tensdes oy, oy € o.

—

Ox

Figura 4.8 — Corpo solido solicitado triaxialmente

O estado triaxial de tensbdes pode ser considerado como a superposicdo de

trés estados de tensao uniaxial analisados separadamente:
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1. Deformacgdes devido a oy:

gy , &y =-vey ,&,=-vey (4.12)

2. Deformagbes devido a oy:

y 1 € x =—Vve"'

€ y »€z=—Ve'y (4.13)

3. Deformacdes devido a o :

ety ey =—ve', ey = —ve, (4.14)

Superpondo todas as deformacdes, temos:
gx :8'X+8"X+8I”X:8'X—V Slly_v 8”'2
gy =gyte'y+ey=—vey+ey-ve', (4.15)

N | " e ' " m
€, =€,+€ e, =-vey,—vey+ely

Da Lei de Hooke, eq. (4.8), as deformac¢des devido a oy, oy € o, S&0
colocadas da seguinte forma:
1

8XZE[ GX—V(Gy+GZ)]
2y =2 oy ~v(0x +2)] (4.16)
8z:é[ CYz_\’(cx"'cyy)]

Para o caso do corpo ser submetido a esforgos de cisalhamento as relagdes

deformacao-tensao séo colocadas da forma:

1

Txy _arxy
1

Vyz zaryz (4.17)
1

¥xz _arxz

O mddulo de cisalhamento G esta relacionado a E e v por:

G__ & (4.18)
2 (1+v)
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4.4 — Energias de deformacé&o elastica

4.4.1 — Energia de deformacgao elastica para tensao uniaxial

O trabalho interno armazenado em um corpo deformavel como energia
elastica de deformacdo ou energia de deformacgao elastica, € o produto da forca
média que atua sobre o corpo enquanto ocorre a deformacdo, multiplicada pela
distancia na qual ela age. Neste contexto, considere entdo o elemento de volume

infinitesimal dx, dy, dz submetido a um esfor¢go normal oy:

J—x ox €— >

z dy
dz

dx

Figura 4.9 — Corpo sdlido solicitado uniaxialmente

A densidade de energia de deformacéo U, € interpretada graficamente como
sendo a area sob a linha inclinada do diagrama tensao-deformacao.

du_
dVv

GX8X
Uy =% (4.19)

Ox

\E

Figura 4.10 — Diagrama tensao-deformacéao

Ex

4.4.2 — Energia de deformacgéao elastica para tensao de cisalhamento

Considere um elemento de volume infinitesimal dx, dy e dz, submetido a um

esforgo cisalhante. A energia de deformacgéao elastica pode ser colocada da forma:
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1 1
du= (Etxy dxdzj (vxy dy) = o Ty YaydV (4.20)

A densidade de energia de deformacéao pode ser colocada da seguinte forma:

du 1

qv 2 T (4.21)

4.4.3 — Energia de deformacgéo elastica para um estado de tensdo multiaxial

A densidade de energia de deformagado elastica de um corpo solicitado
triaxialmente pode ser da seguinte forma:
du 1

du, =—-o, 8X+16

1
o _ 4.22
qVv 2 2y Txz Txz ( )

€y+EGZ 82+—Txy 'ny+§'fyz sz+2

2

Substituindo a eq. (4.16) na eq. (4.22), a expressao que fornece a densidade

de energia de deformacéo é da forma:

1 2. 2, 2\ V
U, = -=(ox +0, +o, ——(GXG +0
E

1
oE c,+ GZGX) + E(’szz + 1Py + szz) (4.23)

y y

Em geral, para um corpo elastico sob tensado, a energia de deformacéo total é
obtida pela integracdo volumétrica da densidade de energia de deformagao elastica,
eq. (4.23):

U= ”_[\/Uo dy dy d, (4.24)

4.5 — Deformagé&o de membros carregados axialmente

Usando a Lei de Hooke e as definicbes de tensao e deformacado, sera
desenvolvida uma equacado que pode ser usada para determinar a deformagao
elastica de membros submetidos a cargas axiais. Assim, considere uma barra de
secao transversal variavel ao longo de seu comprimento, Fig. 4.11. A barra é
solicitada por duas forgcas concentradas nas extremidades e por diferentes forcas

aplicadas ao longo de seu comprimento.
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=

P // P2 P(x) [T P(x)
< > ;»; > — < Li —p
\“\\E dx ,hﬂ

4_

Figura 4.11 — Barra de sec¢ao variavel solicitada axialmente

Num ponto distante x da extremidade, as seguintes rela¢des sao validas:
_P(X)
A(x)
du
&E=—
dx

(4.25)

Substituindo a eq. (4.25) na Lei de Hooke ¢ =E ¢, temos:
P(x) _g du (4.26)
A(x) dx '
A integracdo da variagao de comprimento du ao longo do comprimento da

barra fornece:

U:T P dx (4.27)
- A(x)E '

Para o caso da forga e da sec¢do transversal serem constantes ao longo do
comprimento do membro, tem-se:

PL
u:_
AE

(4.28)
Exemplo 4.2: A viga rigida AB esta apoiada em duas colunas curtas como
apresentado abaixo. A coluna AC ¢é de aco e tem diametro de 20 mm, e a coluna BD

€ de aluminio e tem didmetro de 40 mm. Determine o deslocamento do ponto F na



Curso de Mecanica dos Soélidos A 57

viga AB se a carga de 90 kN é aplicada sobre este ponto. Tome Ea¢ = 200 Gpa, Eg
=70 Gpa.

90 kN
200 mm 400 mm
F >{

A | B

C D
i

1 — Determinar as reagdes das colunas AC e BD na viga AB.

90 kN
200 mm 400 mm
47
A
| | B
A A
RAC RBD

CZMA:O, Rep .600-90.200=0 , Rgp=30kN

T ZFyzO , Rac—90+30=0 , Rac=60kN

2 — Determinar os deslocamentos das colunas.

Coluna AC:
3
U = Rac - Lac _ 60.10°. 300 i - 0,286 mm
A0 ——
Coluna BD:
3

U :RBD . Lgp _ 30.10°. 3002 = 0.102 mm

E. - Agp 7010°. ™ 40

0% ——

3 — Determinar o deslocamento do ponto F.
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200 mm 400 mm
>
A F B

| | v _ug=0,102 mm

ug = 0,286 mm l
U

Por semelhancga de triangulos:

(0,286-0,102)  ug.
(200 +400) 400

ur =0,102 + 0,123 = 0,225 mm

, Ur=0,123 mm

Exemplo 4.3: O conjunto abaixo consiste de um tubo de aluminio AB tendo uma
area de 400 mm?. Uma haste de aco de diametro 10 mm é conectada ao tubo AB
por uma arruela e uma porca em B. Se uma forga de 80 kN é aplicada na haste,

determine o deslocamento da extremidade C. Tome E,, = 200 GPa e E; = 70 GPa.

_ 400 mm
< P
I C 80kN
[ I —
B 600 mm A
< L
Haste BC.:
Pac = 80 kN 80 kN
«—F —>

4o, = Foc Lec _ 80000 . 600 .0y
Bao Aac 509,100 ® 10
' 4

Tubo AB:
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80 kN PAB = 80 kN
—P Se—

Uy = Pas Lag _ 80000 . 400
E, Axp  70.10° 400

Uc = Ucp + uga =3,06 + 1,14

, UB/A=1,14 mm =
, uc=4,2mm =>»
Exemplo 4.4: O conjunto abaixo consiste de duas barras rigidas originalmente

horizontais. Elas sdo suportadas por duas barras de area 25 mm? e E = 200 GPa. Se

uma forga vertical de 50 kN é aplicada na barra AB, determine o deslocamento em
C,BeE.

]

200 mm
+ 800 mm D
200 mm ¢ b lt—>
v

of >
([@)te
m
[e)
—
o
o
3
3
R

s

600 mm 600 mm
47

50 kN

Diagrama de corpo rigido da barra AB:

RAT IRB

A

<

600 mm 600 mm ‘ B
« >

50 kN

Devido a simetria: Ra= Rg = 25 kN

Diagrama de corpo rigido da barra CB:
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R(;T E TRD
8

c L

800 mm 200 D

Re = 25 kN
C ZMD=0, Rg.200-Rc.1000=0 , Rc=5kN

Deslocamento do ponto C:

Re L 5.10° . 200
E A 200.10° 25

, Uc=0,2mm

Deslocamento do ponto E:

Por semelhanca de triangulos:

U _ Ug

= , U =0,04 mm
200 1000

Deslocamento do ponto B:

Rg Lge 25.10° . 150
Ug /g = = , Uge =0,75 mm
BETTEA 20010° 25 ' OF

Ug=uUge tug=0,75+ 0,04, ug = 0,79 mm

Exemplo 4.5: A barra abaixo tem didmetro de 5 mm e esta fixa em A. Antes de
aplicar a forga P = 20 kN, ha um gap entrea parede em B’ e a barra de 1 mm.

Determine as reagdes em A e B’. Considere E = 200 GPa.

B
400 mm
A§4 > < 800 mm 4 B’ 1 mm
3 —> %
3 P =20 kN 3
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A reacdo na parede B ira surgir somente se o deslocamento devido a forca P
for maior que o gap de 1 mm. Neste caso podemos determinar o deslocamento em
B devido a duas forcas, P e a reacdo em B. Supondo que ndo houvesse a parede B’,

o deslocamento em B devido a forga P op seria:

B
400 mm
AN + 800 RE
N —— A
& P =20kN

3
5 _ P Ly _20.10° . 400’ 50 = 2.037 mm
T EA .52
200.10° 'T

e, 0 deslocamento em B devido a reagaop em B 65 seria:

B 1 mm
., 400 mm )
I R Fs
% [ L :4_
H

Oy = A ~, 88=0,3056.10°.Fs mm
A 200100 B
4
A reagcdo em B surgira somente se o deslocamento 6p for maior que 1 mm,
logo:

1=86p—0g, 1=2,037-0,3056.10°.Fg, Fg=34kN

Do equilibrio estatico, temos:

B
A 400 mm 800 mm >
<4+— <
_____ Fg = 3,4 kN
Fa —pl —»! Lo —
P=20 kN

—>ZF=0 , Fa+20-3,4=0, Fa=16,6 kN
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4.6 — Tensoes Residuais

Se uma estrutura estaticamente indeterminada € carregada excessivamente
até causar escoamento do material, isso gerara tensdes residuais na estrutura
quando o carregamento for removido. A razdo do aparecimento dessas tensdes
residuais estd na recuperagdo elastica do material que ocorre durante o
descarregamento. Considere, por exemplo, um material elastoplastico cujo diagrama

tensdo-deformagéo é mostrada na Fig. 4.12.

OY | > >

ey eC
D

Figura 4.12 — Diagrama tensao-deformacao para um material elastoplastico

Se uma carga axial produz uma tensao oy no material e uma correspondente
deformacgado especifica plastica ec, quando a carga for removida, o material
respondera elasticamente seguindo a linha CD de forma a recuperar a parte da
deformacéo plastica correspondente. Uma recuperacdo completa até a tensao nula
no ponto O’ somente sera possivel caso a estrutura seja estaticamente determinada,
uma vez qua as reagdes de apoio da estrutura deverao ser nulas quando a carga for
removida. Nestas condigdes, a estrutura sera deformada permanentemente pela
deformacao ¢y. Entretanto, se a estrutura é estaticamente indeterminada, a remocgéao
das cargas externas fara com que surjam forgas reativas nos apoios que respondem
a recuperacao elastica CD. Como essas forgas restringem a estrutura de uma
recuperacao plena, elas induzirdo tensdes residuais na estrutura.

Para resolver este tipo de problema, devemos considerar o ciclo completo de
carregamento e descarregamento da estrutura como a superposi¢cao de uma carga

positiva (carregamento) com wuma carga negativa (descarregamento). O
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carregamento de O até C resulta em uma distribuicido de tensdes plasticas,
enquanto o descarregamento ao longo de CD resulta apenas em uma distribuicdo de
tensdes elasticas. A superposi¢ao requer que as cargas se cancelem; entretanto, a

distribuicdo das tensdes n&o se cancelara gerando assim as tensdes residuais.

Exemplo 4.6: A barra abaixo tem raio de 5 mm e é fabricada de um material elastico
perfeitamente plastico para o qual oy = 420 MPa e E = 70 Gpa. Se uma forga P = 60
kN é aplicada a barra e, em seguida, removida, determine a tens&o residual na barra

e o0 deslocamento permanente do Ponto C.

A C B
P=60kN w
> | —— <§
—
‘<—>< !
100 mm 300 mm

O diagrama de corpo livre da barra € da forma:

A C B
Fa P=60kN Fa

— [— —

Do equilibrio estatico, temos:
Fa—60+Fg=0 (a)

Um equagao de compatibilidade € obtida impondo a variagdo nula de
comprimento da barra:

As forcas que irdo atuar nos trechos CA e CB sio respectivamente Fa e Fg.

Assim:
_FALCA + I:BLCB =0 (C)
EA EA

Introduzindo a eq. (c) na eq. (a) obtém-se: FAo =45 kN e Fg = 15 kN

Entretanto, estas forgas resultam nas tensdes:
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_ 3
GCA=%=—573MPa > oy =—-420MPa
n5°mm )
3
GCB=%=191MP3 < oy =420MPa
5°mm
c (MPa)
A’
420 |- /K
344 |

153 E

D\

ey=-0,0060 A Y C
\ | £v=0,0060
eac= -0,01473 Ne /[

fos \- 4 em0.00401

e (mm/mm)

""" - 420

Observa-se que o trecho CA escoa, enquanto o trecho CB nao escoa. Como
a maior tensdo possivel no trecho CA é 420 MPa, a maior forga possivel que surge

neste trecho é:

F, =420.10° n5°mm? = 33,0kN (e)

mm?

Pela condicao de equilibrio da barra, eq. (a), temos que:
Fs =60kN—-33,0kN = 27,0kN (f)

A tensdo em cada segmento da barra sera portanto:
Oca =Oy = -420MPa

27.0.103kN

>—=344MPa <420MPa

GcB =
52 mm
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Tensdes residuais: De forma a obtermos a tensdo residual, & necessario
conhecermos a deformacé&o especifica em cada segmento devido ao carregamento.

Uma vez que o trecho CB responde elasticamente.

8C:FB Leg _ 27,0.10°N 300 mm _ 01473 mm
A E 1 5 mm? 70.103%|Imz

Assim:
e ——0C —MATSMM _ 4 604911
Lcg  300mm

Sendo 4¢ conhecido, a deformagéao especifica no trecho AC sera:
Oc _ 1473 mm

Lca 100 mm

Este valor pode também ser determinado da forma:

o8 _ Fa _ 33,0.10°N
A Lea AE 1 52 mm? 70.10°N”

=-0,01473 mm

Entretanto, quando a carga P €& aplicada, o comportamento do material no
trecho CB corresponde a uma evolugdo do ponto O para o ponto A’ do diagrama
tensdo-deformacao. Ao mesmo tempo, o comportamento do material na trecho AC
evolui do ponto O para o ponto B’. Se a carga P é aplicada no sentido oposto, ou
seja, se a carga for removida ocorrera uma resposta elastica e forcas opostas Fa =
45 kN e Fg = 15 kN devem ser aplicadas aos correspondentes segmentos. Conforme
calculado anteriormente, essas forgcas produzem as tensdes cac = 573 MPa e o¢g = -
191 MPa e, como resultado, a tenséo residual em cada trecho sera:

(oac), =-420+573 =153MPa
(ccg), = 344-191=153MPa

Deslocamento permanente: A deformacéo residual em CB é:

g'op = 2CB — 153';"Pa ~0,002185
E  70.10°MPa
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Logo, o deslocamento permanente do ponto C sera:
d¢c =¢€'cglLcg =0,002185.300mm =« 0,655 mm

Este mesmo resultado pode ser determinado pela deformacgdo especifica
residual do trecho AC:

5o :%c _(420+153)MPa _ oo 0r

70.103MPa

Portanto:

€' ac =Eac +08ac =—0,01473 +0,008185 = —0,00655

Finalmente:

8¢ =€ ac Lac = —0,00655.100mm =« 0,655mm
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5 - TORGAO

5.1 — Aplicagdo do método das segbes

Assim como no caso de vigas solicitadas externamente, onde os esforgos
internos podem ser determinados pelo método das segdes, os esforgos internos em
eixos de segao circular solicitados por torques externos também podem. Considere
entdo o eixo solicitado por torques em 3 pontos ao logo do seu comprimento. O
torque interno no trecho AB pode ser determinado da seguinte forma.

Figura 5.1 — Equilibrio de torques

5.2 — Premissas Basicas

a) Uma secdo inicialmente plana, perpendicular ao eixo de secg&o circular,

permanece plana apos a aplicacdo dos torques.
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b) Em um membro circular sujeito a agado de um torque, as deformagdes angulares y
variam linearmente a partir do eixo central. Isto significa que as linhas radiais nos

planos ao longo do eixo x permanecem retas apés a deformacao.

Observacao: Estas premissas sao validas somente para eixos de se¢ao circular.

Wiy

=y

Figura 5.2 — Premissas basicas da torgéo

5.3 — A férmula da torgao

Para o caso linearmente elastico, a Lei de Hooke se aplica 1= Gy:

Tmax

‘g 8= (p/C) Tmax
‘ C

dA

Figura 5.3 — Torque interno atuando na segé&o transversal

O torque interno na secao transversal € a soma dos torques infinitesimais
atuantes em cada area dA.

me
T=£§%mdAp:—§LJ (5.1)

onde o momento polar de inércia de area J € dado da forma:

J:jpsz (5.2)
A
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O momento polar de inércia para o caso particular de uma sec¢ao circular é da
seguinte forma:

c c nct nd
J:J.Opz(andp):ZnJ.Opsdp: 5 "3y

(5.3)

onde d é o didmetro da secao transversal. Substituindo a eq. (5.3) na eq. (5.1), a
expressao da tensdao maxima atuando na superficie mais externa do eixo é:

Tc
Tmax = T (5.4)

A tensdo num ponto qualquer da segao circular distante p do centro é:

T=

Tc T
FeTR (55

Para tubos circulares de raio interno b e raio externo ¢, o momento polar de

inércia pode ser calculado como segue:

4 4
. 2 _ [ 3 _TCC _TCb _ _
J_ip dA_joznp dp=— == —=Js = (5.6)

5.4 — Observagdes sobre a formula da torgéo

Figura 5.4 — Estado de tensdo em um elemento infinitesimal de um eixo em torgao
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Tmax

%VV y

Figura 5.5 — Tensdes de cisalhamento atuando em planos ortogonais

Observacao Importante: Para o caso de materiais anisotropicos (diferentes
propriedades mecénicas nas diregdes X, y € z ) como por exemplo a madeira, 0 eixo

se rompe ao longo de um plano paralelo ao eixo x.

T / |
%K

Figura 5.6 — Plano de ruptura em eixos em madeira

Exemplo 5.1: Um eixo macigo de raio ¢ é sujeito a um torque T. Determine a fragao

de T que é resistida pelo material contido na regiao externa do eixo, de raio interno
c/2 e raio externo c.

T

& Q).

c/2
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Tmax

Y

dp

A fracdo de T que é resistida pela parte externa do eixo, T, pode ser

calculada da forma:

2np dp

max

dT =ptdA , dT :p(%r

C

T = 27 T J'pfi dp = 27 T i
K c 4
%

T' — T Trax C4 _i
2¢c 2*
_ T Tmax 1_5 3

2 16

€ a expressao do torque total T sobre a area é:

T :TC— Tc ,T=£1: c?

max J - (%) C4 2 max

Logo, a relagao entre os torques é:

=17
16

Conclusao: aproximadamente 94 % do torque é resistido pela area externa do eixo.
Exemplo 5.2: O acoplamento abaixo é usado para conectar dois eixos. Assumindo

que a tensao de cisalhamento nos parafusos € uniforme, determine o numero de

parafusos para que a maxima tensao de cisalhamento no eixo seja igual a tenséo de
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cisalhamento nos parafusos. Cada parafuso tem didmetro d e esta distante R do

cento do eixo.

Impondo o equilibrio estatico na porgéo do eixo:
T=n.V.R

onde n é numero de parafusos, V o esforco cortante em cada parafuso e R a

distancia do centro do parafuso até o centro do eixo.

A tensdo média nos parafusos pode ser calculada da seguinte forma:

vV VvV
‘[m=—=—
A nd

4

Logo, o esforgo cortante em cada parafuso V é:

nd?
V=r,—
Tm 4
Sabe-se que a tensdo maxima no eixo é:
_Tr  Tr 27
2
Da imposigao do problema, tm = Tmax. LOgO:
2
Vo 2T nd®

nre 4
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Da relagao entre o torque T e o cortante V, temos:

2
21 o
nr’ 4

T=n

Assim, o numero necessario de parafusos é:

5.5 — Projeto de membros circulares em torgao

Uma vez conhecido o torque a ser transmitido pelo eixo, e selecionado a

maxima tensao de cisalhamento, as propor¢des do membro tornam-se fixas. Assim,

tem-se:
i = T (5.7)
C  Tmax

O parémetro J/c € utilizado para projetar eixos macigos ou perfurados.

Exemplo 5.3: Selecione dois eixos macigos para transmitir 200 CV de poténcia cada
um, de forma que nenhum deles ultrapasse a tensdo de cisalhamento de 7 kgf/mm?.
Um desses eixos deve operar a 20 rpm, e o outro a 20.000 rpm. (1CV = 4500
kgf.m/min, o (rad/min) = 2zN(rpm))

Eixo 1:

kgf. M_T, 20 . 2n ﬂ ,  T1=7162kgf.m
mim min

P=Ta, 200 . 4500

T, 7162 .10°

=1023 .10° mm?

C1 Tmax

J, mc

- c1=86,7mm , d;=173,4mm

Cy 2

Eixo 2:

P-T a, 200.4500 K9 M _1 20000 . 2x % | T,=7162kgf.m

mim min
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3
b_ T :7'1627'10 ~1023 .10° mm?

CZ Tmax

J T C,°
2= 2. ¢=867mm, di=17,34mm
C, 2

Conclusao: Transmitir poténcia a alta velocidade.

5.6 — Angulo de torgdo de membros circulares

Além do fato do membro dever resistir aos torques aplicados, ele nao deve se

deformar excessivamente. Assim, considere um elemento submetido a um torque.

<

dx »{
C
C X
=S ’
A do
Ymax D

Figura 5.7 — Tor¢do em eixo de secao circular

No plano paralelo ao eixo x, arco BD = dX ymax, € No plano perpendicular ao
eixo x, arco BD = ¢ do. Logo:

dX.Ymax =C-do (5.8)

Limitando-se a regi&o elastica linear onde a lei de Hooke para o cisalhamento

évalida, Tyax =G Ymax» € Sabendo que 1t = %:
T
de = —dx 5.9
*=75 (5.9)
Expressao geral para angulo de torgéo:
L
= T gy (5.10)

) J(x) G
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Para o caso do torque e da secao transversal serem constantes ao longo do
comprimento do eixo, tem-se:

_TL
AT

(5.11)
A eq. (5.11) é equivalente a eq. (4.11) para calcular o deslocamento de um

ponto numa barra solicitada axialmente.

Exemplo 5.4: No conjunto mostrado abaixo, os dois eixos estdo acoplados por duas
engrenagens C e B. Determine o angulo de tor¢do na extremidade A do eixo AB
onde um torque T = 45 N.m ¢é aplicado. Cada eixo tem diametro de 20mm e G = 80
GPa..

1,5m
75 mm
l @)
C
D
A E F 150 mm
T=45Nm ~\ A
"\ §
B
‘ 2m
Eixo AB: 08
A Fe /
45 N [\
.m
= Re, 5\ /150 mm
RFz
Rey R o 4

O angulo de torgao entre os pontos Ae B é:
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= , = 0,072 rad
© 0.01° PAB

80 .10°

A for¢ca que aparege no ponto de contato entre as engrenagens B e C pode
ser determinada impondo o equilibrio do eixo AB.
Fg.0,15=45 |, Fg=300N

Eixo CD: 1,5m
- L
75 mm
[
Tc
¢c
Fc=Fg=300 N

O torque no eixo CD pode ser determinado da forma:
Tc=300.0,75 , Tc=22,5N.m

O angulo de torgao entre os pontos C e D, que esta engastado é:

oo = To Leo 22515 oo = 0027 rad

4
J G n 0,01 80 10°

A relac&o entre os angulos de torgao oas € ¢ €:

0,15.¢8=0,075.¢c , ¢s=0,0135rad

Assim, o angulo de torgédo do ponto A é:
oa=oas + o =0,072+0,0135 , o¢a=0,0855rad

Exemplo 5.5: Uma barra circular em tor¢do consiste de 2 partes. Determine o
maximo torque possivel se o angulo de tor¢cao entre as extremidades da barra nao
deve exceder 0,02 radianos e a tensdo de cisalhamento ndo deve exceder 28 MPa.
Assumir G = 83 MPa.
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- A l50 mm (B\ l40 mm C g
e C s
’ T1.2m ‘ T 1.2m ‘

Trecho AB:
O torque no trecho AB pode ser calculado da forma:
=10 28T -2 1, -6872234N.mm
J n 50
32

e, 0 angulo de torgéo no trecho AB é:

Tl T.1210°

-8
Ppg = = > ¢a8=T.2,356.10
Trecho BC:
O torque no trecho BC pode ser calculado da forma:
=10 28T -20 1. -3518584mm
J n 40

32

e, 0 angulo de torgéo no trecho BC é:

3
/I

32

Pgc =
83 .10°

O angulo de torgao entre as extremidades da barra é:

oac = ¢as + ¢ac = 0,02

Assim:
T.2,356.10° + T.5,753.10°%=0,02 , T =246.639,5N.mm

77

Resposta: Se fosse considerado o torque de 687.223,4 N.mm ou o torque de

351.858,4 N.mm, o angulo de tor¢ao seria superior a 0,02 radianos, logo o torque de
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246.639,5 N.mm nao excede a tensdo de 28 MPa e nao excede o angulo de torgao

de 0,02 radianos.

Exemplo 5.6: O eixo estd sujeito aos torques como apresentado abaixo. Se o
modulo de cisalhamento € G = 80 GPa e o didmetro do eixo € 14 mm, determine o

deslocamento do dente P na engrenagem A. O eixo estda engastado em E e o

Tenséo de flexdo em vigas

mancal B permite que o eixo gire livremente.

40 N.m

O momento polar de inércia do eixo é:

nd* n.14*
32 32

J:

k

Trecho AC:

J=3771,5 mm*

Tac Lpc  150.10°
g Paic = =

J G 37715 .

Trecho CD:

TCD LCD 130.10°
a Pcip =

37715 .

Trecho DE:

TDE LDE ~170.10° .

3
- ;)041:)2 ,  oac=0,199 rad (anti-horario)
. 0,3.10° _ .
80 10° ¢ocp = 0,129 rad (horario)
0,5.10° _ »
30.10° ¢ope = 0,282 rad (horario)

O angulo de torgao entre as extremidades A/E é:

AE=-O®ac T Ocp t QpE = - 0,199 + 0,129 + 0,282 , PAE = 0,212 rad (horério)

9 o/ 37715 .
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Assim, o deslocamento angular do ponto P:
op = oae-R=0,212.100 , op =21,2mm

Exemplo 5.7: Um motor de 200 kW gira a 250 rpm. Para a engrenagem em B é
transmitido 90 kW e para a engrenagem em C 110 kW. Determine o menor didmetro
permissivel d se a tensdo admissivel € de 50 MPa e o angulo de tor¢ao entre o

motor e a engrenagem C ¢é limitado a 15°. Considerar G = 80 Gpa e 1kW ~ 60000

Nm/mim.
200 kW 90 kW 110 kW
d _

motor , :|

| | zzz
1,8 m 1,2m ‘
> >

B C

Trecho motor-engrenagem B:
A relacédo entre poténcia e torque entre o motor e a engrenagem B é dada
pela rotagédo do eixo:
Pmotor = Tmotor - @
200 . 60000 = Tmotor - 250 . 21t
Trotor = 7639 N'm

Da expresséo para calculo da tensdo maxima eq. (5.4), pode-se determinar o

didmetro d no trecho entre o motor e a engrenagem B.

T.d/2 7639.10° _
TmaX:W’ 5027, d =92 mm
32 16
Trecho B-C:

De maneira analoga, a relagdo entre poténcia e torque no trecho BC é dada
pela rotacédo do eixo:
Pec=Tsc . a
110 . 60000 = Tgc . 250 . 2%
Tec =4202 N m
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e, da expressao de tensdo maxima, pode-se determinar o didmetro do eixo neste

trecho:
T.d/2 4202.10° _
TmaX:W’ 5027 y d—75,4 mm
32 16

Da expressao que fornece o angulo de torgao entre as extremidades do eixo,

pode-se determinar um outro didmetro:

®c/motor = QPc/B T OB/motor
TC/B-L n Tmotor L

Pc/motor = G.J GJ
0 4202.10%1,2.10° . 7639.10%1,8.10° 151
s 80.10°.d" 80.10°.79" 180
32 32

d=55mm

Resposta: Para que nenhum dos critérios de projeto sejam desreipeitados, o

didmetro deve ser, d = 92 mm.

Exemplo 5.8: O eixo de raio ¢ mostrado na figura é submetido a um torque

distribuido t, medido como torque por unidade de comprimento do eixo. Determine o

angulo de tor¢édo do ponto A.

a — Calculo do torque resistente Tg:

L
> T=0, To—[tdx=0
0
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j- { x\? x> - 4
! L 32 3

b — Calculo do torque interno T(x):

B

(e
ﬁx N T(x)

X
ZTzo,TB—J'tdx—T(x):O
0

X X 2 X3
T(x)=TB—£t0[1+(Ej }dx, T(x)=TB—to(x+¥J

b — Calculo do angulo de torgéao ¢a:

© T(x) dx 15 x°
= —t x+— dx
o= JGJ(x GJH 0[
1 x* X 114 R
= — | Ty x—ty| =—+ , tol? —ty| —+
oA GJ{B 0[2 12L2H ba = GJLO 0(2 12|_2H
3t L2
=Gy

5.7 — Férmula da torgdo para eixos com diferentes materiais

Considere um eixo de secéao circular composto de um tubo de material 1 e

uma barra interna de material 2 solicitado por um torque.
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SR

dA

Figura 5.8 — Secao transversal de um eixo com diferentes materiais

A lei de Hooke para o cisalhamento em um material i é 17, = G; . y, e 0 torque

interno pode ser obtido através da expresséo:

T=[tdAp (5.12)
A

Usando a lei de Hooke e tomando uma area infinitesimal circular, dA = 2zn p

dp, o torque interno pode ser dado por:

|
T=[Gy2npdpp (5.13)
0

Por semelhancga de triangulos, tem-se que:

,Y — ’YmaX p (5-14)
I

Substituindo a eq. (5.14) na eq. (5.13), temos:

|
T=Imx [G 27 p° dp (5.15)
r 0

Chamando de rigidez equivalente em tor¢ao, <GJ>, a integral,

g
<GJ>=_|'Gi 2n p° dp (5.16)
0

Pode-se determinar a relagao:
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_1n (5.17)

Ymax <GJ>

Substituindo a eq. (5.17) na relagdao que fornece a deformacdo angular y
numa posigao qualquer p, tem-se que:

T
<GJd >

Y= p (5.18)

Finalmente, substituindo a eq. (5.18) na lei de Hooke para cisalhamento,
obtem-se a expressao da tensdao da torcdo para eixos circulares com diferentes
materiais:

G; T
<Gd >

N (5.19)

T =

Exemplo 5.9: Um eixo circular é feito pela compressao de um tubo de aluminio em
uma barra de latdo, para formar uma secao de dois materiais, que entdo agem como
uma unidade. (a) Se, devido a aplicagdo de um torque T, aparecer uma tenséo de
cisalhamento de 7 kgf/mm? nas fibras externas do eixo, qual & a magnitude do
torque T? (b) Se o eixo tem 1 m de comprimento, qual sera o angulo de torgéo
devido ao torque T? Para o aluminio E = 7 . 10° kgf/mm?, G = 2,8 . 10° kgf/mm? e
para o latdo E = 11,2 . 10° kgf/mm?, G = 4,28 . 10° kgf/mm?.

}

250 m 150 mm

aluminio

A rigidez equivalente em tor¢do para o eixo em questao é:

4
< GJ>= Gy, + Gy dy = 4,2.103. 7120

+2,8.103.%(2504 —1504)

<GJ> = 1,14 . 10" kgf/mm?
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A maxima tensao no aluminio é:

T T 6
=G, —— —— 125, T=22,8.10° kgf.mm
Tal aI<GJ>p 1141012 g

. 7=28.10°

O angulo de tor¢cdo do eixo pode ser determinado por uma expressao

semelhante aquela para eixos em um unico material, eq. (5.11).

_TL  228.10°1.10°
?TCGIs T 114107

, ¢©=0,02rad

5.8 — Membros macigos néo circulares

As premissas enunciadas anteriormente para eixos de secao circular ndo se

aplicam para este caso.

. A

As expressdes para determinar a maxima tensdo e o angulo de torcdo em

eixos de sec¢ao retangular sdo como seguem:

T

Tnax = (5.20)
TL

= 5.21

¢ 5b G (5.21)

onde os coeficientes o e B sdo determinados pela relagcdo entre os lado do

retangulo:
b/c 1,0 1,5 2,0 3,0 6,0 10,0 o
o 0,208 0,231 0,246 0,267 0,299 0,312 0,333
0,141 0,196 0,229 0,263 0,299 0,312 0,333
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6 — TENSAO DE FLEXAO EM VIGAS

Algumas limitagdes importantes da teoria
A teoria de tensdes de flexdo nas vigas se aplica para vigas admitidas com
suficiente estabilidade lateral em virtude de suas proporgdes ou suficientemente

reforcadas na diregao transversal.

6.1 — Premissa cinematica basica

Hipotese fundamental da teoria da flexdo: As se¢des planas de uma viga,
tomadas normalmente a seu eixo, permanecem planas apos a viga ser submetida a
flexdo. Hipotese valida quando o material se comporta elasticamente ou

plasticamente, desde que a relagdo espessura/comprimento da viga seja pequena.

p = raio de curvatura

centréide M
A D M
0! c >
° o
B C B (0%
X AX

superficie
neutra

Figura 6.1 — Viga submetida a uma flexao pura



86 Tenséo de flexdo em vigas

A expressao de deformacao linear num ponto qualquer da viga é definida da

g= lim = === (6.1)

Da hipétese de que as sec¢des permanecem planas depois de deformadas,
observa-se que a deformacao evolui de forma linear ao longo da espessura da viga,
onde emax € @ maxima deformacéo que ocorre no ponto mais distante da superficie
neutra, c. Dessa forma, a deformagcdo em um ponto genérico, distante y da

superficie neutra é da forma:

max% (62)

E=¢€

6.2 — Férmula da flexao elastica

Considerando o material trabalhando dentro da regido elastico-linear, a Lei de
Hooke, ¢ = E ¢, se aplica. Logo:

(¢

o, =E Emax y= max y (63)
c c
y
y dA centroide
_/
[ |
M A { \ +y } \ J / eixo
S X ¢
z neutro
c
—>

Figura 6.2 — Distribuicdo das tensdes de flexdo numa viga

Impondo o equilibrio de forgas na diregao x, temos:
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> Y Fe=0 , [ o,dA=0 (6.4)

Substituindo a eq. (6.3) na eq. (6.4), temos:

[, 2mex y dA =0 (6.5)
A C

Como omax € € sao valores constantes e nao nulos:

[,yda=o0 (6.6)

De acordo com a equagao para determinar a posicdo do centroide
o8
[, dA
A

transversal da viga.

y = =0, conclui-se que 0 eixo neutro passa pelo centroide da secao

O momento interno atuante na secao transversal € a soma dos momentos

infinitesimais atuantes nas area dA. Assim, temos:

M:jAcx dAy (6.7)

Substituindo a eq. (6.3) na eq. (6.7):

M:jA% y2 dA (6.8)

O momento de inércia da sec¢ao transversal, |, em relagdo ao eixo que passa

seu centroéide é definido como:

| = jAyZ dA (6.9)

Das eqgs. (6.8) e (6.9), € possivel obter a expressdo da maxima tensdo de

flexao:

Omax = (6.10)
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Substituindo a eq. (6.10) na eq. (6.3), obtém-se a expressao genérica de
tensao de flexdo em vigas em um ponto distante y da superficie neutra:

oy =—@ (6.11)

A eq. (6.11) é andloga a eq. (5.5) usada para determinar a tensdo de
cisalhamento um ponto qualquer de um eixo de segao circular. O sinal negativo
surge na eq. (6.11) pois:

Para y positivo = Tens&o de compressao

momento positivo

Para y negativo = Tensé&o de tragao

6.3 — Centroide de area

Considere uma secao transversal qualquer de area A cujo centroide esta

posicionado em ¢ de coordenadas y e Z com relacdo aos eixos de referénciay e z:

y
dA

]

l—Z —

-7 —>
Figura 6.3 — Posi¢cao do centréide de secgéao transversal

As expressdes para determinar a posicdo do centréide de uma segao

transversal sio:

J‘AydA . z:jAsz
[RZS 2

v = (6.12)
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onde as integrais IAy dA e IAZ dA sao chamadas de primeiros momentos de area

com relac&o aos eixos z ey, respectivamente.

Exemplo 6.1: Determine a posicdo do centréide da secdo transversal do tipo T

abaixo.

8 cm

o
i
3cm‘ @
10 cm
y

ZCm‘
|

A secao do tipo T € por duas segdes retangulares, logo as integrais podem

ser substituidas por somatorios. Logo:

0.(8.3)+0.(2.10)
8.3+2.10 a

, Z= Ocm

(10+15).(8.3)+5.(

2'10):8,55 cm
83+2.10

, Y=

Exemplo 6.2: Determine a posicdo do centréide da segado transversal do exemplo
anterior, onde neste caso, os eixos de referéncia sao posicionados de forma

diferente.
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y
‘ 8 cm
]
3cm‘ @
A VL_.®
10 cm I‘_E_
w
ZCm‘
2 —~—
2. 7iA 4.(8.3)+4 .(2.10
S _ i e .(8.3)+4.(2. ):4cm
2 8.3+2.10
DA
i=1
2
2 Vil 15.(8.3) + (-5). (2.10)
y =" , y=—2 A _145cm
8.3+2.10

6.4 — Momento de inércia de area

Considere os eixos y e z sobre os quais deseja-se determinar os momentos

de inércia da area A:

— < —

AN

Figura 6.4 — Momentos de inércia de area
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Os momentos de inércia da area A com relagdo aos eixos y, z e sao
determinados da seguinte forma:
2
=] 22 dA
_ 2
N _jAy dA (6.13)
J=[ P dA =1, 4],

Os eixos z e y sdo chamados de eixos principais de inércia quando passam
pelo centréide da secéo. Neste caso:

|y2=jAysz=o (6.14)

Exemplo 6.3: Determine os momentos de inércia da segao transversal retangular de

dimensodes a e b mostrada abaixo.

y
4 dZ
A | {
o
b/2 ‘f y
z—1
b/2
Y
a2 ' ap

o

b % 0 3%
IZ=J. Iyzdydz:z|_/62y?
573 2
| ab®

2712

N

De maneira analoga:

Como os eixos y e z passam pelo centréide da secéo, tem-se que:



92 Tenséo de flexdo em vigas

Iyzz'[ydyjde:y? > =0
Y % % T

Os momentos de inércia de uma segao com relacdo a eixos paralelos aos
eixos principais de inércia podem ser determinados pelo teorema dos eixos

paralelos:

- \7 —

.
-

Figura 6.5 — Momentos de inércia de area com relagao a eixos paralelos

Da definicdo de momento de inércia de area dada pela eq. (6.13), o momento

de inércia da se¢ao com relagao ao eixo z’ é:

L, = _[A(y+Ay)2 dA = jAyZ dA +2 ijAy dA+Ay2jAdA (6.15)

Considerando a eq. (6.6), a expressao final do momento de inércia da seg¢ao

transversal de area A com relagéo ao eixo paralelo z’ é:

L, =1, + Ay2A (6.16)

Por analogia, os momentos de inércia com relagao aos eixos y’ e X’ sdo:

_ 2
Iy- —Iy+Az A

(6.17)
JO = JC + AZA

Exemplo 6.4: Determine o momento de inércia da sec¢ao do tipo I com relagéo aos

eixos y e z como mostrado abaixo.
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1cm @

3cm —| -

1cm @

O momento de inércia da se¢do com relagao ao eixo z pode ser determinado
considerando a soma dos momentos de inércia das areas retangulares que formam

a segao do tipo I. Logo:

Iz = |z1 +Iz2 +|z3

3 1° 2 4
|, = +1.3.22 . 1,,=1225¢cm
12
1 33 A
lo =—— ,1,0=2,25¢cm
22 "o 2
313

|3 =?+1.3.22 , I3 = 12,25 cm*

l, = 26,75 cm*

e, 0 momento de inércia da segdo com relagdo ao eixo y é:
Iy = |y1 +|y2 +|y3
13> 31 133
y = + +
12 12 12
ly = 4,75 cm*

Importante: O momento de inércia representa a resisténcia de uma segao
transversal em girar em torno de um eixo. Portanto, a se¢do acima gira mais

facilmente em torno do eixo y que do eixo z.
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6.5 — Flexdo pura de vigas com se¢do assimétrica

Na discussdo anterior, foram analisadas somente vigas com secodes
transversais simétricas, porém o equacionamento é valido para se¢des quaisquer,

desde que seus eixos sejam 0s eixos principais de inércia.

y z centréide
Ox

[ < -
M @ , y ® eixo
/neutro

Figura 6.6 — Flexdo de vigas assimétricas

Impondo o equilibrio de momentos com relagéo ao eixo y, temos:

M, = jAoX z dA (6.18)

onde My € o momento interno resultante.
Substituindo a eq. (6.3) na eq. (6.18), e considerando que omax € C Sao

constantes:

(e
My:%jAysz (6.19)

Se y e z sdo eixos principais de inércia, a integral IAy zdA é nula, eq. (6.14).

Logo, o momento interno resultante M, = 0. Assim, as equagbes deduzidas

anteriormente se aplicam a uma viga de secéao transversal qualquer.

Exemplo 6.5: Determine a tensdo de flexdo maxima na viga de secdo do tipo I

submetida a um carregamento distribuido como mostrado abaixo:
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y
I 30 kN
1 20mm+ @
|
N R '
Y
150 mm 20 mm
B z Y B
A ‘ @
T G 150 mm - ©
RAy 6m RB» V | |
20mmT L 250 mm »‘

a — Calculo das reacgdes de apoio
Q ZMB =0, Rxa.6-30.3=0 , Ra=15kN

b — Célculo do momento maximo

I5x
|
M
Y W VYAV
j—
15 X

¥ ) EM=0 , -15x+5x2+M=0

M = —gxz +15x  (kN.m)

dM

Mpax, —=0=-5x+15 = x=3m
dx

Mmax (x=3) = 22,5 kNm

¢ — Calculo do momento de inércia da seg¢ao

2=z + 12+ 123

250 .20° 20.3003

|, =2
z 12

+250.20.1602}+{

|

l, =301,3.10 ® mm*

d — Calculo da maxima tensao de flexao
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Mpax -C 225.10%(-170)

l, 3013.10°
Omax = 12,7 MPa

Omax =

Exemplo 6.6: Uma viga estrutural em aco do tipo T usada em balancgo, € carregada
da forma mostrada na figura. Calcular a magnitude da carga P que provoca uma
deformacao longitudinal no ponto C de +527 x 10 ° mm/mm (alongamento) e uma
deformacao longitudinal no ponto D de -73 x 10 ~°> mm/mm (encurtamento). (I = 2000

cm? e Eag = 21 x 10° kgf/mm?).

P
Ponto C Ponto D

A |
[J_ A 175mm—¢_:£/+_ B
L 1‘25m »} T25mm

ec

C

€n - 175 mm
25 mm A / D y

Por semelhancga de triangulos:

€c _ gp

= y=4325mm
175-y y-25

P
) 4

9

OZM:O  M+P.15=0 , M=-15P (kgf. m)

1,25 m

O¢c =

~M.yc
|

:E.SC

P.125.10% . (175 - 43,25)
2000.10*
P = 1344 kgf

-21.10%.527.10°8
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6.6 — Tensdo de flexdo em vigas com diferentes materiais (Método da rigidez

equivalente)

Vigas com dois materiais sdo comumente chamadas de vigas compostas e
sdo projetadas de forma a desenvolver maneiras mais eficientes para resistir as
cargas aplicadas.

Como a formula da flexdo em vigas, dada pela eq. (6.12) foi desenvolvida
para o caso de materiais homogéneos, esta formula ndo pode ser aplicada
diretamente para determinar as tensbes de flexdo em vigas compostas por
diferentes materiais. Para estudar estes casos de viga, considere uma viga

composta de dois diferentes materiais.

v

/ M
b_»

/

Figura 6.7 — Flexao de vigas compostas

Supondo que E1> E3:
y y

G

|
M i M
Elastico-linear

@ ~ X N @ N~

ox=FEi¢

@ @ [
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Impondo o equilibrio estatico das forgas na direcao x, obtem-se a mesma eq.
(6.3). Supondo que a lei de Hooke ¢é valida para cada material i, e pode ser colocada
da forma:
oi=E;¢ (6.20)

onde c; € a tensdo num ponto situado no material i e E; € o mddulo de elasticidade
do material i. Sabendo que a evolugdo das deformacgdes € da forma pela eq. (6.2), o

equilibrio estatico se pde da forma:

Emax . —
> IAEIydA_O (6.21)

Seguindo o mesmo raciocinio feito na eq. (6.6) para no caso de uma viga
homogénea, a eq. (6.21) pode usada para determinar a posi¢do do eixo neutro
(centréide) da secao transversal com diferentes materiais da seguinte maneira:

V= J-AEi y dA _ in i A
IAEi dA D EA,

(6.22)

onde y; é o centroide da area de material i e A € a area de material i.
O momento interno é obtido pela soma dos momentos infinitesimais. Assim,

considerando as egs. (6.2) e (6.20), temos:

M:Sm%jAEi y2 dA (6.23)

A integral da eq. (6.23) pode ser chamada de rigidez equivalente em flexdo,

<El>:

<El>=[ E Yy’ dA =Y E |, (6.24)

onde |; € o momento de inércia da area com material i.
Substituindo a eq. (6.24 na eq. (6.23) e rearranjando, a expressao da maxima
deformacéo pode ser colocada da forma:

M

Smax < EI > ( )
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Considerando a relacao de deformacéo dada pela eq. (6.2) e a lei de Hooke
para cada material i, eq. (6.20), a expressao que fornece a tensao de flexdo em um

material i, distante y do eixo neutro é da forma:

Gi:—Ei M
<El>

y (6.26)

Exemplo 6.7: A viga composta abaixo é sujeita a um momento fletor de M = 2 KN.m.
Determine pelo método da rigidez equivalente as tensdes nos pontos B e C se E;g =
200 GPa e Enag = 12 GPa.

N\

150 mm

dei
madeira 20 mm

EiyiA 9 9
- 12.107.95.150.150 +200.10.10.20.150

5 5 , Yy =3638mm
12.10°.150.150 + 200.107.20.150

b - Determinar a rigidez equivalente <EI>:

<E|>=12.1o3[M

2
+150.150 (%+ 20 —36,38} ]+

200 103{150.203

+20.150 (36,38 — 10)2}

<El> =1,87.10" N.mm?
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¢ - Determinar as tensoes:

Ponto C:
M .2000.10° (-36,38
6 =—Eag ——— Yo =-200.10° (12 )
<El> 187.10
oc = 7,78 N'/mm? = 7,78 Mpa
Ponto B:

M .2000.10° (150 + 20 — 36,38
og =—Enag ——Yyg =-12.10° ( - )
<El> 187.10

og =-1,71 Mpa

Exemplo 6.8: Se o momento maximo no ski abaixo é 77,78 N.m, determine as
tensbes de flexdo no agco e na madeira se a secao transversal do ski € como

apresentado abaixo. Tome Eae = 200 GPa e Emag = 12 GPa.

P
<-—1m
A B C D E
A A T I
N
= e
-+ - 1m ><<— O —
P o
y
2 mm B(ago) A C(madeira)

: O G
15mm | O @adea)
2 mm T ‘-
Lﬁ 100 MM —

a — Calculo da rigidez equivalente <EI>:

100 .23 15 22 100.153
aco [T+2100[7+§j :l+Emad[—

<El>=2E
12

3 2 3
<El>=2.200.10% | 1292 +2.1oo.(1_5+3] 12103/ 100.15
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<EI> = 6,14.10° N.mm?

b — Calculo das tensbes:

Ponto A (aco):
3
oA =—Eac LyA _ _200.10% /7:78107 95 , oA =-24,05 Mpa
<El> 6,14.10°
Ponto B (ago):
3
68 = Eaco LyB _ 200.103 /1810775 48,99 Mpa
<El> 6,14.10°
Ponto C (madeira):
3
6c = —Emag LyC _ 12403 T7I8A07-15 4114 Mpa

<El> 6,14.10°

101
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7 —- TENSAO DE CISALHAMENTO EM VIGAS
7.1 — Preliminares

Considere a segao transversal de uma viga carregada transversalmente por
uma forga cortante V como apresentado abaixo, Fig. 7.1.

-

%

A
\Y4Y; ﬁl
|

-+

Figura 7.1 — Distribuicdo das tensdes de cisalhamento numa segéo transversal

Justificativa do surgimento das tensdes de cisalhamento longitudinais.

120

t=0

Figura 7.2 — Tensdes de cisalhamento longitudinais
7.2 — Férmula da tenséo de cisalhamento em vigas

Considere a viga carregada transversalmente como apresentado abaixo, Fig.
7.3.
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y Fi F2
W(x)
Y v * y l | .
|
A 7 )
T, X dx 2 T,

Figura 7.3 — Viga carregada transversalmente

Considerando somente as forgas axiais atuando nas seg¢des transversais de

um elemento de viga de comprimento dx, temos:

eixo

\J neutro

dx

M+dM

Figura 7.4 — Tensdes atuando num elemento de viga

Impondo o equilibrio das for¢as atuando na dire¢ao axial x, tem-se:

- F =0, ] cdA-[ o'dA+t(t.dx)=0 (7.1)
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onde o é a tensao normal atuando na segao transversal esquerda do elemento, ¢’ é
a tensdo normal atuando na secéao transversal direita do elemento, t é largura da
secdo no ponto onde se deseja determinar a tensdo de cisalhamento e A é a area
acima do ponto onde se deseja determinar a tensao de cisalhamento.

Substituindo a tensdo normal de flexdo dada pela eq. (6.7) na eq. (7.1),
temos:

j/{—% dA—IA(—MJrIdedAJrr(t.dx):O (7.2)

Simplificando a eq. (7.2) e considerando que o momento interno M e o

momento de inércia | sdo constantes na secéo:

ﬂjA,ydAﬂ(t.dx):o (7.3)

Isolando a tenséo de cisalhamento, tem-se:
dM 1

=2 ydA 7.4
TS A Y (74)

Como (l_M =-V e J'A,y dA é o primeiro momento da area A’ com relagao ao
X

RE

J'A'dA

[ ydA=y'A'=Q (7.5)

. Entao:

eixo neutro, ou seja y'=

Logo, a tensdo de cisalhamento em uma se¢cdo num ponto distante y’ do eixo
neutro é determinada dada por:
~va

T=—
t

(7.6)

Restrigcdes da eq. (7.6):
» Material trabalha dentro do regime elastico-linear,
» Relagdo espessura/comprimento da viga pequena (hipétese fundamental da

teoria de flexdo).
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» Mddulo de elasticidade deve ser o mesmo em tracdo e em compressao.

7.3 — Distribuigdo da tenséo de cisalhamento em vigas

Considere a viga de segao transversal retangular de altura h e largura b,
submetida a um esforgo cortante V, Fig. 7.5:

Figura 7.5 — Esforgo cortante V atuando numa secéo transversal
O primeiro momento da area A, Q, pode ser determinado como:
_ 1(h h
Q: 'A': |+_ - ' o ' b 77
y [y 2(2 yﬂ(z y} (7.7)

Simplificando a eq. (7.7), temos:

2
Q=%[h7—y'2Jb (7.8)

Substituindo as egs. (6.9) e (7.8) na eq. (7.6):

1(h?
Vz(rszb
(7.9)
3
b h b
12

Simplificando a eq. (7.9), temos:
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6V (h®
_ Y 7.10
T bh3[4 y] (7.10)

Conclusoées:
» A distribuicdo da tensao de cisalhamento é parabdlica.

» A tensao de cisalhamento € nula nas extremidades ( h/2, - h/2).

» A tensao de cisalhamento é maxima no eixo neutro (y = 0). T = sV = 1,5%

4bh
\
f\f//

=

eixo /

neutro

Figura 7.6 — Tensdes de cisalhamento atuando em planos ortogonais
Observacao importante: Para o caso de um material anisotrépico como por exemplo

a madeira, a viga se rompe ao longo do plano horizontal paralelo as fibras, passando
pelo eixo neutro da secgao.
P l

Figura 7.7 — Ruptura por cisalhamento em vigas de madeira

P o

Exemplo 7.1: A viga abaixo € composta de duas pranchas de madeira formando um

perfil do tipo T. Determine a maxima tensao cisalhante na cola necessaria para
manté-las juntas.
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y
6,5 kN/m L l | 30 mm § <_15C|)L.<
A - C | B T 65
. z 30 mm
&\%‘ am ‘<4—m>% 150 lnm ; — <—@>
|
a - Calculo das reacgdes de apoio: ' T

Ra T 6 m 2m
Rs

C;ZMA=0, Re.8-26.6=0, Rg=195kN

T 2F, =0, Ra+195-26=0, Ra=65kN

b—  Calculo do diagrama de cortante:
Trecho AC (0 < x < 4):

\Y
I |
ol
ZFy:O, 6,5+V=0, V=-65kN
Trecho CB (0 < x < 4): :
1 6,5.(4-x)
I
Y vy y
v A
X 19,5

>F, =0, -V-65(4x)+195=0 V=65x-65 (kN)
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p/x=0 = Vc=-6,5kN

p/x=4 = Vg=19,5kN

19,5 kN

-6,5 kN ;

¢ - Calculo da posicao do eixo neutro (centréide):
2

A.
_ ;y" 75.30.150 + (15 +15). 30. 150
2A 30.150 +30.150
i
=1

d - Calculo do momento de inércia |,:

~30.150°

IZ

3
+30.150. (120 — 75)? +M+30.150.(150+%—120)2,

l, =27 .10" mm?*

e - Calculo do primeiro momento Q:

<l

<|

Q=Y. A':(150+30—120—@) 30.150 = 2,025.10°mm?

f - Calculo de tmax:

~VQ 19,5.10% 2,025.10°

T = - = 4,875 MPa
max ot 2,7.10". 30
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7.4 — Tenséo de cisalhamento em vigas com diferentes materiais (Método da rigidez

equivalente)

Andlogamente ao caso de vigas com diferentes materiais trabalhando em
flexdo, a férmula para determinar tensdo de cisalhamento, eq. (7.6), nao pode ser
aplicada diretamente para determinar as tensdes de cisalhamento para o caso de
vigas compostas. Para estudar estes casos de viga sujeitas a um cisalhamento,
considere a viga abaixo composta de diferentes materiais, Fig. 7.8.

y F, Fs
w(X)
Y v * F l , " | .
= N—
T X 1 dx M2

Figura 7.8 — Viga comporta carregada transversalmente

Considerando somente as forgcas axiais atuando nas secdes transversais do

elemento de comprimento dx da viga composta, temos:

A

eixo

A!
S
\J neutro
dx
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c o
—> <
A’
N g/
" <
Moy M+dM
Vi L )
% o o
dx

Figura 7.9 — Tensdes atuando num elemento de viga composta

Da imposicédo do equilibrio de forcas atuando na direcdo x, tem-se a mesma
eq.(7.1). Substituindo a eq. (6.9) que fornece a expressado de tensido de flexdo de
vigas compostas na eq. (7.1), temos:

M M +dM
IA,—Ei (<El>jydA—jA'—Ei( —Ers jydAJrr(t dx)=0 (7.11)

Simplificando a eq. (7.11) e considerando que o momento dM e a rigidez
equivalente <EI> é constante na segéo, temos:
dM

<E|>jA.EiydA+r(tdx):O (7.12)
Isolando a tensado de cisalhamento da eq.(7.12):
dM 1
=—— E ydA 7.13
dx<EI>tj-A' R (7.13)

Sabe-se que, ((jj—M:—V e chamando o primeiro momento da area A’ de
X

Q= jA,Ei ydA=>E vy A ,temos:

T= va (7.14)
<El>t

onde t é a tens3o de cisalhamento na posicdo y, V é o cortante na sec¢do analisada,

Q é o primeiro momento de area, <EI|> é a rigidez equivalente e t € a largura da viga
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na posicdo y. Na expressdo de Q, E; é o médulo de elasticidade do material i, y; é a
posicdo do centréide da area de material i e A; € a area do material i. A rigidez

equivalente é<El>=>E; |; .

Exemplo 7.2: Se o cortante maximo no ski abaixo € 200 N, determine as tensdes de
cisalhamento no ago e na madeira se a seg¢do transversal do ski é como

apresentado abaixo. Tome E,e = 200 GPa e Emag = 12 GPa.

P

\JHMV’

“05m™*——1m —><05m—>

2 mm B(aQO)TC(mFdelra
EE s By

2 mm T “

‘ 100 mm

a — Calculo da rigidez equivalente <EI>:

3 3
-2ty [_1032-2 c2100(12,2) ]+Emad[_1°°1;5 }

3 3
<El>=2.200.10° 100 .2 +2.100. 15 2 +12.10 100.15
<EI> = 6,14.10° N.mm?

Ponto D: (madeira)

Qp =Y E; ViA; =E,5¢(3,75.100.7,5) + E 5, (8,5.100.2)

Qp =12.10%(3,75.100.7,5)+ 200.10°(8,5.100.2)
Qp = 373750000 N.mm
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_V.Q  200.373750000

_ _ , 10 =0,12 N/mm?
<El>.t  614.10°.100

D

Ponto C: (madeira)
Qc =D E; yiA; =E,4,(85.100.2)
Qc =200.10°(8,5.100.2)

Qc = 340000000 N.mm

_V.Q _ 200.340000000
<El>.t  614.10°.100

g , 18 =0,11 N/mm?

Ponto B: (ago)
Qg = Qc = 340000000 N.mm

8 = 1c = 0,11 N/mm?

Conclusao importante: Na interface entre o ago e a madeira ha continuidade das

tensdes de cisalhamento transverso (g aco = Tc mad = 0,11 MPa ).

Exemplo 7.3: Plote a distribuicdo de tensdes de cisalhamento na sec¢ao transversal

de uma viga do tipo I com forga cortante V = 80 kN.

y
20 mm * /A
| B
f C
15 mm
— -

200mm z
D

[
20mm } | 300 mm

a — Calculo do momento de inércia :

15.200°3

=2

3
{M — 1556.10% mm*

+1 102.300.20} +
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Ponto A:

QA=0 = ‘L'A=0

Ponto B:
Qg =V'.A'=110.300.20 = 6,6.10°mm?

3 5
s :80.10 .6,6.10 ~113 MPa

1556.108.300

Ponto C:
Qg =Qc=6,6.10° mm?

3 5
o = 80.10° .6,6.10 _ 2262 MPa

1556.108.15

Ponto D:

Qp = 4" A{+¥5". A,'=50.100.15 +110.300.20 = 7,35.10° mm?®

~80.10° .7,35.10°

— 2520 MPa
1556.108.15

T

113 22,6
0

7.5 — Fluxo de cisalhamento

25.2

113

Ocasionalmente na engenharia, alguns membros sao construidos a partir da

unido de diferentes partes para poderem resistir as cargas. Nestes casos, a uniao

das diferentes partes do membro é feita através de cola, pregos, parafusos, etc.

Para o projeto destes elementos é necessario o conhecimento da forga que deve ser
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resistida por cada um destes elementos. Seja a viga com o carregamento abaixo,

formada pela unido de dois elementos:

Fi F y
y H
l w(X) A E
) - F ! c I X Z
A IR —1)
AT x X N t
_’ <—

l , Segéo
(&) &)

transversal da

N o E viga
A’
T’_, g/

!
Moy 0 M+dM
V.. o )
% o o
dx

Figura 7.10 — Tensdes atuando em elementos unidos por pregos, parafusos, etc.

Da eq. (7.3) que representa o equilibrio das forgas na diregcao x, tem-se a

forca de cisalhamento atuante na interface entre dois elementos:

—ﬂjA,ydAzr(tdx):dF (7.15)

A forca de cisalhamento por unidade de comprimento pode ser obtida da
forma:

£=—ﬂ1 y dA (7.16)
dx dx | A

Sabendo que z—M =-V e Q= '[A,y dA, o fluxo de cisalhamento q é dado por:
X
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VQ
=

Exemplo 7.4. Determine a quantidade de pregos necessaria para manter os

elementos da viga abaixo de 3m de comprimento, unidos quando submetida a um

cortante de 2 kN. A tensdo admissivel dos pregos de didametro d = 2 mm € tagm = 225

Mpa.

y
20mrrll/ ©)

T 20 mm
150 mm ™
,/@

20mm & L 150 mm »}

a — Calculo do momento de inércia | e do primeiro momento Q:

3 3
|:M_2 65.150" — 49175000 mm?
12 12

Q=y.A'= (?+10) 150 .20255000 mm*

b — Calculo do fluxo decisalhamento q:

gV Q_ 2000255000

= =10,37 N/ mm
I 49175000

¢ — Célculo da forga suportada por cada prego:

V

tadmP =y Vv
225 = V2
n2
4

V=P=706,86N
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d — Calculo do espagamento entre os pregos:

P _ 706,86 N
g 10,37 N/mm

=68,16 mm

e — Calculo do numero de pregos:

68,16

Exemplo 7.5. A viga biapoiada abaixo é composta de 4 pranchas de madeira e
suporta uma forga concentrada de 550 kgf. Determine o projeto entre (a) e (b) que
exige a menor quantidade de pregos. Cada prego resiste a uma forca de 20 kgf. O

eixo neutro € paralelo ao eixo z.

z l 550 kgf

I X
?Lxxxﬂ
T 1,5m -
L »L 1,5m »[/
y y
g 50 MM — '_ 50 mm
=~ |
z 200 mm z 200 mm
_ v .
—=mml 50 MM —=m 50 mm
T f
50 mm , 200 mm 50 mm 50 mm ‘ 200 mm 50 mm
—> -« <> «—
projeto (a) projeto (b)

a — Calculo das reacbes de apoio:
(, XM, =0, Re.3-550.15=0 , Ra=275kN

T YF, =0 ,Ra+275-550=0 , Ra=275kN

b — Calculo do momento de inércia da segéao:
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~300.300° 200.200°

| .1, =541666666,7 mm*

12 12
» Projeto (a): A y
(oF — \ ST~ O
B
Yy =125 mm
z
c1 — Calculo do primeiro momento Qq:
Q,=y'.A'=125.200.50 = 1250000 mm®
dq — Calculo do fluxo de cisalhamento q:
ar = V Qq _ 275.1250000 _ 0,32 kgf/mm
21  2.541666666,2
eq — Calculo do espagamento entre os pregos ey:
F
e =_p:ﬂ=62,5 mm
gy 032kgf/mm
f1 — Calculo do numero de pregos np:
oL _s000mm
e; 625mm
g1 — Calculo do numero total de pregos no projeto a:
Nig1=4.48=192
» Projeto (b):
A y
qz \ ; gz
S TR e | y — 125 mm
z

117
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¢ — Calculo do primeiro momento Qa:

Q;=y'.A'=125.300.50 = 1875000 mm?

d, — Calculo do fluxo de cisalhamento qq:

VQ  275.1875000
92 = 5 T 2 5416666662

= 0,48 kgf/mm

e, — Calculo do espagamento entre os pregos ey:

e, :F_p:Lkgsz,? mm
g, 0,48kgf/mm

f, — Célculo do numero de pregos np:

_ L _3000mm __,

Nen=—=
P2 e, 417mm

Tensao de cisalhamento em vigas

g2 — Calculo do numero total de pregos no projeto b:

Ni2=2.72+48.2=240

Exemplo 7.6: A viga abaixo é formada pela unido de diferentes perfis parafusados

entre si. Determine a maxima forgca cortante que a viga pode suportar se os

parafusos resistem a uma forga cortante de 11 kN e estdo espagados de 200 mm.

305x102x46,2 L 305x165x54
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Perfil 305x102x46,2 kg: 304.8 mm
A = 58,8 cm? ‘ - & - ‘c
ly1 = 8214 cm*
2 yd AN

I, = 500 cm* — U1 N ? 2
c=2,66cm 101.,6 mm¢ 10.2mm

1

. 2

Perfil 305x165x54 kg:
A = 68,3 cm?
l44 = 11686 cm*
l,, = 988 cm* 1 1

a — Calculo do momento de inércia | de todo o perfil:

31,09

2
=21 +1, —2!500—1-( +1,02—2,66j .58,8]+11686

| = 35423,8 cm* = 35423,8 . 10* mm*

b — Calculo do primeiro momento Q:
31,09

Q=y.A'= (TH,OZ —2,66).58,8 =817,614 cm® =817,614.103mm?

¢ — Calculo do fluxo de cisalhamento q:

-2308.10°%.V

q=VQ_ V.817,614.10°
| 354238.10°

d — Calculo do espagamento entre os parafusos ey:

_ forga cor tante nos parafusos
q

p

3
200-—2190° v =47700N

2308.1073.V
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8 —- TENSOES COMPOSTAS

Nos capitulos anteriores, foram desenvolvidos métodos para determinar a
distribuicdo de tensdo em membros sujeitos a esforgos internos: forga axial, forga
cortante, momento fletor e momento torgor. Muito frequentemente, a secéo
transversal de um membro esta sujeita a varios tipos de esforgos internos
simultaneamente. A tensao resultante destes esforcos € obtida pela superposicao
das tensdes devido a cada esforgo interno calculadas separadamente.

8.1 — Superposicéo e suas limitagdes

O principio da superposi¢cao pode ser usado desde que haja uma relagao
linear entre tensdo e carregamento. Também deve ser considerado que a geometria
do membro ndo deve sofrer mudanca significativa quando as cargas s&o aplicadas.
Isto deve ser assegurado de maneira que a tensao produzida por uma carga nao
esta relacionada com a tensdo produzida por uma outra carga. Neste sentido,
considere a viga com o carregamento mostrado abaixo, trabalhando dentro do

regime elastico linear.

w
P P
—> | l——
A P P
A a B
b
w
P> ¢ ‘V _—— P
S
PR
;—O—
P W
g
w
P l V M \Y;
P —— &
4

Figura 8.1 — Viga submetida a uma flexo-compressao
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onde v é a deflexdo da viga de um ponto distante x da extremidade:

Impondo o equilibrio de momentos com relagédo ao eixo z, temos:

QZM6=O,M—P.V—RAy.x+W.(x—a)=0 (8.1)

Assim, percebe-se que o momento interno M é dependente da deflexao v:
M=Ra .Xx-W.x—-a)+P.v (8.2)

Como a deflexdo v é devido ao carregamento W, o momento P.v seria
desprezado quando da aplicagdo do principio da superposi¢ao. Isto poderia ser
considerado somente quando a deflexdo v for pequena. Portanto, nos casos onde as
deformacgbes sao pequenas, O principio da superposicdo pode ser aplicado

separadamente para cada forga aplicada na estrutura.

» Tensao normal devido a forga axial P:

y
' <
< P N
& o,=—
< X X A
» Tensao normal devido ao momento fletor M:
y
| <
M
. M y
eixo wo
x  OxTT
neutro §

Y

» Tensao de cisalhamento devido a for¢a cortante V:
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\Y VaQ

X Txy = Tyx = |

O tensor de tensdes € para este caso bidimensional:
G'X 0 + G”X 0 n 0 Txy _ (G'X+G”X) Txy (83)
0 0 0 0] |ty O Tyy 0

Exemplo 8.1: Calcule o tensor de tensdes no ponto C da viga de secao transversal

retangular, b = 50 mm e h = 250 mm.

125 mm /
15 m

l A|<_,| . 50 kN/m

X

<

AR
O

1,5m

cosezi , senezE
25

a — Calculo das reacdes de apoio:

CZM 0, Rg.-> 6+Rg. 2 15-125.-2 5-125. > 075 - 0 — Rg = 97,59 kN
25 25 25 2,5

2 2
T SF =0, 9759.-5-125.-5 +Ra, =0 = Ray = 21,93 kN
2F, 25 25 AT o

SYF =0, Ruy 12522 497,50.22 20 = Ry, = 16,45 kN
X 2,5 2,5
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y

c M
16,45
X  —p ?

1.5m \V;

21,93 |

b — Calculo dos esforgos internos:
— ZFX =0,16,45+P=0 = P=-16,45kN

THF, =0,2193+V=0= V=-21,93kN
y

CZM:O , 21,93.15+M=0 = M=32,90 kN.m

¢ - Tensao no ponto C devido a forga P:

o) = % = 1316 MPa

d - Tensao no ponto C devido ao momento M:

", = —@ — 63,168 MPa

e - Tensao no ponto C devido ao cortante V:

VQ
Txy: |_:O

f — Tensor de tensdes no ponto C:

{—1,316 0} [—63,168 O} _{—64,48 0

+ (MPa)
0 0 0 0 0 0

8.2 — Flexao obliqua

Considere uma viga sujeita @ um momento inclinado de o com relagdo aos

eixos principais y e z da sec¢ao transversal da viga, Fig. 8.1.
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M.= M.cosa

: )

Figura 8.2 - Viga sujeita a um momento inclinado de o

A férmula da flexdo elastica, eq. (6.8), pode ser aplicada para cada
componente do momento My e M;, e a tensdo combinada dos dois efeitos pode ser
obtida pela superposicéao.

Considere o caso especial de uma secao transversal retangular submetida a

um carregamento inclinado, Fig.8.3.
y y
B N
< ok N <
AN 4

<

;

=

AT

M Myy z e ;
GX,:_—ZZy Gx":"‘L Ox = Oy + Oy

IZZ

Figura 8.2 — Tensdes devido a um carregamento inclinado

A obtencéao da posicao do eixo neutro é feita fazendo o, = 0:

z y

0 (8.3)
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Substituindo as componentes do momento inclinado:

_(Mcosa)y . (Mseno)z _ 0 (8.4)

L ,

Assim, a equacao que fornece a equagao do eixo neutro € da forma:

ly

y=2z (Iij tga (8.5)
Conclusao importante: O eixo neutro ndo € perpendicular ao plano de aplicagado do
momento, a menos que |, = l;. Os pontos de maxima tensdo de flexdo em tragéo e

em compressao se encontram nos vertices da segéo transversal.

Exemplo 8.2: A viga de madeira de se¢ao 100 mm x 150 mm mostrada abaixo é
usada para suportar uma carga uniformemente distribuida de 500 kgf. A carga
aplicada age em um plano que faz um angulo de 30° com a vertical. Calcular a

maxima tensdo no meio do vao e localizar o eixo neutro.

500 kgf
1
}
I
\ \ \ YVy \ wi
VAN _0O
i )

a — Calculo das reacoes:
CZMA ~0, Rey.3-500.1,5=0 = Rey =250 kgf

TSF . =0, Ry +250-500=0 = Rpy =250 kgf

b — Célculo do momento interno M:
1 250 kgf

\ A\ ¢ \

4—
<

250 kgf
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CZMczo, -250.1,5+250.0,75+M=0 > M=187,5kgfm

¢ — Calculo das componentes do momento M:
M; = M cos 30° = 162,4 kgf.m , My = M sen 30° = 93,8 kgf.m

d — Calculo dos momentos de inércia de area I, e Iy:

~100. 150°

z

| = 28125000 mm*
~150. 100°

, = 12500000 mm*
12

e — Calculo das tensdes normais:

o :_sz + MyZ

X
, ,

Ponto (y = - 75 mm, z = 50 mm) = o, = 0,808 kgf/mm? (tracdo)

Ponto (y = 75 mm, z = - 50 mm) = o, = - 0,808 kgf/mm? (compress&o)

f — Célculo da posigéo do eixo neutro:

| 2812,5
=z|%|tga =2z — |tg30° =13z
y (IJga (1250)9

8.3 — Elementos estruturais com carregamento excéntrico

Considere um elemento estrutural em cuja secao transversal é aplicada uma

forga excéntrica em relagéo ao centroide da segao, Fig. 8.4.
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X X
P Z, P l P .
A > A
Yo 5 = KY¥o
7 A

Y ’ tjq/
___/\/_/\/ -——/\/—
Figura 8.4 — Elemento estrutural solicitado axialmente

Com a superposicao dos efeitos, tem-se:

P P
A ! A P
- 20 A
P ( Yo
. * - - \/ A/ Z
\ 4
y y y
A A A
RN P A
A 1A N\ —
. P P.y,.
GX_K cs"x:P'zOZ o = BI/oY
Iy z
Figura 8.5 — Distribuicdo das tensdes normais
A tensao resultante das tensdes normais é da forma:
0= + 222y BdoY (8.6)

y z

Exemplo 8.3: O bloco retangular de peso desprezivel estd sujeito a uma forga

vertical de 40 kN, a qual é aplicada em seus vértices. Determine a distribuicdo de

tensao normal atuando sobre a se¢ao ABCD.
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M; = 40 kN.0,4 m

40 kN
D
C
My =40 kN.0,2 m
z
A B
y
G:_B + sz_ MyZ
A 1, ly
Ponto A (y =400 mm, z = - 200 mm):
op = 40000 N 40000. 400.3400 _40000. 200. (3—200) 0,625 MPa
400.800 400.800 800.400
12 12
Ponto B (y = 400 mm, z = 200 mm):
og = - 40000 N 40000. 400.3400 _40000. 200.3200 _ 0,125 MPa
400.800 400.800 800.400
12 12
Ponto C (y =-400 mm, z = 200 mm):
o = 40000 N 40000.400.(;400) B 40000.200.3200 _ _0,8755MPa
400.800 400.800 800.400
12 12
Ponto D (y = - 400 mm, z = - 200 mm):
_ 40000 N 40000.400.(-400) 40000.200.(-200) — _0.125MPa

Op =~ 3 3
400.800 400.800 800.400
12 12

Posicao do eixo neutro (tensao nula):

62500 125000
04-e e

e =66,7 mm

62500 125000
0,8 -h h
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h=0,133m

8.4 — Superposicao de tensées de cisalhamento

Exemplo 8.3: Achar a maxima tensao de cisalhamento no plano ABDE do eixo de 12

mm de didmetro, devido as esforgos aplicados.

TP=24kgf

M = 2000 kgf mm

T 24 kgf
2000 kgf mm
M = 24.100 kgf mm
& e
100 mm T
T = 2000 kgf mm
V = 24 kgf

D

» Tensdes devido ao momento de tor¢cao T:
S Tc 2000.6

ey . 6*

2

=5,89 kgf/mm?
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Tmax

Tensdes compostas

» TensoOes devido ao cortante V:

R
Vi

B
A
87%
Q

\

24144

=21 " _ 0,28 kaf / mm?
fmax = 3018 12 g

<
Y
O
— ] {——

Tmax (Ponto E) = 5,89 + 0,28 = 6,17 kgf/mm?

Exemplo 8.4: Uma placa é sujeita a um carregamento uniforme devido ao vento

conforme mostrado abaixo. Determine o estado de tensdes nos pontos C e D

situados na coluna de sustentagao da placa de 100 mm de didametro.
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15 kPa/"/\m~>?/

//'/'/' y 1Tm
\,,,V/'
e v
3m z

T =3000.1 N.m

Feq=P.A=15.10°.2.1, Feq=3000N

» Tensodes normais devido ao momento fletor M:

M
o, = y X
Iy
3
oc = 3000'3’5'12 (90 _ 106,95 MPa, oc = - 106,95 MPa
n. 50
4
Oop = 0

» Tensdes de cisalhamento devido ao momento torcor T:

T~ =T _—TC
c D J
3000.1.10%.50
=14 = = 15,28 Mpa
fe =D . 50 P
2

» Tensdes de cisalhamento devido a forga cortante V:
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2 2
Q=y'.A'= 4.c\(mc _ 4.50)( =.50 _ 833333 mm®
3. 2 3. 2

n.c* T 504
4

. __3000.83333,3
D ™ 4908738,5.100

| = = 4908738,5 mm*

= 0,51 MPa

Ponto C
Q=0 = 1c=0

Ponto C:
oc =- 106,95 Mpa, 1c = 15,28 MPa

Ponto D:
op = 0 Mpa, 1p = 15,28 + 0,51 = 15,79 Mpa

Tensdes compostas
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9 - TRANSFORMAGAO DE TENSOES

9.1 — Introdugcédo

Considere o estado triaxial de tensdes em um ponto obtido no sistema de eixos
X, y e z, Figura 9.1. Estes eixos, por conveniéncia, sdo normalmente adotados sendo
paralelos as cargas externas as quais estdo submetidas as estruturas. No entanto, é
necessario conhecer o estado de tensdo deste ponto num sistema de eixos qualquer,

de forma a se conhecer as maximas tensbdes atuantes, normal e cisalhante.

y
Oy
A .
| /» /
> A
Ox ‘ 15 | Ox

_/;/ : (... $ >
v 1 _| _ ; _____ Ixz

5, ,/:—,1— / Az X

ny| K

AX Oy

z
Figura 9.1 — Estado triaxial de tensdes em um elemento infinitesimal

Por conveniéncia e para a facilidade do entendimento, sera inicialmente tratado a
transformacéao de tensao para o estado plano de tensoes, para finalmente ser tratado o
estado triaxial de tensdes. Dessa forma, considere o estado plano de tensbes obtido em

dois sistema de eixos diferentes:
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« —>e = - ; />
T e\

Figura 9.2 — Estado plano de tensdes em dois sistema de eixos diferentes

Os estados de tensdo mostrados na Figura 9.2 representam o mesmo estado de
solicitagdo em um ponto. O que é equivalente a dizer que, as forcas Fy e Fy s&o as
componentes de uma forga resultante F nas diregdes x e y, enquanto que, as forgas Fy
e Fy sdo as componentes da mesma forga resultante F nas direcdes x’ e y'.

A relagdo entre as tensbes medidas nos diferentes sistema de eixos é feita
seccionando-se um elemento infinitesimal de forma que a face seccionada seja paralela
aos eixos X' ou y’, Figura 9.3. Sobre o elemento resultante € imposto o equilibrio de

forgcas nas diregbes X’ e y'.

Gy'
Txy Gy

/ dA \ Txy Txy 5
Gx H \ X
T lk N 2T —

’ <—‘2 dA «—

y’ y 17yXl Tyxl

X oy Oy

Figura 9.3 — Relagao entre as tensdes nos dois sistema de eixos diferentes
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Através do exemplo numérico abaixo é possivel identificar a relagdo entre as

tensbes obtidas em diferentes sistema de eixos.

Exemplo 9.1 — Considere uma barra de ago de 150 mm de largura e 10 mm de
espessura sendo solicitada por uma forca axial de 600 N. Determine as componentes

das tensdes atuantes sobre o plano definido pela secao a-a.

o b 30° a
y 30° y e
™ % 10 mm
600 N
X «— 150 mm ——> 600N
X’
a b

No sistema de eixos x-y, a Unica tensao atuante no plano definido pela segéo b-b
€ a tensdo normal na direcéo x:
600N

o, = =0,4 MPa = 400kPa
150 mm 10 mm
a
y
«— ——>»400 kPa
X a /

Se considerarmos que a segao seccionada tem area de secgao transversal AA, as
secdes paralelas aos eixos x e y sdo AA sen 30 e AA cos 30, respectivamente.

Utilizando estas areas, o diagrama de corpo livre do elemento infinitesimal seccionado

AF)(’
AA ‘ \
AA cos 30 — > AFy
/30° AF, ¥/30° wo

AA sen 30

é:
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onde AF, = 400 kPa (AA cos 30) = 346,4 AA kN.
Impondo o equilibrio de forgas nas diregdes x’ e y’, as componentes AFy e AFy,
s&o:
AFy = 346,4 AA cos 30 = 300 AA
AF, = 346,4 AA sen 30 = 173 AA

Assim, as tensdes normal e de cisalhamento a secéo a-a sao:

AF,,
. — 300 kPa
VY 300 kPa \
AF..
Toy = ﬁ —173kPa ,‘\Y\:f 600 N
N

N

173 kPa

Estas mesmas tensées podem ser obtidas de uma outra forma, considerando a
barra seccionada da seguinte forma:

Fx’

\/ 600 N

Fy’

Impondo o equilibrio de forgas no diagrama de corpo livre acima, as forgas
atuantes na sec¢ao a-a sao:
Fx =600 cos 30 =519,6 N
F, =600 sen 30 = 300 N

A area da secéo a-a vale:

150 mm 10 mm

A =
a-a cos 30

=1732,05 mm?

Assim, as tensdes normal e de cisalhamento a se¢do a-a sio:
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Oy = Fe _ 519’6N2 =300 kPa
A, ., 1732mm
Fy 300N

‘CX. V=

y = > =173 kPa
A, , 1732mm

9.2 — Equacgoées gerais para transformagao de tenséo plana

Uma vez determinado as tensdes normais oy € oy, € a tensdo de cisalhamento 1,y
num ponto de um corpo solicitado no plano x-y, € possivel determinar as tensdes

normais e de cisalhamento em qualquer plano inclinado x-y .

y Gy
Tyx
B > 1,
— —> o
+0 C X
y A <«
M te

y y

Tx’y’ ’ Tx’y’ dA
oy dA cosO
Ox €— <« \
Ty Z dA Tyx dA cosO

D Sra—
tyx dA senf

oy dA senf
Oy

Figura 9.4 — Tensdes e forcas em diferentes eixos em um elemento seccionado
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Impondo o equilibrio de forcas na diregdo X, temos:

oy dA -o, dAcosOcos0-1,, dA cos0Osend —
SYF,=0, " ” xy

9.1
cy dAsenfsend -1, dAsendcos6=0 S

Simplificando a eq. (9.1):

Oy =0y cos? 0+o, sen? 0+21,, cosOsend (9.2)

Sabendo-se que:
sen260=2senbcos O
cos 2 0 =cos?0-sen?0 (9.3)

1=cos? 0 +sen? 0

Trabalhando com as egs. (9.3), tem-se:

c0s2 0 = 1+ cos 20
1 2 2 (9.4)
Sen2 92%

Substituindo a egs. (9.4) e a expressao de sen 20 da eq. (9.3) na eq. (9.2),

temos;
Oy =0y Mmy ﬂ+rxy sen26 (9.5)
2 2
Reagrupando a eq. (9.5):
Gy + O Cy — O
Oy = X 5 Y =2 5 Y cos26 + Txy SEN2 0 (9.6)
T, dA + o, dA cosOsen6 —1,, dA cosOcosb —
T Y F, =0, Y X o (9.7)

cy dAsenbcos6 +t,, dAsenbsen6=0

Simplificando a eq. (9.7):
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Cy — O
Tyy' = — [%] sen 20 + t,, cos2 0 (9.8)

As eqgs (9.6) e (9.8) sdo as equacgdes de transformacgao de tensdo de um sistema
de coordenadas a outro.

9.3 — Circulo de tensées de Mohr

Sejam as equacgdes de transformacao de tensao (9.6) e (9.8) onde a eq. (9.6) é
colocada da seguinte forma:
Gy + Oy Gy — Oy

Ox T 5 = = 5 COs 20 + 14, SEN2 6 (9.9)

Elevando ao quadrado as egs. (9.8) e (9.9) e somando-as, tem-se:

2 2
c, + O Oy — O
(GX' -— 2 VJ T TX'y'2 - ( : 2 y] " TXy2 (9.10)

A eq. (10) pode ser colocada de maneira mais compacta:

(va —Gm)2 + ’Exyz = R? (9.11)

A eq. (9.11) é a equacgao de um circulo de raio:

2
o, — O
R = \/(%} Ty (9.12)

e centro:

o = x 'O
m 2 (9.13)
T, =0
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O circulo construido desta maneira € chamado circulo de tensées de Mohr, onde
a ordenada de um ponto sobre o circulo é a tensdo de cisalhamento t e a abcissa é a

tensdao normal c.

Tmax )

OO

A(ox, Txy)

o2 o1

B(ox, ~Txy)

|Tmin | =Tmax

Figura 9.5 — Circulo de tensdes de Mohr

Conclusbes importantes:

» A maior tensdo normal possivel € o1 e a menor € o,. Nestes planos ndo existem
tensbes de cisalhamento.

» A maior tensao de cisalhamento tmax € igual ao raio do circulo e uma tensdo normal

c, +0
de % atua em cada um dos planos de maxima e minima tensdo de

cisalhamento.

» Se o1 = o2, 0 circulo de Mohr se degenera em um ponto, € ndo se desenvolvem
tensdes de cisalhamento no plano xy.

> Se ox + o, = 0, o centro do circulo de Mohr coincide com a origem das coordenadas

o - 1, e existe o estado de cisalhamento puro.
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» Se soma das tensbes normais em quaisquer dos planos mutuamente
perpendiculares € constante: oy + 6y = 01 + 62 = ox + oy = constante.
» Os planos de tensdo maxima ou minima formam angulos de 45° com os planos das

tensdes principais.

9.3 — Construgéo do circulo de tensées de Mohr

Exemplo 9.2: Com o estado de tensdo no ponto apresentado abaixo, determine as
tensGes principais e suas orientacbes e a maxima tensdo de cisalhamento e sua

orientacéao.

l A « 20MPa

l Ponto A

As tensdes no sistema de eixos x-y sao:
ox =-20 MPa , 6, =90 MPa , 1, = 60 MPa

Procedimento de analise:
a — Determinar o centro (om, tm) do circulo de tensdes de Mohr:

Gy, + 0O _
o x2 y _ 202+90:35MPa

Tm =0

b — Determinar o raio R do circulo de tensdes de Mohr:

2 2
Gy — G -20-
R:\/(%J by ? = \/(%J +602 =814 MPa
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¢ — Localizar o ponto A(-20,60) no circulo de tensbées de Mohr:

T (Mpa)
A(-20,60)
20,
60 o ,
,\2 0, o1 = 35+81,4 = 116 ,4
. . (\; o (Mpa)

o, = 35-81.4 = -46 4 02

35

B(90, -60)

d — Calcular as tensdes principais (maior € menor tensées normais):
c1=35+814=1164MPa , o,=35-814=-46,4 MPa

e — Determinar a orientagao das tensdes principais.

60

20, =arctg2| ——— —
! J (20+35

j:47,7° = 0, =23,85°
20, +20, =180° = 0 =66,15°

y 1

2 c1=116,4 MPa

\ L 04 = 66,15°
Z X

/ N o, = 46.4 MPa

f — Tensdo maxima de cisalhamento:
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Tmax = R = 81,4 MPa

g — Orientacao da tensdo maxima de cisalhamento:
20, +20, =90° = 6, =21,15°

y

X

Tmax = 81,4 W
....... // V\ 0, = 21.25°

X

om = 35 MPa

Exemplo 9.3: Para o estado de tensdo abaixo, achar a) as tensdes normais e de
cisalhamento para 6 = 22,5°, b) as tensdes principais e suas orientagdes, c) as tensdes

maxima e minima de cisalhamento com as tensdes associadas e suas orientacoes.

y

L 1 kgf/mm?

X
> 2 kgf/mm?>
)) 22.5°
‘ Qﬂ -

As tensdes no sistema de coordenadas X,y sao:

ox = 3 kgf/mm? , o, = 1 kgf/mm?, 1,, = 2 kgf/mm?

Procedimento de analise:
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a — Determinar o centro (om, Tm) do circulo de tensées de Mohr:

Gx tOy 3+1
R

:2kgf/mm2

Tm =0

b — Determinar o raio R do circulo de tensdes de Mohr:

R \/{M} b 12 = (?) 22— 224 kgf /mm?

2

¢ — Localizar o ponto A de coordenadas (3,2) no circulo de tensdes de Mohr:
t (kgf/mm?)

’cmax = 2,24 450
A(3,2)

2
2 04 A
c1=2+2,24 =424

o (kgf/mm?)

o2 = 2-2,24 = -0,24

B’ —>

B(1, -2)

No ponto A’, representando o estado de tensao na face cuja normal é paralela ao

eixo X', temos:

204'=arctg [32—2j =634

ox =2+ 2,24 cos(63,4 -45) , ox = 4,13 kgf/mm?
Ty = 2,24 sen(63,4 - 45) , 1,y = 0,71 kgf/mm?
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e no ponto B’, representando o estado de tensdo na face cuja normal é paralela ao eixo
y’, temos:
oy =2-2,24 cos(63,4-45) = oy =-0,13 kgf/mm?

0,13 kgf/mm?

4,13 kgf/mm?
0 =22,5°

\ K X
Ponto A’

0,71 kgf/mm?

d — Tensdes principais:

o1 = 4,24 kgfimm?  (tracdo) , o, =-0,24 kgf/mm? (compress&o)
tg 2 91 = % = 2

20, =634° = 0 =317°
2007°=204+180° = 0 =121,7°

2 y

-0,24 kgf/mm? 0, =121,7°
4,24 kgf/mm?

5 ) T\ 60 =31,7°

e — Maxima tensao de cisalhamento:
Tmax = R = 2,24 kgf/mm?
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202 +261 =90° = 02 =13,3°
20, =20 +180° = 0 =76,7°

v
2 kgf/mm?

‘\ 0, =76,7°

"
P~ V0, =133

T~

NG

Observe que: 01 - 0, =31.7—(-13.3)=45°e 0, -0, =121.7 —76.7 = 45°

9.4 — Importante transformacéao de tenséo

Seja um elemento sujeito a um estado de tenséo de cisalhamento puro (caso de

um eixo em torgao).

Figura 9.6 — Estado de tensées de um elemento infinitesimal num eixo em tor¢éo pura
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Para este caso, tem-se que o= 0 e oy = 0. Logo o centro do circulo de Mohr esta

na origem do sistema de coordenadas c-t, € 0 raio do circulo € R = 1y,.

T

Tmax = Txy

O = Txy

02 = 'Txy

Figura 9.7 — Circulo de tensdes de Mohr em um ponto de um eixo em tor¢ao pura

As tensdes principais sao neste caso:

o1y (9.14)
G2 = ~Tyy
As orientacdes das tensdes principais sao:
04'=45° tracéo
{926, = N Y (traggo) (9.15)
04 '=135° = -45° (compresséo)

Assim, a representagao grafica das tensdes principais e suas orientagdes é da

seguinte forma, Fig. 9.8:
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G1=|’ny|

ARG
/ """"""""""""" \62=|Txy|

Figura 9.8 — Representacéo grafica das tensdes principais em um ponto de um eixo em

torcao pura

9.6 — Tensdes principais para o estado geral de tensées

Considere um elemento infinitesimal sob um estado de tensao tridimensional e
um elemento infinitesimal tetraédrico sobre o qual atua uma tensao principal o, no plano

obliquo ABC, paralela ao vetor normal unitario, Fig. 9.9.

y
Oy
A
Gz
> 4
'TW Txy
Ox 15 \ Ox
J _.2__.9_(2_,___ X
//// (“/'11
Gz
Z Oy

Figura 9.9 — Tens&o principal o, num plano obliquo de um elemento infinitesimal

tetraédrico
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O vetor normal unitario € identificado pelos seus cosenos diretores |, m e n, onde
cos a =1, cos B =m, cos y = n. Da Fig. 9.10, nota-se que:

>+ m?+n?=1 (9.16)

Figura 9.10 — Vetor normal e seus cossenos diretores

O plano obliquo tem area dA e as projec¢des desta area nas diregdes X, y € z sado

dA.l, dA.m e dA.n. Impondo o equilibrio estatico nas diregdes x, y e z, temos:

ZFX =(0,dA) I -o,dA -1, dAm-1,,dAn=0

>'F, =(c,dA)m-o,dAm-1,dAn—1,,dA1=0 (9.17)
ZFZ =(c,dA)n-oc,dAn-1,,dAl-1,dAm=0

Simplificando e reagrupando a eq. (9.17) em forma matricial, temos:

Gy —Op Txy Tyz | 0
Txy Gy —Op Tyz m =40 (9.18)
Tyz Tyz G, —0h| N 0

Como visto anteriormente, 2+ m?+n?= 1, os cosenos diretores sao diferentes

de zero. Logo, o sistema tera uma solugédo nao trivial quando o determinante da matriz
de coeficientes de I, m e n for nulo.

Gx —On

Tyy Gy —Op Ty, |=0 (9.19)
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A expanséao do determinante fornece um poninémio caracteristico do tipo:

o8 -0 +ll .o, —lll, =0 (9.20)

onde:
lc =0x +oy +0,

2 2 2
I, = (chy +6y0, +GZGX)—(er + 1y, +T5%,)

(9.21)

2 2 2
g =0x0y0, +2 T4y Ty, T3z —(OxTyz + Oy Ty, +0,Txy)

As eqgs (9.20) e (9.21) sao invariantes, independentemente do plano obliquo que
€ tomado no tetraedro. Logo, as raizes do polinbmio caracteristico ja sdo as tensdes
principais.

9.7 — Circulo de Mohr para o estado geral de tensées

Qualquer estado de tensao tridimensional pode ser transformado em trés

tensdes principais que atuam em trés diregbes ortogonais, Fig. 9.11.

r e

o1
A Oz p > Ox =

Oz o3

Figura 9.11 — Tensdes principais num elemento solicitado triaxialmente

Admitindo que o1 > 62 > 03 > 0, temos:
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=

G

«—| 5® |/ «——

!

o

G

Tmax

G3

151

yo

G3

G

G3

| O1

Figura 9.12 — Circulo de tensdes de Mohr para num elemento solicitado triaxialmente

9.7 — Critérios de escoamento e de fratura

9.7.1 — Observacgoes preliminares

A resposta de um material a tens&do axial ou tensdo de cisalhamento puro, pode

ser convenientemente mostrada em diagramas de tensao-deformacgéao. Tal aproximagao

direta ndo é possivel, entretanto, para um estado complexo de tensbes que é

caracteristico de muitos elementos de maquina e de estruturas. Desta forma, é

importante estabelecer critérios para o comportamento dos materiais com estados de

tensdo combinados.
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Nesta parte do estudo serdo discutidos dois critérios para analise do
comportamento das tensdes combinadas em materiais ducteis, e em seguida sera

apresentado um critério de fratura para materiais frageis.

c material ductil G material fragil

Orup |-——=-=
Gesc rup

€

Figura 9.13 — Diagramas tensao/deformacao para materiais ducteis e frageis

9.7.2 — Teoria da maxima tensao de cisalhamento (Tresca) (mat. ducteis)

A teoria da maxima tensao de cisalhamento, resulta da observacdo de que, num
material ductil, ocorre deslizamento durante o escoamento ao longo dos planos
criticamente orientados. Isso sugere que a tensao de cisalhamento maxima executa o
papel principal ho escoamento do material.

Para um teste simples de tragdo onde 64 = Gesc, 02 = 03= 0, tem-se:

Tmax = (61 )/2

OC2= 03 G1

Figura 9.14 — Circulos Tensdes de Mohr para um ensaio de tragdo simples
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Observa-se que dois circulos sdo concentricos, (o1, 62) € (o1, 63) € 0 terceiro
resulta num ponto (o2, 3).

Do Circulo de Tensdes de Mohr neste caso, a tensao de cisalhamento maxima é:

Oesc

Tmax = Teritico = T (9.22)

Para aplicar o critério da maxima tensdo de cisalhamento para um estado de
tensao biaxial devem ser considerados dois casos:

Caso 1: Os sinais de o1 € 62 sdo0 iguais.

T
Tmax = (01 )/2

Tcsz

G

O3 | O1

Figura 9.15 — Circulos tensbées de Mohr para um estado de tensao biaxial - 61 € o2 tém

sinais iguais

onde, para:
|G1| > |62| = |G1| < Cesc

(9.23)

|62| > |G1| = |62| < Cesc

Caso 2: Os sinais de o1 e o, sao diferentes.
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Tmax = (01' 02)/2

E

G

o2 o1

Tmax = '(G']' 02)/2

Figura 9.16 — Circulos Tensdes de Mohr para um estado de tens&o biaxial - 61 € 62 tém

sinais diferentes

Para este caso, a tensao de cisalhamento maxima no ponto analisado n&o deve
exceder a maxima tensao de cisalhamento do material (ver Fig. 9.17).

64 —0O
. 01-02

2

(e)
< Oesc 9.24
> (9.24)

Na iminéncia de ocorrer o escoamento, tem-se:
(e} (e}
1 P2 41 (9.25)

Gesc  Oesc

A eq. (9.25) pode ser colocada de maneira grafica da forma, Fig. 9.17:
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02/Cesc
1.0 A( 1.0, 1.0)
-1.0
G1/Cesc
1.0
B(-1.0, 1.0) 10

Figura 9.17 — Representagao grafica de um ponto na iminéncia de escoar - Tresca

9.7.3 — Teoria da maxima energia de distor¢do (von Mises) (mat. ducteis)

A expressao de energia de deformagdo elastica total por unidade de volume
(densidade de energia de deformagdo elastica) em um material isotrépico para um
estado triaxial de tensdes considerada num sistema de coordenadas arbitrario x,ye z é

da seguinte forma:

1 %
Uiotal = (G +o, ’to 2) - = (chy+6ycz +GZGX)--'
2E E (9.26)
1 .
ceet E (’U xz+’E yz +7T xz)
Esta energia de deformacao elastica total, considerada nos eixos principais € da
forma:
Uoo = 1 ( 2 2 2) v ( ) 9.27
total =5 (01 + 02"+ 037 )= £ (0402 + 5203 +030; (9.27)

A energia de deformacgédo elastica total acima, € dividida em duas partes: uma

causando dilatagao do material (mudangas volumétricas), e outra causando distorsdes
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de cisalhamento. E interessante lembrar que em um material ductil, admite-se que o

escoamento do material depende apenas da maxima tenséo de cisalhamento.

G2
I +
1 -
> G 03 -G _
Energia de deformacgao Energia de E.nerglg de
elastica total dilatacéo distorgao

Figura 9.18 — Energias de dilatagdo e de distorgdo num elemento

A fim de facilitar a compreensdo, somente oestado de tensdo uniaxial sera
considerado. A passagem para um estado de tenséo triaxial € automatica. Desta forma,
para um estado de tensdo uniaxial, as energias de dilatacdo e de distorcdo sao

representada da seguinte forma:

1(51/3 c1/3

(51/3 61/3
] > = > + > + >
(ox] G1 / c1/3 /
c1/3 o1/3
~ YT
Energia de deformacao Energia de Energia de
elastica total dilatag&o distorgéio

Figura 9.19 — Energias de dilatagdo e de distorcdo num elemento solicitado axialmente

Os Circulos de tensao de Mohr para os estados de tensdo com somente energia

de distor¢ao séao, Fig. 9.20.
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Tmax = 01/3 Tmax = 61/3

(¢}
c1/3 c1/3 c1/3 c1/3

Figura 9.20 — Circulos de tensdo de Mohr para o cisalhamento puro

No tensor correspondente a energia de dilatagdo, os componentes sdo definidos
como sendo a tensao “hidrostatica” média:

G4 tG0p + 03

G = 9.28
G 3 (9.28)
onde:

G1=0C2=0G3=pP=0C (9.29)

A energia de dilatacdo é obtida substituindo a eq.(9.29) na eq. (9.27), e em
seguida substituindo a eq. (9.28) na equacéo resultante. Assim:
1-2v

2
Udilatacso = B E (01 +0, + 03) (9.30)

A energia de distorcdo € obtida sustraindo da energia de deformacéo elastica
total, eq. (9.27) a energia de dilatagao, €q.(9.30):

1
Ugistorgzio =%[(01 ~03)% +(op —03)% + (o3 —01)2] (9.31)
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A energia de distorcdo em um ensaio de tracdo simples, onde neste caso c1 =

Cesc € 02 = 03 = 0 é da forma:

2 0-gsc
Udistorgéo = W (9.32)

Igualando a energia de distor¢ao do ponto em analise, eq. (9.31), com a energia
de distorcdo num ensaio a tragdo simples, (9.32), estabelece-se o critério de

escoamento para tensdo combinada, eq. (9.33).

(01 -0,) +(02 —03) +(03 —04)* =2 02 (9.33)

Frequentemente a eq. (9.33) pode ser rearranjada, sendo a expressao resultante
chamada de tensao equivalente.

1 2 2 2
Oequ = \/E[(m -0,) +(0,-03) +(0;3-0y) } (9.34)
A eq. (9.33) pode também ser apresentada da forma:
2 2 2
o R oo B o I e o o et B
Gesc O-ESC Oesc Oesc Oesc Oesc Gesc Gesc Oesc

A eq. (9.36) é conhecida como sendo o critério de von Mises para um estado

triaxial de tensdes para materiais isotrépicos. Para um estado plano de tensao, o3 = 0,

tem-se:
2 2
Gesc Gesc Oesc Gesc

A eq. (9.36) pode ser colocada de maneira grafica da forma, Fig. 9.21:
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GZ/Gesc
12 A(1.0,1.0
| (10,10)
-1.0
c51/C5esc
1.0
B(-1.0, 1.0) 2

Figura 9.21 — Representacgéo grafica de um ponto na iminéncia de escoar — von Mises

9.7.4 — Teoria da maxima tensao normal (mat. frageis)

A teoria da maxima tensdo normal estabelece que a falha ou fratura de um
material ocorre quando a maxima tensao normal em um ponto atinge um valor critico,
independentemente das outras tensdes. Dessa forma, apenas a maior tenséo principal

deve ser considerada para aplicar esse critério.

|G1| ou |c52| ou |G3| < Oryp (9.37)

A eq. (9.36) também pode ser colocada de maneira grafica da forma, Fig. 9.22.

GZ/Grup

1.0 A( 1.0, 1.0)
]

® 4
-1.0
O O (51/(5rup
1.0
B(-1.0,1.0)® T 10

Figura 9.22 — Representagéao grafica de um ponto na iminéncia de romper
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Exemplo 9.6: As tensdes calculadas sobre o ski sdo como mostrada na figura abaixo.
Utilizando critérios de ruptura adequados, verifique se os pontos mostrados sobre a
segéao transversal do ski suportam o carregamento abaixo. Tome Gesc ago = 250 Mpa, Gryp

mad = 26 MPa e tryp mad = 6,2 Mpa com um fator de seguranga de 2.
P

<«—1m
C D E

w
<(0,5 m>‘<—1 m —4*0,5 m—>
y

A

A

3 @
e @
D

Estado de tens&o nos pontos da sec¢ao transversal:

B

C

Ponto A (ago):

opn=2405Mpa , 14a=0

Ponto B (ago):

og=18,99Mpa , 15=0,11 MPa
Ponto C (madeira):

oc=114Mpa , 1c=0,11 Mpa
Ponto D (madeira):

op=0 , o =0,12 MPa

Ponto A (ago — material dutil):
Ox = OA = 24,05 Mpa ; Gy = 0 y Txy = O
o1 = ox = 24,05 Mpa

Pelo critério de maxima tensao de cisalhamento:
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o1 = 24,05 Mpa < cesc = 250/2 Mpa  (0k)

Ponto B (agco — material dutil):

ox=og=1899Mpa , o,=0 ,17y=1=0,11MPa
o1 = 18,99 Mpa

Pelo critério de maxima tens&o de cisalhamento:

o1 = 18,99 Mpa < cesc = 250/2 Mpa  (0k)

Ponto C (madeira — material fragil):
ox=oc=114Mpa , oy=0 ,17%=1c=0,11MPa
Pelo critério de maxima tens&o normal:

o1 =1,15 Mpa < oy = 26/2 Mpa (0k)

Tmax = 0,11 Mpa < 11y, = 6,2/2 Mpa (0k)

Ponto D (madeira — material fragil):
ox=op=0 , o,=0 ,17y=10=0,12 MPa
Pelo critério de maxima tensao normal:

Tmax = 0,12 Mpa < 1y = 6,2/2 Mpa  (0k)
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