
AVR e Arduino: Técnicas de Projeto. 2a ed. 2012. LIMA & VILLAÇA.

253

11. TÉCNICAS DE MULTIPLEXAÇÃO

Neste capítulo, algumas técnicas importantes de multiplexação são

apresentadas. Elas são utilizadas para diminuir o número de componentes

externos ao microcontrolador e/ou número de I/Os necessários. Trata-se

de técnicas de multiplexação de sinais para emprego em displays,

acionamento de conjuntos de LEDs (matriz) e outros dispositivos

eletrônicos.

Quando são necessários vários pinos de I/O para o acionamento de um

determinado circuito e o microcontrolador não os dispõem, é fundamental

o emprego da multiplexação: técnica para transitar com vários dados em

uma mesma via ou barramento. A multiplexação também é empregada

para diminuir o número de vias e pode diminuir a complexidade física das

placas de circuito impresso.

A ideia da multiplexação é dividir as atividades no tempo, empregando

o mesmo meio físico para isso. A desoneração do hardware é substituída

por um aumento na complexidade do software de controle e no tempo de

execução das tarefas. Entretanto, devido à considerável velocidade de

processamento dos sistemas envolvidos, geralmente isto não é um

problema. As melhores técnicas de multiplexação empregam o menor

número possível de componentes externos para cumprir as funções que

devem ser desempenhadas pelo hardware.

AVR e Arduino: Técnicas de Projeto. 2a ed. 2012. LIMA & VILLAÇA.

254

11.1 EXPANSÃO DE I/O MAPEADA EM MEMÓRIA

Uma das principais técnicas de multiplexação empregada em sistemas

microprocessados é ilustrada na fig. 11.1. Existem dois barramentos: um

de dados e um de endereços. Cada dispositivo ligado aos barramentos

responde a um ou mais endereços exclusivos e comunica-se com o

microprocessador através do barramento de dados. Essa técnica é

denominado expansão de I/O mapeada em memória.

Fig. 11.1 – Controle de vários dispositivos em um sistema microprocessado.

 O número de dispositivos diferentes que podem ser ligados ao

barramento de dados depende do número de bits do barramento de

endereços e é expresso por uma potência de 2. Por exemplo, se o

barramento de endereços for de 6 bits, podem ser endereçados 64

dispositivos diferentes (26).

Se houver necessidade de escrita e leitura no dispositivo, pode-se

empregar o bit menos significativo do seu endereço para essa informação.

Supondo que um determinado dispositivo responda ao endereço 0b10101x,

AVR e Arduino: Técnicas de Projeto. 2a ed. 2012. LIMA & VILLAÇA.

255

quando o bit menos significativo desse endereço for 0, a operação pode ser

de escrita no dispositivo e quando for 1, o dispositivo pode escrever no

barramento de dados. Nesse caso, com 6 bits, poderiam ser endereçados

32 dispositivos diferentes (26-1).

No sistema da fig. 11.1, cada dispositivo é responsável pela

decodificação do seu endereço e não deve responder a nenhum endereço

diferente do seu. Assim, quando não estiver sendo acessado, o barramento

de dados do dispositivo deve se portar como uma alta impedância, caso

contrário, haverá colisão de dados (curtos-circuitos).

Na fig. 11.2, é apresentado um exemplo de multiplexação em que 32

entradas e 32 saídas são controladas com 12 pinos do ATmega328. O CI

74238 decodifica o endereço de entrada (pinos A, B e C), habilitando um

único pino de saída (Y0-Y7); com 3 bits de entrada, tem-se, então, 8 saídas

independentes (23). Nessas, os quatro bits menos significativos habilitam 4

latches, os CIs 74373 (saídas). Cada latch habilitada colocará os dados do

barramento de dados na saída e os manterá lá até a ocorrência de um novo

sinal de habilitação. Na parte mais significativa dos bits de saída do CI

74238, encontram-se 4 buffers tri-state (CIs 74244). Esses CIs quando

habilitados, transferem os dados de suas entradas para o barramento de

dados, e quando desabilitados, mantém suas saídas em alta impedância. O

microcontrolador escreve o endereço do CI que deseja acessar no

barramento de endereços, e faz sua escrita ou leitura. O pino de

habilitação (E1) do 74238 foi empregado para desabilitar todos os CIs

quando desejado.

AVR e Arduino: Técnicas de Projeto. 2a ed. 2012. LIMA & VILLAÇA.

256

Fig. 11.2 – Exemplo de um sistema multiplexado com 32 saídas e 32 entradas,
empregando 12 vias de controle.

 Com o circuito da fig. 11.2, houve uma expansão considerável de

entradas e saídas do microcontrolador. Com um barramento de dados de 8

bits e um de endereços de 3 bits conseguiu-se, com componentes externos,

uma expansão para 32 saídas e 32 entradas.

 Outra possibilidade para utilizar menos pinos de I/O do

microcontrolador no endereçamento de dispositivos externos é o uso de um

contador de década, que ativa uma de suas saídas a cada pulso de clock na

sua entrada. Na fig. 11.3, o circuito que ilustra esse conceito é

apresentado. O contador 4017 poderia substituir o 74238 da fig. 11.2

realizando uma contagem contínua de 0 até 7. Agora, poderiam ser

acessados os mesmos I/Os que no circuito da fig. 11.2, com uma

AVR e Arduino: Técnicas de Projeto. 2a ed. 2012. LIMA & VILLAÇA.

257

diminuição de 2 pinos do barramento de dados. Entretanto, dessa forma,

não é mais possível acessar qualquer um dos dispositivos do barramento

aleatoriamente (com um endereço), é necessário realizar o acesso

sequencial deles através dos pulsos de clock enviados ao 4017.

Fig. 11.3 – Sistema multiplexado com 32 saídas e 32 entradas, empregando 9 vias
de controle.

11.2 CONVERSÃO SERIAL-PARALELO

 Outra técnica para a expansão de I/Os é a conversão de dados seriais

para paralelos, servindo para aumentar o número de saídas de um

sistema. Muitos projetos necessitam dessa forma de expansão de I/O para

cumprirem eficientemente suas funções com um mínimo de componentes

externos. O custo no uso dessa técnica é um aumento da complexidade do

software de controle e uma diminuição da velocidade de processamento

devido aos componentes envolvidos.

 Circuitos integrados interessantes para a conversão serial-paralelo são

o 74595 e o 4094 (shift registers). Eles possuem saídas com alta

impedância e latchs internos para que os dados fiquem armazenados nas

saídas, permitindo a ligação dos CIs em série (cascateamento). Na fig. 11.4,

são apresentados três 4094 ligados em cascata, nos quais a saída de dados

de um é ligada na entrada de dados do outro e, assim, sucessivamente. O

microcontrolador colocará 24 bits de dados seriais no pino PB0, seguidos

AVR e Arduino: Técnicas de Projeto. 2a ed. 2012. LIMA & VILLAÇA.

258

por 24 pulsos de clock no pino PB1. A cada pulso de clock, o bit de entrada

do primeiro 4094 empurra o bit de entrada anterior na fila, preenchendo os

registradores internos dos CIs em cascata. Funciona semelhante a uma

fila: a entrada de um bit desloca o próximo e, assim, sucessivamente até o

preenchimento de todas as vagas. Depois que os 4094 foram preenchidos,

é gerado o sinal de strobe (pulso) no pino PB2, o que resulta na

transmissão dos dados internos dos latchs para os pinos de saída, os quais

ficam presos lá até um novo sinal de strobe. Em resumo, preenchem-se

todos os shift registers e depois se habilita a saída dos seus dados. Estes

ficarão inalterados nas saídas até um novo sinal de strobe e nesse

intervalo, os shift registers podem receber novas informações.

Fig. 11.4 – Emprego do CI 4094 para a conversão serial-paralelo na expansão do
número de pinos de saídas de um sistema.

 O número de pinos de saída de uma expansão serial-paralelo depende

exclusivamente do número de CIs ligados em cascata, visto que o número

de pinos de controle será sempre o mesmo.

Na sequência, é apresentado um programa com um sub-rotina

exemplificando o envio de 3 bytes para os 4094 de acordo com o circuito da

fig. 11.4. O sinal de strobe é gerado pelo software de controle para

AVR e Arduino: Técnicas de Projeto. 2a ed. 2012. LIMA & VILLAÇA.

259

transferir a informação para as saídas dos 4094. No caso do programa, a

sub-rotina de envio é utilizada 3 vezes (envio de 3 bytes) antes da geração

do pulso de strobe.

Serial_paralelo.c

//== //
// Enviando 3 bytes para o 4094 //
//== //
#include "def_principais.h"

#define D PB0 //pino de dados para o 4094
#define CLK PB1 //pino clock para o 4094
#define STB PB2 //pino de strobe para o 4094

#define pulso_CLK() set_bit(PORTB,CLK); _delay_us(10); clr_bit(PORTB,CLK)
#define pulso_STB() set_bit(PORTB,STB); _delay_us(10); clr_bit(PORTB,STB)
//--
// Sub-rotina que envia 1 byte para o 4094 - serial/paralelo
//--
void serial_paral(unsigned char c)
{
 unsigned char i=8; //envia primeiro o MSB

 do
 { i--;

 if(tst_bit(c,i)) //se o bit for 1, ativa o pino de DADOS
 set_bit(PORTB,D);
 else //se não, o zera
 clr_bit(PORTB,D);

 pulso_CLK();

 } while (i!=0);
 }
//--
int main(void)
{
 unsigned char j;
 unsigned char Dados[3]= {0x58, 0xF1, 0xAA};

 DDRB = 0b00000111; //pinos PB0:2 como saídas
 PORTB = 0b11111000; //zera saídas

 for(j=0; j<3;j++)
 serial_paral(Dados[j]);//envia os 3 dados para os 4094 (primeiro o 0x58)

 pulso_STB();/*depois de enviar os 3 dados dá o pulso de Strobe, neste instante os
dados passam para as saída*/

 while(1)
 {} //laço infinito
}
//==

O arquivo def_principais.h foi visto nos capítulos anteriores.

AVR e Arduino: Técnicas de Projeto. 2a ed. 2012. LIMA & VILLAÇA.

260

11.3 CONVERSÃO PARALELO-SERIAL

 Dual ao sistema serial-paralelo, a conversão de dados paralelo para

serial serve para aumentar o número de entradas de um determinado

sistema. Na fig. 11.5, é apresentado um circuito exemplo empregando três

CIs 74165 conectados em cascata. Quando o sinal de carga (load) é

aplicado, as informações constantes na entrada dos CIs são transferidas

para os seus registradores internos. Após, à medida que os pulsos de clock

são gerados, os dados são transferidos serialmente para a saída de dados

do sistema. Assim, com 24 pulsos de clock consegue-se ler os três 74165

da fig. 11.5. O número de entradas depende exclusivamente do número de

conversores paralelo-serial conectados em cascata; para o controle são

empregados sempre três pinos.

Fig. 11.5 – Emprego do CI 74165 para a conversão paralelo-serial na expansão de
entradas de um sistema.

11.4 MULTIPLEXAÇÃO DE DISPLAYS DE 7 SEGMENTOS

Nossos olhos são incapazes de perceber a alteração de um sinal

luminoso com frequência acima de 24 Hz, essa característica humana é

chamada persistência da visão. Isso significa que se um LED piscar 24

vezes em um segundo, ele aparentará aos olhos humanos como ligado

constantemente. Todavia, um sinal luminoso com frequência de 24 Hz

ainda produz cintilação na sua percepção. Desta forma, para uma

visualização agradável, emprega-se um sinal de pelo menos 48 Hz.

AVR e Arduino: Técnicas de Projeto. 2a ed. 2012. LIMA & VILLAÇA.

261

Sem utilizar a persistência da visão, para ligar diretamente 4 displays

de 7 segmentos, seriam necessários 8 × 4 = 32 pinos do microcontrolador

(considerando o uso do ponto do display). O problema, além do grande

número de pinos, seria a corrente máxima que poderia chegar a 320 mA,

no caso de se usar 10 mA por segmento do display. Para resolver esse

problema, emprega-se a multiplexação temporal baseada na persistência

da visão. Na fig. 11.6, é ilustrado um circuito para executar essa função,

displays anodo comum ligados através de transistores PNP são

empregados, ativos quando a base deles é colocada em 0 V (nível lógico 0).

Os LEDs são ligados com o mesmo nível de tensão e o circuito de controle

drena a corrente deles. O circuito será similar para displays catodo

comum, nesse caso deve-se empregar transistores NPN, os níveis de

ativação serão de 5V (ou nível lógico 1) e o sistema de controle fornecerá

corrente aos LEDs dos displays.

Fig. 11.6 - Acionamento de 4 displays de 7 segmentos30.

30 Se o valor de VCC for maior que a tensão de desligamento (nível lógico) na base dos transistores
PNP, eles poderão ficar diretamente polarizados e conduzir indevidamente. Transistores PNP
funcionam adequadamente quando a tensão de alimentação dos displays (VCC) for a mesma do circuito
digital de controle, caso contrário, transistores NPN devem ser utilizados.

AVR e Arduino: Técnicas de Projeto. 2a ed. 2012. LIMA & VILLAÇA.

262

Num sistema microcontrolado, a multiplexação temporal para displays

é feita através da chamada varredura. Para os displays da fig. 11.6, isso é

realizado da seguinte maneira:

1. No início, os displays estão apagados e os transistores

desabilitados.

2. O dado referente ao primeiro display é colocado no barramento.

3. O display referente ao dado é ligado, o transistor adequado é

acionado.

4. Espera-se o tempo necessário para o acionamento do próximo

display.

5. Apaga-se o display ligado.

6. Coloca-se o dado referente ao próximo display da sequência.

7. O display é ligado, o transistor adequado é acionado.

8. O processo se repete de forma contínua para cada display.

Para que a persistência da visão funcione, cada display deve ser ligado

com uma frequência mínima de 48 Hz, é usual empregar-se 50 Hz ou mais.

Desta forma, considerando-se 4 displays, a frequência de varredura do

sistema deve ser de 200 Hz (4 × 50 Hz). Isso significa que cada display

ficará ligado durante um ciclo da varredura e 3 desligados, resultando em

5 ms de acionamento para cada um (1/200). Obviamente, o brilho

conseguido com um sistema multiplexado é menor do que em um sistema

sem multiplexação. Assim, para se ter uma boa luminosidade é importante

acionar os LEDs com a maior corrente possível.

Na programação de um microcontrolador, a forma mais elegante de

apresentar a mensagem num conjunto de displays é fazer a varredura

dentro da rotina de interrupção de algum contador, liberando o programa

principal para outras atividades e simplificando o código. Na fig. 11.7, é

apresentado o fluxograma de um programa de controle para 4 displays

empregando a interrupção de um contador. Na sequência, um código

AVR e Arduino: Técnicas de Projeto. 2a ed. 2012. LIMA & VILLAÇA.

263

exemplo31 desenvolvido para o Arduino, conforme circuito da fig. 11.8 e que

apresenta o número 3210 (fig. 11.9).

Fig. 11.7 - Fluxograma para o acionamento de 4 displays de 7 segmentos.

Varredura_display_7seg.c
//== //
// VARREDURA DE DISPLAYS DE 7 SEGMENTOS //
//== //
#define F_CPU 16000000UL

#include <avr/io.h>
#include <avr/interrupt.h>
#define clr_bit(Y,bit_x) (Y&=~(1<<bit_x))

unsigned char DISP[4]; //valores para os displays
//---
//INTERRUPCAO - VARREDURA DOS DISPLAYS DE 7 SEGMENTOS
//---
ISR(TIMER0_OVF_vect)
{
 static unsigned char x;

 PORTB |= 0x0F;//apaga todos os displays (o controle dos displays está nos pinos (PB0:PB3)
 PORTD = DISP[x]; //coloca a informação do display no porta correspondente
 clr_bit(PORTB,x); //habilita o display correspondente (PB0:PB3)
 x++;

 if(x==4) x = 0; //após 4 rotações inicializa para o primeiro display
}
//---

31 Na seção 5.4, foram apresentados o display de 7 segmentos e seus códigos de decodificação (tab. 5.2).

AVR e Arduino: Técnicas de Projeto. 2a ed. 2012. LIMA & VILLAÇA.

264

int main()
{
 DDRD = 0xFF; //dados dos displays
 DDRB = 0x0F; //controle dos displays
 PORTB = 0xFF; //apaga displays e liga pull-ups

 UCSR0B = 0x00; //para usar os pinos do PORTD no Arduino

 //TC0 gerando interrupção
 TIMSK0 = 1<<TOIE0; //habilita a interrupção por estouro do timer 0
 TCCR0B = 1<<CS02; //CLK/256 prescaler (CLK=16MHz), estouro a cada 4ms
 sei(); //habilita a interrupção global

 while(1) //qualquer escrita em DISP[x] é automaticamente apresentada nos displays

 {
 DISP[0]= 0xC0; //valor para o número zero
 DISP[1]= 0xF9; //valor para o número um
 DISP[2]= 0xA4; //valor para o número dois
 DISP[3]= 0xB0; //valor para o número três
 }
}
//===

Fig. 11.8 Circuito para o acionamento de 4 displays de 7 segmentos anodo comum.

 Fig. 11.9- Resultado da escrita multiplexada em 4 displays de 7 segmentos.

AVR e Arduino: Técnicas de Projeto. 2a ed. 2012. LIMA & VILLAÇA.

265

Exercícios:

11.1 – Baseado no exercício 5.12, fig. 5.11a, ligue sequencialmente os 8
LEDs. Comece com uma frequência visível e a aumente
progressivamente até que os LEDs pareçam estar todos ligados. Qual o
tempo que cada LED ficou ligado para a persistência da visão?

11.2 – Empregando dois displays de 7 segmentos e um botão, desenvolva

um programa para o sorteio aleatório e com mesma probabilidade de
ocorrência dos números de 1 até 60 (Mega Sena). O número sorteado
não deve voltar ao sorteio.

11.3 – Elaborar um programa para que o hardware da fig. 11.10 funcione
como relógio 24 h. A entrada de sinal para contagem dos segundos é de
60 Hz. O ajuste do horário deve ser feito nos botões específicos.

Fig. 11.10 – Relógio com contagem baseado na frequência da rede elétrica (circuito
simplificado).

AVR e Arduino: Técnicas de Projeto. 2a ed. 2012. LIMA & VILLAÇA.

266

11.5 UTILIZANDO MAIS DE UM LED POR PINO

Como é possível três estados no pino do microcontrolador (0, 1 e alta

impedância - entrada sem pull-up), um arranjo adequado de LEDs pode

resultar em um pino acionando mais de um LED. Na fig. 11.11, é

apresentado o circuito para controlar 2 LEDs utilizando apenas um pino de

I/O do microcontrolador. Nesse caso, para apagar os LEDs basta colocar o

pino em alta impedância; para ligar os dois LEDs em conjunto é necessário

empregar a multiplexação temporal, ligando rapidamente cada um deles.

Como existe um divisor de tensão entre os resistores R1 e R2, LEDs com

uma tensão de trabalho superior à tensão sobre R1 ou R2 não funcionarão

adequadamente, pois a tensão fornecida não será suficiente para ligá-los.

Fig. 11.11 – Empregando 1 pino do microcontrolador para controlar 2 LEDs.

Para ligar 6 LEDs com 3 pinos, pode ser empregado o circuito da

fig. 11.12. Na tab. 11.1, é apresentada a configuração que deve ser feita

nos pinos do circuito e sua correspondência no controle dos LEDs.

AVR e Arduino: Técnicas de Projeto. 2a ed. 2012. LIMA & VILLAÇA.

267

Fig. 11.12 – Empregando 3 pinos do microcontrolador para controlar 6 LEDs.

Tab. 11.1 – Configuração dos pinos PC0..2 da fig. 11.10 e sua correspondência
no controle de 6 LEDs (1 indica LED aceso).

Pinos LEDs
PC0 PC1 PC2 1 2 3 4 5 6

0 0 0 0 0 0 0 0 0
0 1 Hi-Z 1 0 0 0 0 0
1 0 Hi-Z 0 1 0 0 0 0

Hi-Z 0 1 0 0 1 0 0 0
Hi-Z 1 0 0 0 0 1 0 0

0 Hi-Z 1 0 0 0 0 1 0
1 Hi-Z 0 0 0 0 0 0 1
0 0 1 0 0 1 0 1 0
0 1 0 1 0 0 1 0 0
0 1 1 1 0 0 0 1 0
1 0 0 0 1 0 0 0 1
1 0 1 0 1 1 0 0 0
1 1 0 0 0 0 1 0 1
1 1 1 0 0 0 0 0 0

 Se houver a necessidade do emprego de alguma configuração de LEDs

que não conste na tab. 11.1, é necessário empregar a persistência da visão

para acionar sequencialmente os LEDs desejados.

O número de LEDs controlados dependerá do número de pinos

utilizados e pode ser aumentado usando a mesma lógica acima. O número

AVR e Arduino: Técnicas de Projeto. 2a ed. 2012. LIMA & VILLAÇA.

268

de LEDs que podem ser controlados, de acordo com o número de pinos, é

dado por:

Nrxyz{ = Nr|}~k{ × �Nr|}~k{ 	− 1� (11.1)

Exercício:

11.4 – Baseado no exercício 5.14, crie um dado eletrônico empregando
somente 3 pinos para o controle dos LEDs.

11.6 MATRIZ DE LEDs

Um sistema muito comum para a divulgação visual de mensagens

publicitárias e informativas é a matriz de LEDs (ver a fig.11.13), onde um

conjunto organizado de LEDs, formando um painel de pixels

(1 LED = 1 pixel), é comandado por um sistema microcontrolado. Como a

quantidade de informação para formar uma imagem é grande, existe a

necessidade da multiplexação dos dados e o emprego de algum sistema de

varredura (o sistema baseia-se na persistência da visão).

Os LEDs em uma matriz são organizados em linhas e colunas32.

Assim, na fig. 11.13, por exemplo, todos os anodos estão conectados à

linha que alimenta todo o conjunto de LEDs; por sua vez, os catodos dos

LEDs estão conectados às colunas. O sistema funciona da seguinte

maneira: as informações referentes à primeira linha da matriz são

preenchidas; todas as colunas conterão as informações referentes a cada

LED e, então, a linha é alimentada, ligando-se os LEDs correspondentes. O

processo é repetido para cada linha, num processo de varredura. Como o

processo é feito rapidamente, a mensagem na matriz parecerá estática aos

olhos humanos.

32 Existem matrizes comerciais onde os LEDs são encapsulados em um único bloco. Os formatos usuais
são: 7 × 5, 8 × 8 e 16 × 16.

AVR e Arduino: Técnicas de Projeto. 2a ed. 2012. LIMA & VILLAÇA.

269

Fig. 11.13 – Matriz de LEDs com 8 linhas e 24 colunas.

 Um circuito simplificado de controle para os 192 LEDs (24 × 8) da

figura anterior é apresentado na fig. 11.14. Todos os LEDs são controlados

com apenas 3 sinais, empregando-se a conversão serial-paralelo com o

registrador de deslocamento 74HC595. Cada linha é alimentada com o

emprego de um transistor PNP. Existe a necessidade de se empregar

apenas um resistor por coluna, pois, na varredura, apenas um LED da

coluna pode estar ligado. O programa de controle envia 24 bits de dados,

correspondentes aos LEDs das colunas, mais 8 bits correspondentes à

chave transistorizada a ser ligada (linha). Após esses 32 bits, o sinal de

strobe habilita todos os LEDs da linha correspondente. Com oito linhas,

serão oito trocas de linha na varredura.

 No projeto do circuito, o transistor de cada linha deve ser capaz de

suprir a corrente máxima dada pelo número de LEDs da linha multiplicado

pela corrente máxima individual por LED. No caso acima, o 74HC595 pode

drenar em torno de 8 mA por pino. Desta forma, se todos os LEDs de uma

linha forem ligados, a corrente total da linha será de 192 mA (24 × 8 mA).

Como na varredura das linhas (supondo 8), cada linha ficará ligada

durante um período e por sete desligada, para a obtenção do maior brilho,

é importante trabalhar com os LEDs na máxima corrente possível. Da

mesma forma, o componente eletrônico responsável pela informação da

AVR e Arduino: Técnicas de Projeto. 2a ed. 2012. LIMA & VILLAÇA.

270

coluna (registrador de deslocamento) deve ser capaz de drenar a corrente

exigida pelo LED da coluna. Caso ele não suporte a corrente desejada, um

driver de corrente adequado33 deve ser empregado (ver o apêndice D).

Fig. 11.14 – Circuito simplificado para o controle de uma matriz de 8 × 24 LEDs.

Na confecção da placa de circuito impresso, o desenhista colocará os

LEDs da matriz na posição adequada de acordo com o desenho do circuito,

ou utilizará matrizes comerciais. Na fig. 11.15, é ilustrada a visão

tridimensional de uma placa de circuito impressa obtida no programa

ARES (Proteus) para um circuito com 256 LEDs (8 × 32).

33 O 74HC595 suporta em torno de 8 mA por pino, caso se deseje uma corrente maior, é necessário o
emprego de um driver de corrente, como por exemplo o ULN2803. Existem também registradores de
deslocamento com capacidade bem maior de corrente, como o TPIC6B595.

AVR e Arduino: Técnicas de Projeto. 2a ed. 2012. LIMA & VILLAÇA.

271

Fig. 11.15 – Visão tridimensional de uma matriz de LEDs .

Na programação de uma matriz de LEDs, a informação é colocada em

uma tabela na memória do sistema de controle, que se encarrega de ler a

informação, preencher adequadamente as informações dos registradores de

deslocamento e gerar os sinais de controle. Em sistemas mais elaborados,

como os grandes painéis de publicidade, um computador é o responsável

pelo controle, com um software adequado convertendo as imagens para a

matriz de LEDs do painel. Em sistemas complexos, que permitem a

reprodução de várias cores, são empregados LEDs tricolores (RGB – Red-

Green-Blue), tornando mais complexos o circuito e o software de controle.

11.7 CUBO DE LEDS

Um cubo de LEDs34 é um conjunto de LEDs organizado de forma

tridimensional. É empregado para animações gráficas, proporcionando um

efeito visual interessante. O espaçamento entre os LEDs é tal, que a

maioria dos LEDs da estrutura podem ser vistos (fig. 11.16).

34 Cubos comerciais podem ser encontrados em www.seekway.com.cn.

AVR e Arduino: Técnicas de Projeto. 2a ed. 2012. LIMA & VILLAÇA.

272

Fig. 11.16 – Cubo de LEDs de 4 × 4 × 4 (64).

A mesma técnica empregada para o acionamento de uma matriz de

LEDs é utilizada para o cubo (ver a seção anterior). Em uma matriz, os

LEDs são dispostos em linhas e colunas, formando um plano

bidimensional, onde todos os LEDs de uma linha são habilitados ao mesmo

tempo, formando a imagem por varredura. Em um cubo, os LEDs devem

ser organizados em planos horizontais sobrepostos, formando um arranjo

tridimensional, conforme apresentado na fig. 11.16. Nela, cada plano é

composto por 16 LEDs (4 × 4) e, ao todo, são 4 planos totalizando 64 LEDs

(4 × 16).

 Para a formação de uma imagem no cubo, pode ser empregada a

varredura por plano. Ou seja, um plano horizontal inteiro de LEDs é

acionado ao mesmo tempo. Assim, o acionamento sequencial dos planos

forma uma imagem tridimensional. Em resumo, numa matriz de LEDs,

uma linha inteira é energizada ao mesmo tempo na varredura, no cubo,

um plano. Na geração dos dados para o cubo, é necessário que o

AVR e Arduino: Técnicas de Projeto. 2a ed. 2012. LIMA & VILLAÇA.

273

programador consiga visualizar tridimensionalmente a animação que

deseja realizar e organizar adequadamente a varredura de acordo com o

circuito de acionamento.

Na fig. 11.17, é apresentado o circuito eletrônico do cubo da fig. 11.16,

pronto para ser conectado a um microcontrolador. O circuito emprega o

CI ULN2803 para drenar a corrente dos LEDs (ver a seção D.2 do

apêndice). Em cada plano horizontal, os anodos dos LEDs estão

conectados, sendo a alimentação realizada através de uma chave

transistorizada. Na sobreposição dos planos, onde os LEDs estarão uns

sobre os outros, verticalmente, os catodos estão conectados e ligados às

saídas dos CIs 409435 (responsáveis pela informação que irá aparecer em

cada LED). Por exemplo, no circuito da fig. 11.17, os LEDs 1a, 2a, 3a e 4a

estarão alinhados verticalmente.

Fig. 11.17 – Circuito de um cubo de LEDs de 4 × 4 × 4.

35 Outro registrador de deslocamento similar ao 74HC595, entretanto com menor capacidade para
suprir ou fornecer corrente.

AVR e Arduino: Técnicas de Projeto. 2a ed. 2012. LIMA & VILLAÇA.

274

A grande dificuldade no projeto de um cubo de LEDs é a montagem da

estrutura tridimensional; quanto maior o número de LEDs, maior é a

complexidade. Uma possibilidade é montar os planos horizontais

individualmente com o emprego de um gabarito, e depois, um a um, soldá-

los para a sobreposição. Na fig. 11.16, o plano inferior foi soldado

diretamente na placa de circuito impresso, os demais sobrepostos a ele,

através da solda dos catodos dos LEDs.

Da mesma forma que em uma matriz, é possível empregar LEDs

tricolores no cubo (RGB). Entretanto, a montagem será bem mais difícil e o

circuito de controle bem mais complexo.

--

Exercícios:

11.5 – Na fig. 11.18, é apresentado um sistema para o controle de uma

matriz com 192 LEDs (8 × 24). O sistema alimenta uma linha por vez.
Os dados correspondentes a cada coluna, incluindo qual linha será
alimentada, são fornecidos por um conjunto de registradores de
deslocamento (shift register – 74HC594, conversor serial-paralelo). Para
controlar todo o sistema são empregadas 3 saídas do microcontrolador.

- Faça um programa para apresentar uma mensagem estática na matriz
de LEDs. Antes da programação pesquise os módulos de matriz de
LEDs disponíveis no mercado.
- Como o programa pode apresentar mensagens em movimento? Neste
caso o pino de limpeza dos registradores (MR) teria um papel
importante?

AVR e Arduino: Técnicas de Projeto. 2a ed. 2012. LIMA & VILLAÇA.

275

Fig. 11.18 – Matriz de LEDs e o 74HC595.

11.6 – Outra possibilidade para a montagem de um cubo de LEDs é ligar
fisicamente os LEDs em colunas independentes, de forma a não existir
ligação física entre as colunas, não sendo realizadas conexões na forma
de planos. Como seria o circuito para o controle de tal cubo?

11.7 – Baseado no processo de multiplexação, empregando o ATmega328,

projete um CLP (Controlador Lógico Programável) básico com 64 saídas
e 64 entradas digitais.
