Solex3cap11: mudanças entre as edições

De IFSC
Ir para navegação Ir para pesquisar
imported>Fargoud
Sem resumo de edição
imported>Fargoud
Sem resumo de edição
Linha 12: Linha 12:
  &phi;<sub>motor</sub> = 36,87&deg;  
  &phi;<sub>motor</sub> = 36,87&deg;  


e Q<sub>motor</sub> = S.sen &phi;<sub>motor</sub> :
e Q<sub>motor</sub> = S.sen &phi;<sub>motor</sub> = 1,5K x 0,6 :


   Q<sub>motor</sub> = 1,5K x 0,6 &rarr; <u>Q<sub>motor</sub> =  0,9 KVar</u>
   Q<sub>motor</sub> =  0,9 KVar




*  CARGA LÂMPADAS:  
*  CARGA LÂMPADAS:  


Se está dada em watts, significa que a potência é a ativa. Portanto, a carga P total de lâmpadas = 10 x 60W &rarr; <u>P<sub>lamp</sub> = 600 W</u>, com <u>cos &phi;<sub>lamp</sub> = 0,6 </u>.
Se foi dada em watts, significa que se trata da potência ativa. Portanto, a carga total de lâmpadas = 10 x 60W :
 
P<sub>lamp</sub> = 600 W
 
, com  cos &phi;<sub>lamp</sub> = 0,6 e, portanto cos<sup>-1 0,6 = 53,13 :
 
  &phi;<sub>lamp</sub> = 53,13&deg;
 
 
Como P<sub>lamp</sub> = S.cos &phi; &rarr; S = P<sub>lamp</sub>/cos &phi;:
 
S<sub>lamp</sub> = 1000 VA
 
e Q<sub>lamp</sub> = S.sen &phi;:
 
Q<sub>lamp</sub> = 800 Var


Como P<sub>lamp</sub> = S.cos &phi; &rarr; S = P<sub>lamp</sub>/cos &phi; &rarr; <u>S = 1000 VA</u>





Edição das 15h19min de 10 de junho de 2025

  • CARGA MOTOR:

Sabe-se que a Potência aparente é igual a S = V.I e foi dada por:

Smotor = 1,5 KVA

Também, sabe-se que a potência ativa P = V. I. cosφ e que foi dada por

Pmotor = 1,2 KW

Portanto, cos φmotor = Pmotor/Smotor = 1,5 K/1,2K = 0,8 →

φmotor = 36,87° 

e Qmotor = S.sen φmotor = 1,5K x 0,6 :

 Qmotor =  0,9 KVar


  • CARGA LÂMPADAS:

Se foi dada em watts, significa que se trata da potência ativa. Portanto, a carga total de lâmpadas = 10 x 60W :

Plamp = 600 W

, com cos φlamp = 0,6 e, portanto cos-1 0,6 = 53,13 :

 φlamp = 53,13°
  

Como Plamp = S.cos φ → S = Plamp/cos φ:

Slamp = 1000 VA

e Qlamp = S.sen φ:

Qlamp = 800 Var


  • CARGA TOTAL:

Os triângulos do circuitos são:


E

    Qmotor = S.sen φmotor  = 1,5K x 0,6 = 0,9 KVar


Portanto:

a) corrente de entrada da resistência

 I= P/(V.cosφ)
 I=9000/[220.0.8]= 51,14 A

B) Potência aparente

 S = V.I = 220.51,14 = 11,250 kVA

B) Potência reativa

 Q = (S²-P²)½ = (11,25² - 9²)½ = 6,75 kVAr


Portanto:

a) corrente de entrada da resistência

 I= P/(V.cosφ)
 I=9000/[220.0.8]= 51,14 A

B) Potência aparente

 S = V.I = 220.51,14 = 11,250 kVA

B) Potência reativa

 Q = (S²-P²)½ = (11,25² - 9²)½ = 6,75 kVAr